Added new performance tests for calcOpticalFlowPyrLK and buildOpticalFlowPyramid; extracted private header from lkpyramid.cpp

This commit is contained in:
Andrey Kamaev 2012-05-21 13:07:53 +00:00
parent ac8f61ee91
commit 47f72b538f
3 changed files with 467 additions and 324 deletions

View File

@ -28,12 +28,12 @@ void FormTrackingPointsArray(vector<Point2f>& points, int width, int height, int
} }
} }
PERF_TEST_P(Path_Idx_Cn_NPoints_WSize, OpticalFlowPyrLK, testing::Combine( PERF_TEST_P(Path_Idx_Cn_NPoints_WSize, OpticalFlowPyrLK_full, testing::Combine(
testing::Values<std::string>("cv/optflow/frames/VGA_%02d.png", "cv/optflow/frames/720p_%02d.jpg"), testing::Values<std::string>("cv/optflow/frames/VGA_%02d.png", "cv/optflow/frames/720p_%02d.jpg"),
testing::Range(0, 3), testing::Range(1, 3),
testing::Values(1, 3, 4), testing::Values(1, 3, 4),
testing::Values(make_tuple(9, 9), make_tuple(15, 15)), testing::Values(make_tuple(9, 9), make_tuple(15, 15)),
testing::Values(7, 11, 21, 25) testing::Values(7, 11, 25)
) )
) )
{ {
@ -48,6 +48,7 @@ PERF_TEST_P(Path_Idx_Cn_NPoints_WSize, OpticalFlowPyrLK, testing::Combine(
int nPointsX = min(get<0>(get<3>(GetParam())), img1.cols); int nPointsX = min(get<0>(get<3>(GetParam())), img1.cols);
int nPointsY = min(get<1>(get<3>(GetParam())), img1.rows); int nPointsY = min(get<1>(get<3>(GetParam())), img1.rows);
int winSize = get<4>(GetParam()); int winSize = get<4>(GetParam());
int maxLevel = 2; int maxLevel = 2;
TermCriteria criteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 7, 0.001); TermCriteria criteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 7, 0.001);
int flags = 0; int flags = 0;
@ -91,3 +92,120 @@ PERF_TEST_P(Path_Idx_Cn_NPoints_WSize, OpticalFlowPyrLK, testing::Combine(
flags, minEigThreshold); flags, minEigThreshold);
} }
} }
typedef tr1::tuple<std::string, int, int, tr1::tuple<int,int>, int, bool> Path_Idx_Cn_NPoints_WSize_Deriv_t;
typedef TestBaseWithParam<Path_Idx_Cn_NPoints_WSize_Deriv_t> Path_Idx_Cn_NPoints_WSize_Deriv;
PERF_TEST_P(Path_Idx_Cn_NPoints_WSize_Deriv, OpticalFlowPyrLK_self, testing::Combine(
testing::Values<std::string>("cv/optflow/frames/VGA_%02d.png", "cv/optflow/frames/720p_%02d.jpg"),
testing::Range(1, 3),
testing::Values(1, 3, 4),
testing::Values(make_tuple(9, 9), make_tuple(15, 15)),
testing::Values(7, 11, 25),
testing::Bool()
)
)
{
string filename1 = getDataPath(cv::format(get<0>(GetParam()).c_str(), get<1>(GetParam())));
string filename2 = getDataPath(cv::format(get<0>(GetParam()).c_str(), get<1>(GetParam()) + 1));
Mat img1 = imread(filename1);
Mat img2 = imread(filename2);
if (img1.empty()) FAIL() << "Unable to load source image " << filename1;
if (img2.empty()) FAIL() << "Unable to load source image " << filename2;
int cn = get<2>(GetParam());
int nPointsX = min(get<0>(get<3>(GetParam())), img1.cols);
int nPointsY = min(get<1>(get<3>(GetParam())), img1.rows);
int winSize = get<4>(GetParam());
bool withDerivatives = get<5>(GetParam());
int maxLevel = 2;
TermCriteria criteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 7, 0.001);
int flags = 0;
double minEigThreshold = 1e-4;
Mat frame1, frame2;
switch(cn)
{
case 1:
cvtColor(img1, frame1, COLOR_BGR2GRAY, cn);
cvtColor(img2, frame2, COLOR_BGR2GRAY, cn);
break;
case 3:
frame1 = img1;
frame2 = img2;
break;
case 4:
cvtColor(img1, frame1, COLOR_BGR2BGRA, cn);
cvtColor(img2, frame2, COLOR_BGR2BGRA, cn);
break;
default:
FAIL() << "Unexpected number of channels: " << cn;
}
vector<Point2f> inPoints;
vector<Point2f> outPoints;
vector<uchar> status;
vector<float> err;
FormTrackingPointsArray(inPoints, frame1.cols, frame1.rows, nPointsX, nPointsY);
outPoints.resize(inPoints.size());
status.resize(inPoints.size());
