refactored Image Rank Filters

This commit is contained in:
Vladislav Vinogradov 2013-04-29 16:28:15 +04:00
parent 5720eaf354
commit 4bb297afc2
2 changed files with 106 additions and 68 deletions

View File

@ -241,7 +241,18 @@ inline void morphologyEx(InputArray src, OutputArray dst, int op, InputArray ker
f->apply(src, dst, stream);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Image Rank Filter
//! Result pixel value is the maximum of pixel values under the rectangular mask region
CV_EXPORTS Ptr<Filter> createBoxMaxFilter(int srcType, Size ksize,
Point anchor = Point(-1, -1),
int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0));
//! Result pixel value is the maximum of pixel values under the rectangular mask region
CV_EXPORTS Ptr<Filter> createBoxMinFilter(int srcType, Size ksize,
Point anchor = Point(-1, -1),
int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0));
@ -326,12 +337,6 @@ CV_EXPORTS Ptr<BaseColumnFilter_GPU> getColumnSumFilter_GPU(int sumType, int dst
//! returns maximum filter
CV_EXPORTS Ptr<BaseFilter_GPU> getMaxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1));
//! returns minimum filter
CV_EXPORTS Ptr<BaseFilter_GPU> getMinFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1));

View File

@ -63,6 +63,8 @@ Ptr<Filter> cv::gpu::createGaussianFilter(int, int, Size, double, double, int, i
Ptr<Filter> cv::gpu::createMorphologyFilter(int, int, InputArray, Point, int) { throw_no_cuda(); return Ptr<Filter>(); }
Ptr<Filter> cv::gpu::createBoxMaxFilter(int, Size, Point, int, Scalar) { throw_no_cuda(); return Ptr<Filter>(); }
Ptr<Filter> cv::gpu::createBoxMinFilter(int, Size, Point, int, Scalar) { throw_no_cuda(); return Ptr<Filter>(); }
@ -70,8 +72,6 @@ Ptr<Filter> cv::gpu::createMorphologyFilter(int, int, InputArray, Point, int) {
Ptr<BaseRowFilter_GPU> cv::gpu::getRowSumFilter_GPU(int, int, int, int) { throw_no_cuda(); return Ptr<BaseRowFilter_GPU>(0); }
Ptr<BaseColumnFilter_GPU> cv::gpu::getColumnSumFilter_GPU(int, int, int, int) { throw_no_cuda(); return Ptr<BaseColumnFilter_GPU>(0); }
Ptr<BaseFilter_GPU> cv::gpu::getMaxFilter_GPU(int, int, const Size&, Point) { throw_no_cuda(); return Ptr<BaseFilter_GPU>(0); }
Ptr<BaseFilter_GPU> cv::gpu::getMinFilter_GPU(int, int, const Size&, Point) { throw_no_cuda(); return Ptr<BaseFilter_GPU>(0); }
@ -783,6 +783,99 @@ Ptr<Filter> cv::gpu::createMorphologyFilter(int op, int srcType, InputArray kern
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Image Rank Filter
namespace
{
enum
{
RANK_MAX,
RANK_MIN
};
class NPPRankFilter : public Filter
{
public:
NPPRankFilter(int op, int srcType, Size ksize, Point anchor, int borderMode, Scalar borderVal);
void apply(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
private:
typedef NppStatus (*nppFilterRank_t)(const Npp8u* pSrc, Npp32s nSrcStep, Npp8u* pDst, Npp32s nDstStep, NppiSize oSizeROI,
NppiSize oMaskSize, NppiPoint oAnchor);
int type_;
Size ksize_;
Point anchor_;
int borderMode_;
Scalar borderVal_;
nppFilterRank_t func_;
GpuMat srcBorder_;
};
NPPRankFilter::NPPRankFilter(int op, int srcType, Size ksize, Point anchor, int borderMode, Scalar borderVal) :
type_(srcType), ksize_(ksize), anchor_(anchor), borderMode_(borderMode), borderVal_(borderVal)
{
static const nppFilterRank_t maxFuncs[] = {0, nppiFilterMax_8u_C1R, 0, 0, nppiFilterMax_8u_C4R};
static const nppFilterRank_t minFuncs[] = {0, nppiFilterMin_8u_C1R, 0, 0, nppiFilterMin_8u_C4R};
CV_Assert( srcType == CV_8UC1 || srcType == CV_8UC4 );
