soft cascade become Algorithm
This commit is contained in:
parent
ff8417db00
commit
4a1c4a9862
@ -488,52 +488,52 @@ protected:
|
||||
Ptr<MaskGenerator> maskGenerator;
|
||||
};
|
||||
|
||||
/**
|
||||
* \class SoftCascade
|
||||
* \brief Implement soft (stageless) cascade.
|
||||
*/
|
||||
class CV_EXPORTS SoftCascade
|
||||
|
||||
// Implementation of soft (stageless) cascaded detector.
|
||||
class CV_EXPORTS SCascade : public Algorithm
|
||||
{
|
||||
public:
|
||||
|
||||
/**
|
||||
* \class Detection
|
||||
* \brief Soft cascade detector result represintation.
|
||||
*/
|
||||
// Representation of detectors result.
|
||||
struct CV_EXPORTS Detection
|
||||
{
|
||||
// Default object type.
|
||||
enum {PEDESTRIAN = 1};
|
||||
|
||||
//! Create detection from an object bounding rectangle and confidence. Only PEDESTRIAN type carrently supported.
|
||||
//! Param r is a boundinf rectangle
|
||||
//! param c is a confidence that object belongs to class k
|
||||
//! Paral k is an object class
|
||||
// Creates Detection from an object bounding box and confidence.
|
||||
// Param b is a bounding box
|
||||
// Param c is a confidence that object belongs to class k
|
||||
// Paral k is an object class
|
||||
Detection(const cv::Rect& b, const float c, int k = PEDESTRIAN) : bb(b), confidence(c), kind(k) {}
|
||||
|
||||
Detection(const cv::Rect& r, const float c, int k = PEDESTRIAN) : rect(r), confidence(c), kind(k) {}
|
||||
cv::Rect rect;
|
||||
cv::Rect bb;
|
||||
float confidence;
|
||||
int kind;
|
||||
};
|
||||
|
||||
//! An empty cascade will be created.
|
||||
//! Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
|
||||
//! Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed.
|
||||
//! Param scales is a number of scales from minScale to maxScale.
|
||||
SoftCascade( const float minScale = 0.4f, const float maxScale = 5.f, const int scales = 55);
|
||||
// An empty cascade will be created.
|
||||
// Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
|
||||
// Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed.
|
||||
// Param scales is a number of scales from minScale to maxScale.
|
||||
// Param rejfactor is used for NMS.
|
||||
SCascade(const float minScale = 0.4f, const float maxScale = 5.f, const int scales = 55, const int rejfactor = 1);
|
||||
|
||||
//! Cascade will be created for scales from minScale to maxScale.
|
||||
//! Param fs is a serialized sacsade.
|
||||
SoftCascade( const cv::FileStorage& fs);
|
||||
virtual ~SCascade();
|
||||
|
||||
//! cascade will be loaded. The previous cascade will be destroyed.
|
||||
//! Param fs is a serialized sacsade.
|
||||
bool read( const cv::FileStorage& fs);
|
||||
cv::AlgorithmInfo* info() const;
|
||||
|
||||
virtual ~SoftCascade();
|
||||
// Load cascade from FileNode.
|
||||
// Param fn is a root node for cascade. Should be <cascade>.
|
||||
virtual bool load(const FileNode& fn);
|
||||
|
||||
//! return vector of bounding boxes. Each box contains one detected object
|
||||
virtual void detectMultiScale(const Mat& image, const std::vector<cv::Rect>& rois, std::vector<Detection>& objects,
|
||||
int rejectfactor = 1) const;
|
||||
// Load cascade config.
|
||||
virtual void read(const FileNode& fn);
|
||||
|
||||
// Return the vector of Decection objcts.
|
||||
// Param image is a frame on which detector will be applied.
|
||||
// Param rois is a vector of regions of interest. Only the objects that fall into one of the regions will be returned.
|
||||
// Param objects is an output array of Detections
|
||||
virtual void detect(const Mat& image, const std::vector<cv::Rect>& rois, std::vector<Detection>& objects) const;
|
||||
|
||||
private:
|
||||
struct Filds;
|
||||
@ -542,8 +542,11 @@ private:
|
||||
float minScale;
|
||||
float maxScale;
|
||||
int scales;
|
||||
int rejfactor;
|
||||
};
|
||||
|
||||
CV_EXPORTS bool initModule_objdetect(void);
|
||||
|
||||
/**
|
||||
* \class IntegralChannels
|
||||
* \brief Create channel integrals for Soft Cascade detector.