err.resize(inPoints.size());
std::vector<Mat> pyramid1, pyramid2;
maxLevel = buildOpticalFlowPyramid(frame1, pyramid1, Size(winSize, winSize), maxLevel, withDerivatives);
maxLevel = buildOpticalFlowPyramid(frame2, pyramid2, Size(winSize, winSize), maxLevel, withDerivatives);
declare.in(pyramid1, pyramid2, inPoints).out(outPoints);
TEST_CYCLE()
{
calcOpticalFlowPyrLK(pyramid1, pyramid2, inPoints, outPoints, status, err,
Size(winSize, winSize), maxLevel, criteria,
flags, minEigThreshold);
}
}
CV_ENUM(PyrBorderMode, BORDER_DEFAULT, BORDER_TRANSPARENT);
typedef tr1::tuple<std::string, int, bool, PyrBorderMode, bool> Path_Win_Deriv_Border_Reuse_t;
typedef TestBaseWithParam<Path_Win_Deriv_Border_Reuse_t> Path_Win_Deriv_Border_Reuse;
PERF_TEST_P(Path_Win_Deriv_Border_Reuse, OpticalFlowPyrLK_pyr, testing::Combine(
testing::Values<std::string>("cv/optflow/frames/720p_01.jpg"),
testing::Values(7, 11),
testing::Bool(),
testing::ValuesIn(PyrBorderMode::all()),
testing::Bool()
)
)
{
string filename = getDataPath(get<0>(GetParam()));
Mat img = imread(filename);
Size winSize(get<1>(GetParam()), get<1>(GetParam()));
bool withDerivatives = get<2>(GetParam());
int derivBorder = get<3>(GetParam());
int pyrBorder = derivBorder;
if(derivBorder != BORDER_TRANSPARENT)
{
derivBorder = BORDER_CONSTANT;
pyrBorder = BORDER_REFLECT_101;
}
bool tryReuseInputImage = get<4>(GetParam());
std::vector<Mat> pyramid;
img.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width);
int maxLevel = buildOpticalFlowPyramid(img, pyramid, winSize, 1000, withDerivatives, BORDER_CONSTANT, BORDER_CONSTANT, tryReuseInputImage);
declare.in(img).out(pyramid);
TEST_CYCLE()
{
buildOpticalFlowPyramid(img, pyramid, winSize, maxLevel, withDerivatives, pyrBorder, derivBorder, tryReuseInputImage);
}
SANITY_CHECK(pyramid);
}

View File

@ -41,17 +41,22 @@
#include "precomp.hpp" #include "precomp.hpp"
#include <float.h> #include <float.h>
#include <stdio.h> #include <stdio.h>
#include "lkpyramid.hpp"
namespace cv namespace
{ {
static void calcSharrDeriv(const cv::Mat& src, cv::Mat& dst)
typedef short deriv_type;
static void calcSharrDeriv(const Mat& src, Mat& dst)
{ {
using namespace cv;
using cv::detail::deriv_type;
int rows = src.rows, cols = src.cols, cn = src.channels(), colsn = cols*cn, depth = src.depth(); int rows = src.rows, cols = src.cols, cn = src.channels(), colsn = cols*cn, depth = src.depth();
CV_Assert(depth == CV_8U); CV_Assert(depth == CV_8U);
dst.create(rows, cols, CV_MAKETYPE(DataType<deriv_type>::depth, cn*2)); dst.create(rows, cols, CV_MAKETYPE(DataType<deriv_type>::depth, cn*2));
#ifdef HAVE_TEGRA_OPTIMIZATION
if (tegra::calcSharrDeriv(src, dst))
return;
#endif
int x, y, delta = (int)alignSize((cols + 2)*cn, 16); int x, y, delta = (int)alignSize((cols + 2)*cn, 16);
AutoBuffer<deriv_type> _tempBuf(delta*2 + 64); AutoBuffer<deriv_type> _tempBuf(delta*2 + 64);
@ -127,373 +132,355 @@ static void calcSharrDeriv(const Mat& src, Mat& dst)
} }
} }
}//namespace
struct LKTrackerInvoker cv::detail::LKTrackerInvoker::LKTrackerInvoker(
{ const Mat& _prevImg, const Mat& _prevDeriv, const Mat& _nextImg,
LKTrackerInvoker( const Mat& _prevImg, const Mat& _prevDeriv, const Mat& _nextImg,
const Point2f* _prevPts, Point2f* _nextPts, const Point2f* _prevPts, Point2f* _nextPts,
uchar* _status, float* _err, uchar* _status, float* _err,
Size _winSize, TermCriteria _criteria, Size _winSize, TermCriteria _criteria,
int _level, int _maxLevel, int _flags, float _minEigThreshold ) int _level, int _maxLevel, int _flags, float _minEigThreshold )
{ {
prevImg = &_prevImg; prevImg = &_prevImg;
prevDeriv = &_prevDeriv; prevDeriv = &_prevDeriv;
nextImg = &_nextImg; nextImg = &_nextImg;
prevPts = _prevPts; prevPts = _prevPts;
