split public interface and realization for SoftCascadeOctave

This commit is contained in:
marina.kolpakova 2013-01-29 17:44:21 +04:00
parent f3227c3f1a
commit 4ba8b53152
5 changed files with 92 additions and 55 deletions

View File

@ -43,6 +43,8 @@
#include <sft/fpool.hpp>
#include <sft/random.hpp>
#include <iostream>
#include <queue>
// ========= FeaturePool ========= //

View File

@ -43,6 +43,7 @@
// Trating application for Soft Cascades.
#include <sft/common.hpp>
#include <iostream>
#include <sft/fpool.hpp>
#include <sft/config.hpp>
@ -127,22 +128,24 @@ int main(int argc, char** argv)
cv::Rect boundingBox = cfg.bbox(it);
std::cout << "Object bounding box" << boundingBox << std::endl;
cv::SoftCascadeOctave boost(boundingBox, npositives, nnegatives, *it, shrinkage);
typedef cv::SoftCascadeOctave Octave;
cv::Ptr<Octave> boost = Octave::create(boundingBox, npositives, nnegatives, *it, shrinkage);
std::string path = cfg.trainPath;
sft::ScaledDataset dataset(path, *it);
if (boost.train(&dataset, &pool, cfg.weaks, cfg.treeDepth))
if (boost->train(&dataset, &pool, cfg.weaks, cfg.treeDepth))
{
CvFileStorage* fout = cvOpenFileStorage(cfg.resPath(it).c_str(), 0, CV_STORAGE_WRITE);
boost.write(fout, cfg.cascadeName);
boost->write(fout, cfg.cascadeName);
cvReleaseFileStorage( &fout);
cv::Mat thresholds;
boost.setRejectThresholds(thresholds);
boost->setRejectThresholds(thresholds);
boost.write(fso, &pool, thresholds);
boost->write(fso, &pool, thresholds);
cv::FileStorage tfs(("thresholds." + cfg.resPath(it)).c_str(), cv::FileStorage::WRITE);
tfs << "thresholds" << thresholds;

View File

@ -44,7 +44,6 @@
#define __OPENCV_SOFTCASCADE_HPP__
#include "opencv2/core/core.hpp"
#include "opencv2/ml/ml.hpp"
namespace cv {
@ -90,7 +89,7 @@ public:
// ========================================================================== //
// Implementation of Integral Channel Feature.
// Public Interface for Integral Channel Feature.
// ========================================================================== //
class CV_EXPORTS_W ChannelFeatureBuilder : public Algorithm
@ -155,12 +154,11 @@ private:
};
// ========================================================================== //
// Implementation of singe soft (stageless) cascade octave training.
// Public Interface for singe soft (stageless) cascade octave training.
// ========================================================================== //
class CV_EXPORTS SoftCascadeOctave : public cv::Boost
class CV_EXPORTS SoftCascadeOctave : public Algorithm
{
public:
enum
{
// Direct backward pruning. (Cha Zhang and Paul Viola)
@ -171,39 +169,14 @@ public:
HEURISTIC = 4
};
SoftCascadeOctave(cv::Rect boundingBox, int npositives, int nnegatives, int logScale, int shrinkage);
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth);
virtual void setRejectThresholds(OutputArray thresholds);
virtual void write( CvFileStorage* fs, string name) const;
virtual void write( cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const;
virtual float predict( InputArray _sample, InputArray _votes, bool raw_mode, bool return_sum ) const;
virtual ~SoftCascadeOctave();
protected:
virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat());
static cv::Ptr<SoftCascadeOctave> create(cv::Rect boundingBox, int npositives, int nnegatives,
int logScale, int shrinkage);
void processPositives(const Dataset* dataset, const FeaturePool* pool);
void generateNegatives(const Dataset* dataset, const FeaturePool* pool);
float predict( const Mat& _sample, const cv::Range range) const;
private:
void traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nfeatures, int* used, const double* th) const;
virtual void initial_weights(double (&p)[2]);
int logScale;
cv::Rect boundingBox;
int npositives;
int nnegatives;
int shrinkage;
Mat integrals;
Mat responses;
CvBoostParams params;
Mat trainData;
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth) = 0;
virtual void setRejectThresholds(OutputArray thresholds) = 0;
virtual void write( cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const = 0;
virtual void write( CvFileStorage* fs, string name) const = 0;
};
CV_EXPORTS bool initModule_softcascade(void);