|
||||
|
@ -58,35 +58,36 @@ typedef perf::TestBaseWithParam<fixture> detect;
|
||||
|
||||
|
||||
namespace {
|
||||
typedef cv::SoftCascade::Detection detection_t;
|
||||
typedef cv::SCascade::Detection detection_t;
|
||||
|
||||
void extractRacts(std::vector<detection_t> objectBoxes, vector<Rect> rects)
|
||||
{
|
||||
rects.clear();
|
||||
for (int i = 0; i < (int)objectBoxes.size(); ++i)
|
||||
rects.push_back(objectBoxes[i].rect);
|
||||
rects.push_back(objectBoxes[i].bb);
|
||||
}
|
||||
}
|
||||
|
||||
PERF_TEST_P(detect, SoftCascade,
|
||||
PERF_TEST_P(detect, SCascade,
|
||||
testing::Combine(testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
||||
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png"))))
|
||||
{
|
||||
typedef cv::SoftCascade::Detection detection_t;
|
||||
typedef cv::SCascade::Detection Detection;
|
||||
cv::Mat colored = imread(getDataPath(get<1>(GetParam())));
|
||||
ASSERT_FALSE(colored.empty());
|
||||
|
||||
cv::SoftCascade cascade;
|
||||
cv::SCascade cascade;
|
||||
cv::FileStorage fs(getDataPath(get<0>(GetParam())), cv::FileStorage::READ);
|
||||
ASSERT_TRUE(cascade.read(fs));
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
std::vector<cv::Rect> rois;
|
||||
std::vector<detection_t> objectBoxes;
|
||||
cascade.detectMultiScale(colored, rois, objectBoxes);
|
||||
cascade.detect(colored, rois, objectBoxes);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
cascade.detectMultiScale(colored, rois, objectBoxes);
|
||||
cascade.detect(colored, rois, objectBoxes);
|
||||
}
|
||||
|
||||
vector<Rect> rects;
|
||||
|
@ -7,11 +7,11 @@
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
@ -40,4 +40,21 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include <precomp.hpp>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
CV_INIT_ALGORITHM(SCascade, "CascadeDetector.SCascade",
|
||||
obj.info()->addParam(obj, "minScale", obj.minScale));
|
||||
// obj.info()->addParam(obj, "maxScale", obj.maxScale);
|
||||
// obj.info()->addParam(obj, "scales", obj.scales);
|
||||
// obj.info()->addParam(obj, "rejfactor", obj.rejfactor));
|
||||
|
||||
bool initModule_objdetect(void)
|
||||
{
|
||||
Ptr<Algorithm> sc = createSCascade();
|
||||
return sc->info() != 0;
|
||||
}
|
||||
|
||||
}
|
@ -175,7 +175,7 @@ struct Level
|
||||
enum { R_SHIFT = 1 << 15 };
|
||||
|
||||
float scaling[2];
|
||||
typedef cv::SoftCascade::Detection detection_t;
|
||||
typedef cv::SCascade::Detection detection_t;
|
||||
|
||||
Level(const Octave& oct, const float scale, const int shrinkage, const int w, const int h)
|
||||
: octave(&oct), origScale(scale), relScale(scale / oct.scale),
|
||||
@ -252,7 +252,7 @@ struct ChannelStorage
|
||||
|
||||
}
|
||||
|
||||
struct cv::SoftCascade::Filds
|
||||
struct cv::SCascade::Filds
|
||||
{
|
||||
float minScale;
|
||||
float maxScale;
|
||||
@ -491,33 +491,25 @@ struct cv::SoftCascade::Filds
|
||||
}
|
||||
};
|
||||
|
||||
cv::SoftCascade::SoftCascade(const float mins, const float maxs, const int nsc)
|
||||
: filds(0), minScale(mins), maxScale(maxs), scales(nsc) {}
|
||||
cv::SCascade::SCascade(const float mins, const float maxs, const int nsc, const int rej)
|
||||
: filds(0), minScale(mins), maxScale(maxs), scales(nsc), rejfactor(rej) {}
|
||||
|
||||
cv::SoftCascade::SoftCascade(const cv::FileStorage& fs) : filds(0)
|
||||
cv::SCascade::~SCascade() { delete filds;}
|
||||
|
||||
void cv::SCascade::read(const FileNode& fn)
|
||||
{
|
||||
read(fs);
|
||||
}
|
||||
cv::SoftCascade::~SoftCascade()
|
||||
{
|
||||
delete filds;
|
||||
Algorithm::read(fn);
|
||||
}
|
||||
|
||||
bool cv::SoftCascade::read( const cv::FileStorage& fs)
|
||||
bool cv::SCascade::load(const FileNode& fn)
|
||||
{
|
||||
if (!fs.isOpened()) return false;
|
||||
|
||||
if (filds)
|
||||
delete filds;
|
||||
filds = 0;
|
||||
if (filds) delete filds;