nextPts = _nextPts; nextPts = _nextPts;
status = _status; status = _status;
err = _err; err = _err;
winSize = _winSize; winSize = _winSize;
criteria = _criteria; criteria = _criteria;
level = _level; level = _level;
maxLevel = _maxLevel; maxLevel = _maxLevel;
flags = _flags; flags = _flags;
minEigThreshold = _minEigThreshold; minEigThreshold = _minEigThreshold;
} }
void cv::detail::LKTrackerInvoker::operator()(const BlockedRange& range) const
{
Point2f halfWin((winSize.width-1)*0.5f, (winSize.height-1)*0.5f);
const Mat& I = *prevImg;
const Mat& J = *nextImg;
const Mat& derivI = *prevDeriv;
void operator()(const BlockedRange& range) const int j, cn = I.channels(), cn2 = cn*2;
cv::AutoBuffer<deriv_type> _buf(winSize.area()*(cn + cn2));
int derivDepth = DataType<deriv_type>::depth;
Mat IWinBuf(winSize, CV_MAKETYPE(derivDepth, cn), (deriv_type*)_buf);
Mat derivIWinBuf(winSize, CV_MAKETYPE(derivDepth, cn2), (deriv_type*)_buf + winSize.area()*cn);
for( int ptidx = range.begin(); ptidx < range.end(); ptidx++ )
{ {
Point2f halfWin((winSize.width-1)*0.5f, (winSize.height-1)*0.5f); Point2f prevPt = prevPts[ptidx]*(float)(1./(1 << level));
const Mat& I = *prevImg; Point2f nextPt;
const Mat& J = *nextImg; if( level == maxLevel )
const Mat& derivI = *prevDeriv;
int j, cn = I.channels(), cn2 = cn*2;
cv::AutoBuffer<deriv_type> _buf(winSize.area()*(cn + cn2));
int derivDepth = DataType<deriv_type>::depth;
Mat IWinBuf(winSize, CV_MAKETYPE(derivDepth, cn), (deriv_type*)_buf);
Mat derivIWinBuf(winSize, CV_MAKETYPE(derivDepth, cn2), (deriv_type*)_buf + winSize.area()*cn);
for( int ptidx = range.begin(); ptidx < range.end(); ptidx++ )
{ {
Point2f prevPt = prevPts[ptidx]*(float)(1./(1 << level)); if( flags & OPTFLOW_USE_INITIAL_FLOW )
Point2f nextPt; nextPt = nextPts[ptidx]*(float)(1./(1 << level));
if( level == maxLevel )
{
if( flags & OPTFLOW_USE_INITIAL_FLOW )
nextPt = nextPts[ptidx]*(float)(1./(1 << level));
else
nextPt = prevPt;
}
else else
nextPt = nextPts[ptidx]*2.f; nextPt = prevPt;
nextPts[ptidx] = nextPt; }
else
Point2i iprevPt, inextPt; nextPt = nextPts[ptidx]*2.f;
prevPt -= halfWin; nextPts[ptidx] = nextPt;
iprevPt.x = cvFloor(prevPt.x);
iprevPt.y = cvFloor(prevPt.y); Point2i iprevPt, inextPt;
prevPt -= halfWin;
if( iprevPt.x < -winSize.width || iprevPt.x >= derivI.cols || iprevPt.x = cvFloor(prevPt.x);
iprevPt.y < -winSize.height || iprevPt.y >= derivI.rows ) iprevPt.y = cvFloor(prevPt.y);
if( iprevPt.x < -winSize.width || iprevPt.x >= derivI.cols ||
iprevPt.y < -winSize.height || iprevPt.y >= derivI.rows )
{
if( level == 0 )
{ {
if( level == 0 ) if( status )
{ status[ptidx] = false;
if( status ) if( err )
status[ptidx] = false; err[ptidx] = 0;
if( err )
err[ptidx] = 0;
}
continue;
} }
continue;
}
float a = prevPt.x - iprevPt.x;
float b = prevPt.y - iprevPt.y;
const int W_BITS = 14, W_BITS1 = 14;
const float FLT_SCALE = 1.f/(1 << 20);
int iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
int iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
int iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
int iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
int dstep = (int)(derivI.step/derivI.elemSize1());
int step = (int)(I.step/I.elemSize1());
CV_Assert( step == (int)(J.step/J.elemSize1()) );
float A11 = 0, A12 = 0, A22 = 0;
#if CV_SSE2
__m128i qw0 = _mm_set1_epi32(iw00 + (iw01 << 16));
__m128i qw1 = _mm_set1_epi32(iw10 + (iw11 << 16));
__m128i z = _mm_setzero_si128();
__m128i qdelta_d = _mm_set1_epi32(1 << (W_BITS1-1));
__m128i qdelta = _mm_set1_epi32(1 << (W_BITS1-5-1));
__m128 qA11 = _mm_setzero_ps(), qA12 = _mm_setzero_ps(), qA22 = _mm_setzero_ps();
#endif
// extract the patch from the first image, compute covariation matrix of derivatives
