changed InputArray's enumeration constant for UMat, since it may potentially conflict with existing OpenCL module. refactored Kernel's setArg API (now UMat is passed to a kernel as a structure, as Alexander A suggested). removed Kernel's cleanup callback from the external API; now each kernel keeps track of used matrices and they are dereferenced after it's complete.

This commit is contained in:
Vadim Pisarevsky
2013-10-25 16:46:03 +04:00
parent 6416c33020
commit 485d36d3c0
3 changed files with 171 additions and 114 deletions

View File

@@ -1210,6 +1210,46 @@ OCL_FUNC(cl_int, clReleaseEvent, (cl_event event), (event))
namespace cv { namespace ocl {
struct UMat2D
{
UMat2D(const UMat& m, int accessFlags)
{
CV_Assert(m.dims == 2);
data = (cl_mem)m.handle(accessFlags);
offset = m.offset;
step = m.step;
rows = m.rows;
cols = m.cols;
}
cl_mem data;
size_t offset;
size_t step;
int rows;
int cols;
};
struct UMat3D
{
UMat3D(const UMat& m, int accessFlags)
{
CV_Assert(m.dims == 3);
data = (cl_mem)m.handle(accessFlags);
offset = m.offset;
step = m.step.p[1];
slicestep = m.step.p[0];
slices = m.size.p[0];
rows = m.size.p[1];
cols = m.size.p[2];
}
cl_mem data;
size_t offset;
size_t slicestep;
size_t step;
int slices;
int rows;
int cols;
};
// Computes 64-bit "cyclic redundancy check" sum, as specified in ECMA-182
static uint64 crc64( const uchar* data, size_t size, uint64 crc0=0 )
{
@@ -1266,6 +1306,15 @@ bool useOpenCL()
return data->useOpenCL > 0;
}
void setUseOpenCL(bool flag)
{
if( haveOpenCL() )
{
TLSData* data = TLSData::get();
data->useOpenCL = flag ? 1 : 0;
}
}
void finish()
{
Queue::getDefault().finish();
@@ -1980,10 +2029,33 @@ struct Kernel::Impl
cl_int retval = 0;
handle = ph != 0 ?
clCreateKernel(ph, kname, &retval) : 0;
for( int i = 0; i < MAX_ARRS; i++ )
u[i] = 0;
}
void cleanupUMats()
{
for( int i = 0; i < MAX_ARRS; i++ )
if( u[i] )
{
if( CV_XADD(&u[i]->urefcount, -1) == 1 )
u[i]->currAllocator->deallocate(u[i]);
u[i] = 0;
}
nu = 0;
}
void addUMat(const UMat& m)
{
CV_Assert(nu < MAX_ARRS && m.u && m.u->urefcount > 0);
u[nu] = m.u;
CV_XADD(&m.u->urefcount, 1);
nu++;
}
void finit()
{
if(!f.empty()) f->operator()();
cleanupUMats();
if(e) { clReleaseEvent(e); e = 0; }
release();
}
@@ -1998,7 +2070,9 @@ struct Kernel::Impl
cl_kernel handle;
cl_event e;
Ptr<Kernel::Callback> f;
enum { MAX_ARRS = 16 };
UMatData* u[MAX_ARRS];
int nu;
};
}}
@@ -2086,51 +2160,48 @@ void* Kernel::ptr() const
return p ? p->handle : 0;
}
int Kernel::set(int i, const void* value, size_t sz)
void Kernel::set(int i, const void* value, size_t sz)
{
CV_Assert( p && clSetKernelArg(p->handle, (cl_uint)i, sz, value) >= 0 );
return i+1;
if( i == 0 )
p->cleanupUMats();
}
int Kernel::set(int i, const UMat& m)
void Kernel::set(int i, const UMat& m)
{
return set(i, KernelArg(KernelArg::READ_WRITE, (UMat*)&m, 0, 0));
set(i, KernelArg(KernelArg::READ_WRITE, (UMat*)&m, 0, 0));
}
int Kernel::set(int i, const KernelArg& arg)
void Kernel::set(int i, const KernelArg& arg)
{
CV_Assert( p && p->handle );
if( i == 0 )
p->cleanupUMats();
if( arg.m )
{
int dims = arg.m->dims;
void* h = arg.m->handle(((arg.flags & KernelArg::READ_ONLY) ? ACCESS_READ : 0) +
((arg.flags & KernelArg::WRITE_ONLY) ? ACCESS_WRITE : 0));
clSetKernelArg(p->handle, (cl_uint)i, sizeof(cl_mem), &h);
clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(size_t), &arg.m->offset);
if( dims <= 2 )
int accessFlags = ((arg.flags & KernelArg::READ_ONLY) ? ACCESS_READ : 0) +
((arg.flags & KernelArg::WRITE_ONLY) ? ACCESS_WRITE : 0);
if( arg.m->dims <= 2 )
{
clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(size_t), &arg.m->step.p[0]);
clSetKernelArg(p->handle, (cl_uint)(i+3), sizeof(arg.m->rows), &arg.m->rows);
clSetKernelArg(p->handle, (cl_uint)(i+4), sizeof(arg.m->cols), &arg.m->cols);
return i + 5;
UMat2D u2d(*arg.m, accessFlags);
clSetKernelArg(p->handle, (cl_uint)i, sizeof(u2d), &u2d);
}
else
{
clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(size_t)*(dims-1), &arg.m->step.p[0]);
clSetKernelArg(p->handle, (cl_uint)(i+3), sizeof(cl_int)*dims, &arg.m->size.p[0]);
return i + 4;
UMat3D u3d(*arg.m, accessFlags);
clSetKernelArg(p->handle, (cl_uint)i, sizeof(u3d), &u3d);
}
p->addUMat(*arg.m);
}
else
{
clSetKernelArg(p->handle, (cl_uint)i, arg.sz, arg.obj);
return i+1;
}
}
void Kernel::run(int dims, size_t offset[], size_t globalsize[], size_t localsize[],
bool sync, const Ptr<Callback>& cleanupCallback, const Queue& q)
bool sync, const Queue& q)
{
CV_Assert(p && p->handle && p->e == 0);
cl_command_queue qq = getQueue(q);
@@ -2140,18 +2211,16 @@ void Kernel::run(int dims, size_t offset[], size_t globalsize[], size_t localsiz
if( sync )
{
clFinish(qq);
if( !cleanupCallback.empty() )
cleanupCallback->operator()();
p->cleanupUMats();
}
else
{
p->f = cleanupCallback;
p->addref();
clSetEventCallback(p->e, CL_COMPLETE, oclCleanupCallback, p);
}
}
void Kernel::runTask(bool sync, const Ptr<Callback>& cleanupCallback, const Queue& q)
void Kernel::runTask(bool sync, const Queue& q)
{
CV_Assert(p && p->handle && p->e == 0);
cl_command_queue qq = getQueue(q);
@@ -2159,12 +2228,10 @@ void Kernel::runTask(bool sync, const Ptr<Callback>& cleanupCallback, const Queu
if( sync )
{
clFinish(qq);
if( !cleanupCallback.empty() )
cleanupCallback->operator()();
p->cleanupUMats();
}
else
{
p->f = cleanupCallback;
p->addref();
clSetEventCallback(p->e, CL_COMPLETE, oclCleanupCallback, p);
}