View File

@ -52,6 +52,7 @@
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/core/core_c.h"
#include "opencv2/core/internal.hpp"
#include "opencv2/ml/ml.hpp"
#include "opencv2/opencv_modules.hpp"

View File

@ -42,6 +42,7 @@
#include "precomp.hpp"
#include <queue>
#include <string>
#define WITH_DEBUG_OUT
@ -122,10 +123,56 @@ struct Random
}
#endif
using cv::Dataset;
using cv::FeaturePool;
using cv::InputArray;
using cv::OutputArray;
using cv::Mat;
cv::FeaturePool::~FeaturePool(){}
cv::Dataset::~Dataset(){}
cv::SoftCascadeOctave::SoftCascadeOctave(cv::Rect bb, int np, int nn, int ls, int shr)
class BoostedSoftCascadeOctave : public cv::Boost, public cv::SoftCascadeOctave
{
public:
BoostedSoftCascadeOctave(cv::Rect boundingBox = cv::Rect(), int npositives = 0, int nnegatives = 0, int logScale = 0, int shrinkage = 1);
virtual ~BoostedSoftCascadeOctave();
virtual cv::AlgorithmInfo* info() const;
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth);
virtual void setRejectThresholds(OutputArray thresholds);
virtual void write( cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const;
virtual void write( CvFileStorage* fs, std::string name) const;
protected:
virtual float predict( InputArray _sample, InputArray _votes, bool raw_mode, bool return_sum ) const;
virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat());
void processPositives(const Dataset* dataset, const FeaturePool* pool);
void generateNegatives(const Dataset* dataset, const FeaturePool* pool);
float predict( const Mat& _sample, const cv::Range range) const;
private:
void traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nfeatures, int* used, const double* th) const;
virtual void initial_weights(double (&p)[2]);
int logScale;
cv::Rect boundingBox;
int npositives;
int nnegatives;
int shrinkage;
Mat integrals;
Mat responses;
CvBoostParams params;
Mat trainData;
};
BoostedSoftCascadeOctave::BoostedSoftCascadeOctave(cv::Rect bb, int np, int nn, int ls, int shr)
: logScale(ls), boundingBox(bb), npositives(np), nnegatives(nn), shrinkage(shr)
{
int maxSample = npositives + nnegatives;
@ -155,9 +202,9 @@ cv::SoftCascadeOctave::SoftCascadeOctave(cv::Rect bb, int np, int nn, int ls, in
params = _params;
}
cv::SoftCascadeOctave::~SoftCascadeOctave(){}
BoostedSoftCascadeOctave::~BoostedSoftCascadeOctave(){}
bool cv::SoftCascadeOctave::train( const cv::Mat& _trainData, const cv::Mat& _responses, const cv::Mat& varIdx,
bool BoostedSoftCascadeOctave::train( const cv::Mat& _trainData, const cv::Mat& _responses, const cv::Mat& varIdx,
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask)
{
bool update = false;
@ -165,7 +212,7 @@ bool cv::SoftCascadeOctave::train( const cv::Mat& _trainData, const cv::Mat& _re
update);
}
void cv::SoftCascadeOctave::setRejectThresholds(cv::OutputArray _thresholds)
void BoostedSoftCascadeOctave::setRejectThresholds(cv::OutputArray _thresholds)
{
dprintf("set thresholds according to DBP strategy\n");
@ -212,7 +259,7 @@ void cv::SoftCascadeOctave::setRejectThresholds(cv::OutputArray _thresholds)
}
}
void cv::SoftCascadeOctave::processPositives(const Dataset* dataset, const FeaturePool* pool)
void BoostedSoftCascadeOctave::processPositives(const Dataset* dataset, const FeaturePool* pool)
{
int w = boundingBox.width;
int h = boundingBox.height;