int x, y;
for( y = 0; y < winSize.height; y++ )
{
const uchar* src = (const uchar*)I.data + (y + iprevPt.y)*step + iprevPt.x*cn;
const deriv_type* dsrc = (const deriv_type*)derivI.data + (y + iprevPt.y)*dstep + iprevPt.x*cn2;
float a = prevPt.x - iprevPt.x; deriv_type* Iptr = (deriv_type*)(IWinBuf.data + y*IWinBuf.step);
float b = prevPt.y - iprevPt.y; deriv_type* dIptr = (deriv_type*)(derivIWinBuf.data + y*derivIWinBuf.step);
const int W_BITS = 14, W_BITS1 = 14;
const float FLT_SCALE = 1.f/(1 << 20);
int iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
int iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
int iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
int iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
int dstep = (int)(derivI.step/derivI.elemSize1()); x = 0;
int step = (int)(I.step/I.elemSize1());
CV_Assert( step == (int)(J.step/J.elemSize1()) );
float A11 = 0, A12 = 0, A22 = 0;
#if CV_SSE2 #if CV_SSE2
__m128i qw0 = _mm_set1_epi32(iw00 + (iw01 << 16)); for( ; x <= winSize.width*cn - 4; x += 4, dsrc += 4*2, dIptr += 4*2 )
__m128i qw1 = _mm_set1_epi32(iw10 + (iw11 << 16)); {
__m128i z = _mm_setzero_si128(); __m128i v00, v01, v10, v11, t0, t1;
__m128i qdelta_d = _mm_set1_epi32(1 << (W_BITS1-1));
__m128i qdelta = _mm_set1_epi32(1 << (W_BITS1-5-1)); v00 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x)), z);
__m128 qA11 = _mm_setzero_ps(), qA12 = _mm_setzero_ps(), qA22 = _mm_setzero_ps(); v01 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + cn)), z);
v10 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + step)), z);
v11 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + step + cn)), z);
t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0),
_mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1));
t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta), W_BITS1-5);
_mm_storel_epi64((__m128i*)(Iptr + x), _mm_packs_epi32(t0,t0));
v00 = _mm_loadu_si128((const __m128i*)(dsrc));
v01 = _mm_loadu_si128((const __m128i*)(dsrc + cn2));
v10 = _mm_loadu_si128((const __m128i*)(dsrc + dstep));
v11 = _mm_loadu_si128((const __m128i*)(dsrc + dstep + cn2));
t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0),
_mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1));
t1 = _mm_add_epi32(_mm_madd_epi16(_mm_unpackhi_epi16(v00, v01), qw0),
_mm_madd_epi16(_mm_unpackhi_epi16(v10, v11), qw1));
t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta_d), W_BITS1);
t1 = _mm_srai_epi32(_mm_add_epi32(t1, qdelta_d), W_BITS1);
v00 = _mm_packs_epi32(t0, t1); // Ix0 Iy0 Ix1 Iy1 ...
_mm_storeu_si128((__m128i*)dIptr, v00);
t0 = _mm_srai_epi32(v00, 16); // Iy0 Iy1 Iy2 Iy3
t1 = _mm_srai_epi32(_mm_slli_epi32(v00, 16), 16); // Ix0 Ix1 Ix2 Ix3
__m128 fy = _mm_cvtepi32_ps(t0);
__m128 fx = _mm_cvtepi32_ps(t1);
qA22 = _mm_add_ps(qA22, _mm_mul_ps(fy, fy));
qA12 = _mm_add_ps(qA12, _mm_mul_ps(fx, fy));
qA11 = _mm_add_ps(qA11, _mm_mul_ps(fx, fx));
}
#endif
for( ; x < winSize.width*cn; x++, dsrc += 2, dIptr += 2 )
{
int ival = CV_DESCALE(src[x]*iw00 + src[x+cn]*iw01 +
src[x+step]*iw10 + src[x+step+cn]*iw11, W_BITS1-5);
int ixval = CV_DESCALE(dsrc[0]*iw00 + dsrc[cn2]*iw01 +
dsrc[dstep]*iw10 + dsrc[dstep+cn2]*iw11, W_BITS1);
int iyval = CV_DESCALE(dsrc[1]*iw00 + dsrc[cn2+1]*iw01 + dsrc[dstep+1]*iw10 +
dsrc[dstep+cn2+1]*iw11, W_BITS1);
Iptr[x] = (short)ival;
dIptr[0] = (short)ixval;
dIptr[1] = (short)iyval;
A11 += (float)(ixval*ixval);
A12 += (float)(ixval*iyval);
A22 += (float)(iyval*iyval);
}
}
#if CV_SSE2
float CV_DECL_ALIGNED(16) A11buf[4], A12buf[4], A22buf[4];
_mm_store_ps(A11buf, qA11);
_mm_store_ps(A12buf, qA12);
_mm_store_ps(A22buf, qA22);
A11 += A11buf[0] + A11buf[1] + A11buf[2] + A11buf[3];
A12 += A12buf[0] + A12buf[1] + A12buf[2] + A12buf[3];
