facerec_demo.py: Reworked demo to remove all matplotlib dependencies.

This commit is contained in:
Philipp Wagner 2012-07-30 02:18:27 +02:00
parent 508a029dae
commit 4a7e29b3f4

View File

@ -34,15 +34,8 @@
import os
import sys
import PIL.Image as Image
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import cv2
import numpy as np
def normalize(X, low, high, dtype=None):
"""Normalizes a given array in X to a value between low and high."""
@ -58,6 +51,7 @@ def normalize(X, low, high, dtype=None):
return np.asarray(X)
return np.asarray(X, dtype=dtype)
def read_images(path, sz=None):
"""Reads the images in a given folder, resizes images on the fly if size is given.
@ -78,11 +72,10 @@ def read_images(path, sz=None):
subject_path = os.path.join(dirname, subdirname)
for filename in os.listdir(subject_path):
try:
im = Image.open(os.path.join(subject_path, filename))
im = im.convert("L")
im = cv2.imread(os.path.join(subject_path, filename), cv2.IMREAD_GRAYSCALE)
# resize to given size (if given)
if (sz is not None):
im = im.resize(sz, Image.ANTIALIAS)
im = cv2.resize(im, sz)
X.append(np.asarray(im, dtype=np.uint8))
y.append(c)
except IOError, (errno, strerror):
@ -93,48 +86,20 @@ def read_images(path, sz=None):
c = c+1
return [X,y]
def create_font(fontname='Tahoma', fontsize=10):
"""Creates a font for the subplot."""
return { 'fontname': fontname, 'fontsize':fontsize }
def subplot(title, images, rows, cols, sptitle="subplot", sptitles=[], colormap=cm.gray, ticks_visible=True, filename=None):
"""This will ease creating a subplot with matplotlib a lot for us."""
fig = plt.figure()
# main title
fig.text(.5, .95, title, horizontalalignment='center')
for i in xrange(len(images)):
ax0 = fig.add_subplot(rows,cols,(i+1))
plt.setp(ax0.get_xticklabels(), visible=False)
plt.setp(ax0.get_yticklabels(), visible=False)
if len(sptitles) == len(images):
plt.title("%s #%s" % (sptitle, str(sptitles[i])), create_font('Tahoma',10))
else:
plt.title("%s #%d" % (sptitle, (i+1)), create_font('Tahoma',10))
plt.imshow(np.asarray(images[i]), cmap=colormap)
if filename is None:
plt.show()
else:
fig.savefig(filename)
def imsave(image, title="", filename=None):
"""Saves or shows (if no filename is given) an image."""
fig = plt.figure()
plt.imshow(np.asarray(image))
plt.title(title, create_font('Tahoma',10))
if filename is None:
plt.show()
else:
fig.savefig(filename)
if __name__ == "__main__":
# This is where we write the images, if an output_dir is given
# in command line:
out_dir = None
# You'll need at least a path to your image data, please see
# the tutorial coming with this source code on how to prepare
# your image data:
if len(sys.argv) != 2:
print "USAGE: facerec_demo.py </path/to/images>"
if len(sys.argv) < 2:
print "USAGE: facerec_demo.py </path/to/images> [</path/to/store/images/at>]"
sys.exit()
# Now read in the image data. This must be a valid path!
[X,y] = read_images(sys.argv[1])
if len(sys.argv) == 3:
out_dir = sys.argv[2]
# Create the Eigenfaces model. We are going to use the default
# parameters for this simple example, please read the documentation
# for thresholding:
@ -166,17 +131,26 @@ if __name__ == "__main__":
# Now let's get some data:
mean = model.getMat("mean")
eigenvectors = model.getMat("eigenvectors")
cv2.imwrite("test.png", X[0])
# We'll save the mean, by first normalizing it:
mean_norm = normalize(mean, 0, 255)
mean_resized = mean_norm.reshape(X[0].shape)
imsave(mean_resized, "Mean Face", "mean.png")
if out_dir is None:
cv2.imshow("mean", np.asarray(mean_resized, dtype=np.uint8))
else:
cv2.imwrite("%s/mean.png" % (out_dir), np.asarray(mean_resized, dtype=np.uint8))
# Turn the first (at most) 16 eigenvectors into grayscale
# images. You could also use cv::normalize here, but sticking
# to NumPy is much easier for now.
# Note: eigenvectors are stored by column:
SubplotData = []
for i in xrange(min(len(X), 16)):
eigenvector_i = eigenvectors[:,i].reshape(X[0].shape)
SubplotData.append(normalize(eigenvector_i, 0, 255))
# Plot them and store the plot to "python_eigenfaces.png"
subplot(title="Eigenfaces AT&T Facedatabase", images=SubplotData, rows=4, cols=4, sptitle="Eigenface", colormap=cm.jet, filename="eigenfaces.png")
eigenvector_i_norm = normalize(eigenvector_i, 0, 255)
# Show or save the images:
if out_dir is None:
cv2.imshow("%s/eigenvector_%d" % (out_dir,i), np.asarray(eigenvector_i_norm, dtype=np.uint8))
else:
cv2.imwrite("%s/eigenvector_%d.png" % (out_dir,i), np.asarray(eigenvector_i_norm, dtype=np.uint8))
# Show the images:
if out_dir is None:
cv2.waitKey(0)