|
||||
|
||||
filds = new Filds;
|
||||
Filds& flds = *filds;
|
||||
return flds.fill(fs.getFirstTopLevelNode(), minScale, maxScale);
|
||||
return filds->fill(fn, minScale, maxScale);
|
||||
}
|
||||
|
||||
void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::Rect>& /*rois*/,
|
||||
std::vector<Detection>& objects, const int /*rejectfactor*/) const
|
||||
void cv::SCascade::detect(const Mat& image, const std::vector<cv::Rect>& /*rois*/, std::vector<Detection>& objects) const
|
||||
{
|
||||
// only color images are supperted
|
||||
CV_Assert(image.type() == CV_8UC3);
|
||||
|
@ -1,31 +1,31 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistributions in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
@ -37,60 +37,62 @@
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
TEST(SoftCascade, readCascade)
|
||||
TEST(SCascade, readCascade)
|
||||
{
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/icf-template.xml";
|
||||
cv::SoftCascade cascade;
|
||||
cv::SCascade cascade;
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(cascade.read(fs));
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
}
|
||||
|
||||
TEST(SoftCascade, detect)
|
||||
TEST(SCascade, detect)
|
||||
{
|
||||
typedef cv::SoftCascade::Detection detection_t;
|
||||
typedef cv::SCascade::Detection Detection;
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
||||
cv::SoftCascade cascade;
|
||||
cv::SCascade cascade;
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(cascade.read(fs));
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
cv::Mat colored = cv::imread(cvtest::TS::ptr()->get_data_path() + "cascadeandhog/bahnhof/image_00000000_0.png");
|
||||
ASSERT_FALSE(colored.empty());
|
||||
|
||||
std::vector<detection_t> objects;
|
||||
std::vector<Detection> objects;
|
||||
std::vector<cv::Rect> rois;
|
||||
rois.push_back(cv::Rect(0, 0, 640, 480));
|
||||
|
||||
cascade.detectMultiScale(colored, rois, objects);
|
||||
cascade.detect(colored, rois, objects);
|
||||
|
||||
|
||||
// cv::Mat out = colored.clone();
|
||||
// int level = 0, total = 0;
|
||||
// int levelWidth = objects[0].rect.width;
|
||||
cv::Mat out = colored.clone();
|
||||
int level = 0, total = 0;
|
||||
int levelWidth = objects[0].bb.width;
|
||||
|
||||
// for(int i = 0 ; i < (int)objects.size(); ++i)
|
||||
// {
|
||||
// if (objects[i].rect.width != levelWidth)
|
||||
// {
|
||||
// std::cout << "Level: " << level << " total " << total << std::endl;
|
||||
// cv::imshow("out", out);
|
||||
// cv::waitKey(0);
|
||||
// out = colored.clone();
|
||||
// levelWidth = objects[i].rect.width;
|
||||
// total = 0;
|
||||
// level++;
|
||||
// }
|
||||
// cv::rectangle(out, objects[i].rect, cv::Scalar(255, 0, 0, 255), 1);
|
||||
// std::cout << "detection: " << objects[i].rect.x
|
||||
// << " " << objects[i].rect.y
|
||||
// << " " << objects[i].rect.width
|
||||
// << " " << objects[i].rect.height << std::endl;
|
||||
// total++;
|
||||
// }
|
||||
// std::cout << "detected: " << (int)objects.size() << std::endl;
|
||||
for(int i = 0 ; i < (int)objects.size(); ++i)
|
||||
{
|
||||
if (objects[i].bb.width != levelWidth)
|
||||
{
|
||||
std::cout << "Level: " << level << " total " << total << std::endl;
|
||||
cv::imshow("out", out);
|
||||
cv::waitKey(0);
|
||||
out = colored.clone();
|
||||
levelWidth = objects[i].bb.width;
|
||||
total = 0;
|
||||
level++;
|
||||
}
|
||||
cv::rectangle(out, objects[i].bb, cv::Scalar(255, 0, 0, 255), 1);
|
||||
std::cout << "detection: " << objects[i].bb.x
|
||||
<< " " << objects[i].bb.y
|
||||
<< " " << objects[i].bb.width
|
||||
<< " " << objects[i].bb.height << std::endl;
|
||||
total++;
|
||||
}
|
||||
std::cout << "detected: " << (int)objects.size() << std::endl;
|
||||
ASSERT_EQ((int)objects.size(), 3668);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user