A22 += A22buf[0] + A22buf[1] + A22buf[2] + A22buf[3];
#endif
A11 *= FLT_SCALE;
A12 *= FLT_SCALE;
A22 *= FLT_SCALE;
float D = A11*A22 - A12*A12;
float minEig = (A22 + A11 - std::sqrt((A11-A22)*(A11-A22) +
4.f*A12*A12))/(2*winSize.width*winSize.height);
if( err && (flags & CV_LKFLOW_GET_MIN_EIGENVALS) != 0 )
err[ptidx] = (float)minEig;
if( minEig < minEigThreshold || D < FLT_EPSILON )
{
if( level == 0 && status )
status[ptidx] = false;
continue;
}
D = 1.f/D;
nextPt -= halfWin;
Point2f prevDelta;
for( j = 0; j < criteria.maxCount; j++ )
{
inextPt.x = cvFloor(nextPt.x);
inextPt.y = cvFloor(nextPt.y);
if( inextPt.x < -winSize.width || inextPt.x >= J.cols ||
inextPt.y < -winSize.height || inextPt.y >= J.rows )
{
if( level == 0 && status )
status[ptidx] = false;
break;
}
a = nextPt.x - inextPt.x;
b = nextPt.y - inextPt.y;
iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
float b1 = 0, b2 = 0;
#if CV_SSE2
qw0 = _mm_set1_epi32(iw00 + (iw01 << 16));
qw1 = _mm_set1_epi32(iw10 + (iw11 << 16));
__m128 qb0 = _mm_setzero_ps(), qb1 = _mm_setzero_ps();
#endif #endif
// extract the patch from the first image, compute covariation matrix of derivatives
int x, y;
for( y = 0; y < winSize.height; y++ ) for( y = 0; y < winSize.height; y++ )
{ {
const uchar* src = (const uchar*)I.data + (y + iprevPt.y)*step + iprevPt.x*cn; const uchar* Jptr = (const uchar*)J.data + (y + inextPt.y)*step + inextPt.x*cn;
const deriv_type* dsrc = (const deriv_type*)derivI.data + (y + iprevPt.y)*dstep + iprevPt.x*cn2; const deriv_type* Iptr = (const deriv_type*)(IWinBuf.data + y*IWinBuf.step);
const deriv_type* dIptr = (const deriv_type*)(derivIWinBuf.data + y*derivIWinBuf.step);
deriv_type* Iptr = (deriv_type*)(IWinBuf.data + y*IWinBuf.step);
deriv_type* dIptr = (deriv_type*)(derivIWinBuf.data + y*derivIWinBuf.step);
x = 0; x = 0;
#if CV_SSE2 #if CV_SSE2
for( ; x <= winSize.width*cn - 4; x += 4, dsrc += 4*2, dIptr += 4*2 ) for( ; x <= winSize.width*cn - 8; x += 8, dIptr += 8*2 )
{ {
__m128i v00, v01, v10, v11, t0, t1; __m128i diff0 = _mm_loadu_si128((const __m128i*)(Iptr + x)), diff1;
__m128i v00 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x)), z);
__m128i v01 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + cn)), z);
__m128i v10 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + step)), z);
__m128i v11 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + step + cn)), z);
v00 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x)), z); __m128i t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0),
v01 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + cn)), z); _mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1));
v10 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + step)), z); __m128i t1 = _mm_add_epi32(_mm_madd_epi16(_mm_unpackhi_epi16(v00, v01), qw0),
v11 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + step + cn)), z); _mm_madd_epi16(_mm_unpackhi_epi16(v10, v11), qw1));
t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0),
_mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1));
t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta), W_BITS1-5); t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta), W_BITS1-5);
_mm_storel_epi64((__m128i*)(Iptr + x), _mm_packs_epi32(t0,t0)); t1 = _mm_srai_epi32(_mm_add_epi32(t1, qdelta), W_BITS1-5);
diff0 = _mm_subs_epi16(_mm_packs_epi32(t0, t1), diff0);
v00 = _mm_loadu_si128((const __m128i*)(dsrc)); diff1 = _mm_unpackhi_epi16(diff0, diff0);
v01 = _mm_loadu_si128((const __m128i*)(dsrc + cn2)); diff0 = _mm_unpacklo_epi16(diff0, diff0); // It0 It0 It1 It1 ...
v10 = _mm_loadu_si128((const __m128i*)(dsrc + dstep)); v00 = _mm_loadu_si128((const __m128i*)(dIptr)); // Ix0 Iy0 Ix1 Iy1 ...