@ -259,7 +306,7 @@ void cv::SoftCascadeOctave::processPositives(const Dataset* dataset, const Featu
#undef USE_LONG_SEEDS
void cv::SoftCascadeOctave::generateNegatives(const Dataset* dataset, const FeaturePool* pool)
void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset, const FeaturePool* pool)
{
// ToDo: set seed, use offsets
sft::Random::engine eng(DX_DY_SEED);
@ -308,7 +355,7 @@ template <typename T> int sgn(T val) {
return (T(0) < val) - (val < T(0));
}
void cv::SoftCascadeOctave::traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nfeatures, int* used, const double* th) const
void BoostedSoftCascadeOctave::traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nfeatures, int* used, const double* th) const
{
std::queue<const CvDTreeNode*> nodes;
nodes.push( tree->get_root());
@ -365,7 +412,7 @@ void cv::SoftCascadeOctave::traverse(const CvBoostTree* tree, cv::FileStorage& f
fs << "}";
}
void cv::SoftCascadeOctave::write( cv::FileStorage &fso, const FeaturePool* pool, InputArray _thresholds) const
void BoostedSoftCascadeOctave::write( cv::FileStorage &fso, const FeaturePool* pool, InputArray _thresholds) const
{
CV_Assert(!_thresholds.empty());
cv::Mat used( 1, weak->total * ( (int)pow(2.f, params.max_depth) - 1), CV_32SC1);
@ -397,14 +444,14 @@ void cv::SoftCascadeOctave::write( cv::FileStorage &fso, const FeaturePool* pool
<< "}";
}
void cv::SoftCascadeOctave::initial_weights(double (&p)[2])
void BoostedSoftCascadeOctave::initial_weights(double (&p)[2])
{
double n = data->sample_count;
p[0] = n / (2. * (double)(nnegatives));
p[1] = n / (2. * (double)(npositives));
}
bool cv::SoftCascadeOctave::train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth)
bool BoostedSoftCascadeOctave::train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth)
{
CV_Assert(treeDepth == 2);
CV_Assert(weaks > 0);
@ -458,7 +505,7 @@ bool cv::SoftCascadeOctave::train(const Dataset* dataset, const FeaturePool* poo
}
float cv::SoftCascadeOctave::predict( cv::InputArray _sample, cv::InputArray _votes, bool raw_mode, bool return_sum ) const
float BoostedSoftCascadeOctave::predict( cv::InputArray _sample, cv::InputArray _votes, bool raw_mode, bool return_sum ) const
{
cv::Mat sample = _sample.getMat();
CvMat csample = sample;
@ -472,13 +519,24 @@ float cv::SoftCascadeOctave::predict( cv::InputArray _sample, cv::InputArray _vo
}
}
float cv::SoftCascadeOctave::predict( const Mat& _sample, const cv::Range range) const
float BoostedSoftCascadeOctave::predict( const Mat& _sample, const cv::Range range) const
{
CvMat sample = _sample;
return CvBoost::predict(&sample, 0, 0, range, false, true);
}
void cv::SoftCascadeOctave::write( CvFileStorage* fs, string name) const
void BoostedSoftCascadeOctave::write( CvFileStorage* fs, std::string _name) const
{
CvBoost::write(fs, name.c_str());
CvBoost::write(fs, _name.c_str());
}
CV_INIT_ALGORITHM(BoostedSoftCascadeOctave, "SoftCascadeOctave.BoostedSoftCascadeOctave", );
cv::SoftCascadeOctave::~SoftCascadeOctave(){}
cv::Ptr<cv::SoftCascadeOctave> cv::SoftCascadeOctave::create(cv::Rect boundingBox, int npositives, int nnegatives,
int logScale, int shrinkage)
{
cv::Ptr<cv::SoftCascadeOctave> octave(new BoostedSoftCascadeOctave(boundingBox, npositives, nnegatives, logScale, shrinkage));
return octave;
}