normalizeAnchor(anchor_, ksize_);
if (op == RANK_MAX)
func_ = maxFuncs[CV_MAT_CN(srcType)];
else
func_ = minFuncs[CV_MAT_CN(srcType)];
}
void NPPRankFilter::apply(InputArray _src, OutputArray _dst, Stream& _stream)
{
GpuMat src = _src.getGpuMat();
CV_Assert( src.type() == type_ );
gpu::copyMakeBorder(src, srcBorder_, ksize_.height, ksize_.height, ksize_.width, ksize_.width, borderMode_, borderVal_, _stream);
_dst.create(src.size(), src.type());
GpuMat dst = _dst.getGpuMat();
GpuMat srcRoi = srcBorder_(Rect(ksize_.width, ksize_.height, src.cols, src.rows));
cudaStream_t stream = StreamAccessor::getStream(_stream);
NppStreamHandler h(stream);
NppiSize oSizeROI;
oSizeROI.width = src.cols;
oSizeROI.height = src.rows;
NppiSize oMaskSize;
oMaskSize.height = ksize_.height;
oMaskSize.width = ksize_.width;
NppiPoint oAnchor;
oAnchor.x = anchor_.x;
oAnchor.y = anchor_.y;
nppSafeCall( func_(srcRoi.ptr<Npp8u>(), static_cast<int>(srcRoi.step), dst.ptr<Npp8u>(), static_cast<int>(dst.step),
oSizeROI, oMaskSize, oAnchor) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
Ptr<Filter> cv::gpu::createBoxMaxFilter(int srcType, Size ksize, Point anchor, int borderMode, Scalar borderVal)
{
return new NPPRankFilter(RANK_MAX, srcType, ksize, anchor, borderMode, borderVal);
}
Ptr<Filter> cv::gpu::createBoxMinFilter(int srcType, Size ksize, Point anchor, int borderMode, Scalar borderVal)
{
return new NPPRankFilter(RANK_MIN, srcType, ksize, anchor, borderMode, borderVal);
}
@ -924,64 +1017,4 @@ Ptr<BaseColumnFilter_GPU> cv::gpu::getColumnSumFilter_GPU(int sumType, int dstTy
////////////////////////////////////////////////////////////////////////////////////////////////////
// Image Rank Filter
namespace
{
typedef NppStatus (*nppFilterRank_t)(const Npp8u * pSrc, Npp32s nSrcStep, Npp8u * pDst, Npp32s nDstStep, NppiSize oSizeROI,
NppiSize oMaskSize, NppiPoint oAnchor);
struct NPPRankFilter : public BaseFilter_GPU
{
NPPRankFilter(const Size& ksize_, const Point& anchor_, nppFilterRank_t func_) : BaseFilter_GPU(ksize_, anchor_), func(func_) {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& s = Stream::Null())
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
NppiSize oKernelSize;
oKernelSize.height = ksize.height;
oKernelSize.width = ksize.width;
NppiPoint oAnchor;
oAnchor.x = anchor.x;
oAnchor.y = anchor.y;
cudaStream_t stream = StreamAccessor::getStream(s);
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<Npp8u>(), static_cast<int>(src.step), dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, oKernelSize, oAnchor) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
nppFilterRank_t func;
};
}
Ptr<BaseFilter_GPU> cv::gpu::getMaxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor)
{
static const nppFilterRank_t nppFilterRank_callers[] = {0, nppiFilterMax_8u_C1R, 0, 0, nppiFilterMax_8u_C4R};
CV_Assert((srcType == CV_8UC1 || srcType == CV_8UC4) && dstType == srcType);
normalizeAnchor(anchor, ksize);
return Ptr<BaseFilter_GPU>(new NPPRankFilter(ksize, anchor, nppFilterRank_callers[CV_MAT_CN(srcType)]));
}
Ptr<BaseFilter_GPU> cv::gpu::getMinFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor)
{
static const nppFilterRank_t nppFilterRank_callers[] = {0, nppiFilterMin_8u_C1R, 0, 0, nppiFilterMin_8u_C4R};
CV_Assert((srcType == CV_8UC1 || srcType == CV_8UC4) && dstType == srcType);
normalizeAnchor(anchor, ksize);
return Ptr<BaseFilter_GPU>(new NPPRankFilter(ksize, anchor, nppFilterRank_callers[CV_MAT_CN(srcType)]));
}
#endif