v11 = _mm_loadu_si128((const __m128i*)(dsrc + dstep + cn2)); v01 = _mm_loadu_si128((const __m128i*)(dIptr + 8));
v10 = _mm_mullo_epi16(v00, diff0);
t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0), v11 = _mm_mulhi_epi16(v00, diff0);
_mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1)); v00 = _mm_unpacklo_epi16(v10, v11);
t1 = _mm_add_epi32(_mm_madd_epi16(_mm_unpackhi_epi16(v00, v01), qw0), v10 = _mm_unpackhi_epi16(v10, v11);
_mm_madd_epi16(_mm_unpackhi_epi16(v10, v11), qw1)); qb0 = _mm_add_ps(qb0, _mm_cvtepi32_ps(v00));
t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta_d), W_BITS1); qb1 = _mm_add_ps(qb1, _mm_cvtepi32_ps(v10));
t1 = _mm_srai_epi32(_mm_add_epi32(t1, qdelta_d), W_BITS1); v10 = _mm_mullo_epi16(v01, diff1);
v00 = _mm_packs_epi32(t0, t1); // Ix0 Iy0 Ix1 Iy1 ... v11 = _mm_mulhi_epi16(v01, diff1);
v00 = _mm_unpacklo_epi16(v10, v11);
_mm_storeu_si128((__m128i*)dIptr, v00); v10 = _mm_unpackhi_epi16(v10, v11);
t0 = _mm_srai_epi32(v00, 16); // Iy0 Iy1 Iy2 Iy3 qb0 = _mm_add_ps(qb0, _mm_cvtepi32_ps(v00));
t1 = _mm_srai_epi32(_mm_slli_epi32(v00, 16), 16); // Ix0 Ix1 Ix2 Ix3 qb1 = _mm_add_ps(qb1, _mm_cvtepi32_ps(v10));
__m128 fy = _mm_cvtepi32_ps(t0);
__m128 fx = _mm_cvtepi32_ps(t1);
qA22 = _mm_add_ps(qA22, _mm_mul_ps(fy, fy));
qA12 = _mm_add_ps(qA12, _mm_mul_ps(fx, fy));
qA11 = _mm_add_ps(qA11, _mm_mul_ps(fx, fx));
} }
#endif #endif
for( ; x < winSize.width*cn; x++, dsrc += 2, dIptr += 2 ) for( ; x < winSize.width*cn; x++, dIptr += 2 )
{ {
int ival = CV_DESCALE(src[x]*iw00 + src[x+cn]*iw01 + int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 +
src[x+step]*iw10 + src[x+step+cn]*iw11, W_BITS1-5); Jptr[x+step]*iw10 + Jptr[x+step+cn]*iw11,
int ixval = CV_DESCALE(dsrc[0]*iw00 + dsrc[cn2]*iw01 + W_BITS1-5) - Iptr[x];
dsrc[dstep]*iw10 + dsrc[dstep+cn2]*iw11, W_BITS1); b1 += (float)(diff*dIptr[0]);
int iyval = CV_DESCALE(dsrc[1]*iw00 + dsrc[cn2+1]*iw01 + dsrc[dstep+1]*iw10 + b2 += (float)(diff*dIptr[1]);
dsrc[dstep+cn2+1]*iw11, W_BITS1);
Iptr[x] = (short)ival;
dIptr[0] = (short)ixval;
dIptr[1] = (short)iyval;
A11 += (float)(ixval*ixval);
A12 += (float)(ixval*iyval);
A22 += (float)(iyval*iyval);
} }
} }
#if CV_SSE2 #if CV_SSE2
float CV_DECL_ALIGNED(16) A11buf[4], A12buf[4], A22buf[4]; float CV_DECL_ALIGNED(16) bbuf[4];
_mm_store_ps(A11buf, qA11); _mm_store_ps(bbuf, _mm_add_ps(qb0, qb1));
_mm_store_ps(A12buf, qA12); b1 += bbuf[0] + bbuf[2];
_mm_store_ps(A22buf, qA22); b2 += bbuf[1] + bbuf[3];
A11 += A11buf[0] + A11buf[1] + A11buf[2] + A11buf[3];
A12 += A12buf[0] + A12buf[1] + A12buf[2] + A12buf[3];
A22 += A22buf[0] + A22buf[1] + A22buf[2] + A22buf[3];
#endif #endif
b1 *= FLT_SCALE;
b2 *= FLT_SCALE;
A11 *= FLT_SCALE; Point2f delta( (float)((A12*b2 - A22*b1) * D),
A12 *= FLT_SCALE; (float)((A12*b1 - A11*b2) * D));
A22 *= FLT_SCALE; //delta = -delta;
float D = A11*A22 - A12*A12; nextPt += delta;
float minEig = (A22 + A11 - std::sqrt((A11-A22)*(A11-A22) + nextPts[ptidx] = nextPt + halfWin;
4.f*A12*A12))/(2*winSize.width*winSize.height);
if( err && (flags & CV_LKFLOW_GET_MIN_EIGENVALS) != 0 ) if( delta.ddot(delta) <= criteria.epsilon )
err[ptidx] = (float)minEig; break;
if( minEig < minEigThreshold || D < FLT_EPSILON ) if( j > 0 && std::abs(delta.x + prevDelta.x) < 0.01 &&
std::abs(delta.y + prevDelta.y) < 0.01 )
{ {
if( level == 0 && status ) nextPts[ptidx] -= delta*0.5f;
break;
}
prevDelta = delta;
}
if( status[ptidx] && err && level == 0 && (flags & CV_LKFLOW_GET_MIN_EIGENVALS) == 0 )
{
Point2f nextPt = nextPts[ptidx] - halfWin;
Point inextPt;
inextPt.x = cvFloor(nextPt.x);
inextPt.y = cvFloor(nextPt.y);
if( inextPt.x < -winSize.width || inextPt.x >= J.cols ||
inextPt.y < -winSize.height || inextPt.y >= J.rows )
{
if( status )
status[ptidx] = false; status[ptidx] = false;
continue; continue;
} }
D = 1.f/D; float a = nextPt.x - inextPt.x;
float b = nextPt.y - inextPt.y;
iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
float errval = 0.f;
nextPt -= halfWin; for( y = 0; y < winSize.height; y++ )
Point2f prevDelta;
for( j = 0; j < criteria.maxCount; j++ )
{ {
inextPt.x = cvFloor(nextPt.x); const uchar* Jptr = (const uchar*)J.data + (y + inextPt.y)*step + inextPt.x*cn;
inextPt.y = cvFloor(nextPt.y); const deriv_type* Iptr = (const deriv_type*)(IWinBuf.data + y*IWinBuf.step);
if( inextPt.x < -winSize.width || inextPt.x >= J.cols || for( x = 0; x < winSize.width*cn; x++ )
inextPt.y < -winSize.height || inextPt.y >= J.rows )
{ {
if( level == 0 && status ) int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 +
status[ptidx] = false; Jptr[x+step]*iw10 + Jptr[x+step+cn]*iw11,
break; W_BITS1-5) - Iptr[x];
errval += std::abs((float)diff);
} }
a = nextPt.x - inextPt.x;
b = nextPt.y - inextPt.y;
iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
float b1 = 0, b2 = 0;
#if CV_SSE2
qw0 = _mm_set1_epi32(iw00 + (iw01 << 16));
qw1 = _mm_set1_epi32(iw10 + (iw11 << 16));
__m128 qb0 = _mm_setzero_ps(), qb1 = _mm_setzero_ps();
#endif
for( y = 0; y < winSize.height; y++ )
{
const uchar* Jptr = (const uchar*)J.data + (y + inextPt.y)*step + inextPt.x*cn;
const deriv_type* Iptr = (const deriv_type*)(IWinBuf.data + y*IWinBuf.step);
const deriv_type* dIptr = (const deriv_type*)(derivIWinBuf.data + y*derivIWinBuf.step);
x = 0;
#if CV_SSE2
for( ; x <= winSize.width*cn - 8; x += 8, dIptr += 8*2 )
{
__m128i diff0 = _mm_loadu_si128((const __m128i*)(Iptr + x)), diff1;
__m128i v00 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x)), z);
__m128i v01 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + cn)), z);
__m128i v10 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + step)), z);
__m128i v11 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + step + cn)), z);
__m128i t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0),
_mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1));
__m128i t1 = _mm_add_epi32(_mm_madd_epi16(_mm_unpackhi_epi16(v00, v01), qw0),
_mm_madd_epi16(_mm_unpackhi_epi16(v10, v11), qw1));
t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta), W_BITS1-5);
t1 = _mm_srai_epi32(_mm_add_epi32(t1, qdelta), W_BITS1-5);
diff0 = _mm_subs_epi16(_mm_packs_epi32(t0, t1), diff0);
diff1 = _mm_unpackhi_epi16(diff0, diff0);
diff0 = _mm_unpacklo_epi16(diff0, diff0); // It0 It0 It1 It1 ...
v00 = _mm_loadu_si128((const __m128i*)(dIptr)); // Ix0 Iy0 Ix1 Iy1 ...
v01 = _mm_loadu_si128((const __m128i*)(dIptr + 8));
v10 = _mm_mullo_epi16(v00, diff0);
v11 = _mm_mulhi_epi16(v00, diff0);
v00 = _mm_unpacklo_epi16(v10, v11);
v10 = _mm_unpackhi_epi16(v10, v11);
qb0 = _mm_add_ps(qb0, _mm_cvtepi32_ps(v00));
qb1 = _mm_add_ps(qb1, _mm_cvtepi32_ps(v10));
v10 = _mm_mullo_epi16(v01, diff1);
v11 = _mm_mulhi_epi16(v01, diff1);
v00 = _mm_unpacklo_epi16(v10, v11);
v10 = _mm_unpackhi_epi16(v10, v11);
qb0 = _mm_add_ps(qb0, _mm_cvtepi32_ps(v00));
qb1 = _mm_add_ps(qb1, _mm_cvtepi32_ps(v10));
}
#endif
for( ; x < winSize.width*cn; x++, dIptr += 2 )
{
int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 +
Jptr[x+step]*iw10 + Jptr[x+step+cn]*iw11,
W_BITS1-5) - Iptr[x];
b1 += (float)(diff*dIptr[0]);
b2 += (float)(diff*dIptr[1]);
}
}
#if CV_SSE2
float CV_DECL_ALIGNED(16) bbuf[4];
_mm_store_ps(bbuf, _mm_add_ps(qb0, qb1));
b1 += bbuf[0] + bbuf[2];
b2 += bbuf[1] + bbuf[3];
#endif
b1 *= FLT_SCALE;
b2 *= FLT_SCALE;
Point2f delta( (float)((A12*b2 - A22*b1) * D),
(float)((A12*b1 - A11*b2) * D));
//delta = -delta;
nextPt += delta;
nextPts[ptidx] = nextPt + halfWin;
if( delta.ddot(delta) <= criteria.epsilon )
break;
if( j > 0 && std::abs(delta.x + prevDelta.x) < 0.01 &&
std::abs(delta.y + prevDelta.y) < 0.01 )
{
nextPts[ptidx] -= delta*0.5f;
break;
}
prevDelta = delta;
}
if( status[ptidx] && err && level == 0 && (flags & CV_LKFLOW_GET_MIN_EIGENVALS) == 0 )
{
Point2f nextPt = nextPts[ptidx] - halfWin;
Point inextPt;
inextPt.x = cvFloor(nextPt.x);
inextPt.y = cvFloor(nextPt.y);
if( inextPt.x < -winSize.width || inextPt.x >= J.cols ||
inextPt.y < -winSize.height || inextPt.y >= J.rows )
{
if( status )
status[ptidx] = false;
continue;
}
float a = nextPt.x - inextPt.x;
float b = nextPt.y - inextPt.y;
iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS));
iw01 = cvRound(a*(1.f - b)*(1 << W_BITS));
iw10 = cvRound((1.f - a)*b*(1 << W_BITS));
iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
float errval = 0.f;
for( y = 0; y < winSize.height; y++ )
{
const uchar* Jptr = (const uchar*)J.data + (y + inextPt.y)*step + inextPt.x*cn;
const deriv_type* Iptr = (const deriv_type*)(IWinBuf.data + y*IWinBuf.step);
for( x = 0; x < winSize.width*cn; x++ )
{
int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 +
Jptr[x+step]*iw10 + Jptr[x+step+cn]*iw11,
W_BITS1-5) - Iptr[x];
errval += std::abs((float)diff);
}
}
err[ptidx] = errval * 1.f/(32*winSize.width*cn*winSize.height);
} }
err[ptidx] = errval * 1.f/(32*winSize.width*cn*winSize.height);
} }
} }
const Mat* prevImg;
const Mat* nextImg;
const Mat* prevDeriv;
const Point2f* prevPts;
Point2f* nextPts;
uchar* status;
float* err;
Size winSize;
TermCriteria criteria;
int level;
int maxLevel;
int flags;
float minEigThreshold;
};
} }
int cv::buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size winSize, int maxLevel, bool withDerivatives, int cv::buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size winSize, int maxLevel, bool withDerivatives,
int pyrBorder, int derivBorder, bool tryReuseInputImage) int pyrBorder, int derivBorder, bool tryReuseInputImage)
{ {
@ -503,7 +490,7 @@ int cv::buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Si
pyramid.create(1, (maxLevel + 1) * pyrstep, 0 /*type*/, -1, true, 0); pyramid.create(1, (maxLevel + 1) * pyrstep, 0 /*type*/, -1, true, 0);
int derivType = CV_MAKETYPE(DataType<deriv_type>::depth, img.channels() * 2); int derivType = CV_MAKETYPE(DataType<cv::detail::deriv_type>::depth, img.channels() * 2);
//level 0 //level 0
bool lvl0IsSet = false; bool lvl0IsSet = false;
@ -602,7 +589,7 @@ void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
return; return;
#endif #endif
Mat prevPtsMat = _prevPts.getMat(); Mat prevPtsMat = _prevPts.getMat();
const int derivDepth = DataType<deriv_type>::depth; const int derivDepth = DataType<cv::detail::deriv_type>::depth;
CV_Assert( maxLevel >= 0 && winSize.width > 2 && winSize.height > 2 ); CV_Assert( maxLevel >= 0 && winSize.width > 2 && winSize.height > 2 );
@ -744,6 +731,8 @@ void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
CV_Assert(prevPyr[level * lvlStep1].size() == nextPyr[level * lvlStep2].size()); CV_Assert(prevPyr[level * lvlStep1].size() == nextPyr[level * lvlStep2].size());
CV_Assert(prevPyr[level * lvlStep1].type() == nextPyr[level * lvlStep2].type()); CV_Assert(prevPyr[level * lvlStep1].type() == nextPyr[level * lvlStep2].type());
typedef cv::detail::LKTrackerInvoker LKTrackerInvoker;
parallel_for(BlockedRange(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], derivI, parallel_for(BlockedRange(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], derivI,
nextPyr[level * lvlStep2], prevPts, nextPts, nextPyr[level * lvlStep2], prevPts, nextPts,
status, err, status, err,

View File

@ -0,0 +1,36 @@
#pragma once
namespace cv
{
namespace detail
{
typedef short deriv_type;
struct LKTrackerInvoker
{
LKTrackerInvoker( const Mat& _prevImg, const Mat& _prevDeriv, const Mat& _nextImg,
const Point2f* _prevPts, Point2f* _nextPts,
uchar* _status, float* _err,
Size _winSize, TermCriteria _criteria,
int _level, int _maxLevel, int _flags, float _minEigThreshold );
void operator()(const BlockedRange& range) const;
const Mat* prevImg;
const Mat* nextImg;
const Mat* prevDeriv;
const Point2f* prevPts;
Point2f* nextPts;
uchar* status;
float* err;
Size winSize;
TermCriteria criteria;
int level;
int maxLevel;
int flags;
float minEigThreshold;
};
}// namespace detail
}// namespace cv