Java API: added tests for BruteForceMatcher (L2)
This commit is contained in:
@@ -6,6 +6,7 @@ import org.opencv.core.Mat;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Rect;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.features2d.DMatch;
|
||||
import org.opencv.features2d.KeyPoint;
|
||||
import org.opencv.highgui.Highgui;
|
||||
|
||||
@@ -200,15 +201,6 @@ public class OpenCVTestCase extends TestCase {
|
||||
assertPointEquals(list1.get(i), list2.get(i), epsilon);
|
||||
}
|
||||
|
||||
public static void assertListKeyPointEquals(List<KeyPoint> list1, List<KeyPoint> list2, double epsilon) {
|
||||
if (list1.size() != list2.size()) {
|
||||
throw new UnsupportedOperationException();
|
||||
}
|
||||
|
||||
for (int i = 0; i < list1.size(); i++)
|
||||
assertKeyPointEqual(list1.get(i), list2.get(i), epsilon);
|
||||
}
|
||||
|
||||
public static void assertListRectEquals(List<Rect> list1, List<Rect> list2) {
|
||||
if (list1.size() != list2.size()) {
|
||||
throw new UnsupportedOperationException();
|
||||
@@ -250,6 +242,25 @@ public class OpenCVTestCase extends TestCase {
|
||||
assertEquals(expected.class_id, actual.class_id);
|
||||
}
|
||||
|
||||
public static void assertListKeyPointEquals(List<KeyPoint> expected, List<KeyPoint> actual, double epsilon) {
|
||||
assertEquals(expected.size(), actual.size());
|
||||
for (int i = 0; i < expected.size(); i++)
|
||||
assertKeyPointEqual(expected.get(i), actual.get(i), epsilon);
|
||||
}
|
||||
|
||||
public static void assertDMatchEqual(DMatch expected, DMatch actual, double eps) {
|
||||
assertEquals(expected.queryIdx, actual.queryIdx);
|
||||
assertEquals(expected.trainIdx, actual.trainIdx);
|
||||
assertEquals(expected.imgIdx, actual.imgIdx);
|
||||
assertTrue(Math.abs(expected.distance - actual.distance) < eps);
|
||||
}
|
||||
|
||||
public static void assertListDMatchEquals(List<DMatch> expected, List<DMatch> actual, double epsilon) {
|
||||
assertEquals(expected.size(), actual.size());
|
||||
for (int i = 0; i < expected.size(); i++)
|
||||
assertDMatchEqual(expected.get(i), actual.get(i), epsilon);
|
||||
}
|
||||
|
||||
public static void assertPointEquals(Point expected, Point actual, double eps) {
|
||||
assertEquals(expected.x, actual.x, eps);
|
||||
assertEquals(expected.y, actual.y, eps);
|
||||
|
||||
@@ -0,0 +1,226 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.features2d.DMatch;
|
||||
import org.opencv.features2d.DescriptorExtractor;
|
||||
import org.opencv.features2d.DescriptorMatcher;
|
||||
import org.opencv.features2d.FeatureDetector;
|
||||
import org.opencv.features2d.KeyPoint;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
public class BruteForceDescriptorMatcherTest extends OpenCVTestCase {
|
||||
|
||||
DescriptorMatcher matcher;
|
||||
int matSize;
|
||||
DMatch[] truth;
|
||||
|
||||
protected void setUp() throws Exception {
|
||||
matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE);
|
||||
matSize = 100;
|
||||
|
||||
truth = new DMatch[] {
|
||||
new DMatch(0, 0, 0, 0.643284f),
|
||||
new DMatch(1, 1, 0, 0.92945856f),
|
||||
new DMatch(2, 1, 0, 0.2841479f),
|
||||
new DMatch(3, 1, 0, 0.9194034f),
|
||||
new DMatch(4, 1, 0, 0.3006621f) };
|
||||
|
||||
super.setUp();
|
||||
}
|
||||
|
||||
private Mat getTrainImg() {
|
||||
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Core.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
|
||||
Core.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
|
||||
|
||||
return cross;
|
||||
}
|
||||
|
||||
private Mat getQueryImg() {
|
||||
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Core.line(cross, new Point(30, matSize / 2), new Point(matSize - 31, matSize / 2), new Scalar(100), 3);
|
||||
Core.line(cross, new Point(matSize / 2, 30), new Point(matSize / 2, matSize - 31), new Scalar(100), 3);
|
||||
|
||||
return cross;
|
||||
}
|
||||
|
||||
private Mat getQueryDescriptors() {
|
||||
Mat img = getQueryImg();
|
||||
List<KeyPoint> keypoints = new ArrayList<KeyPoint>();
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
FeatureDetector detector = FeatureDetector.create(FeatureDetector.SURF);
|
||||
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.SURF);
|
||||
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n");
|
||||
detector.read(filename);
|
||||
|
||||
detector.detect(img, keypoints);
|
||||
OpenCVTestRunner.Log("points found: " + keypoints.size());
|
||||
for (KeyPoint kp : keypoints)
|
||||
OpenCVTestRunner.Log(kp.toString());
|
||||
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
return descriptors;
|
||||
}
|
||||
|
||||
private Mat getTrainDescriptors() {
|
||||
Mat img = getTrainImg();
|
||||
List<KeyPoint> keypoints = Arrays.asList(new KeyPoint(50, 50, 16, 0, 20000, 1, -1), new KeyPoint(42, 42, 16, 160, 10000, 1, -1));
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.SURF);
|
||||
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
return descriptors;
|
||||
}
|
||||
|
||||
private Mat getMaskImg() {
|
||||
return new Mat(5, 2, CvType.CV_8U, new Scalar(0)) {
|
||||
{
|
||||
put(0,0, 1, 1, 1, 1);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
public void testAdd() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
assertFalse(matcher.empty());
|
||||
}
|
||||
|
||||
public void testClear() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
matcher.clear();
|
||||
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testCloneBoolean() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone(true);
|
||||
|
||||
assertNotNull(cloned);
|
||||
assertTrue(cloned.empty());
|
||||
}
|
||||
|
||||
public void testClone() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone();
|
||||
|
||||
assertNotNull(cloned);
|
||||
|
||||
List<Mat> descriptors = cloned.getTrainDescriptors();
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(matcher);
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testGetTrainDescriptors() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
List<Mat> descriptors = matcher.getTrainDescriptors();
|
||||
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testIsMaskSupported() {
|
||||
assertTrue(matcher.isMaskSupported());
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatchMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
List<DMatch> matches = new ArrayList<DMatch>();
|
||||
|
||||
matcher.match(query, train, matches, mask);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches, EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
List<DMatch> matches = new ArrayList<DMatch>();
|
||||
|
||||
matcher.match(query, train, matches);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth), matches, EPS);
|
||||
|
||||
// OpenCVTestRunner.Log("matches found: " + matches.size());
|
||||
// for (DMatch m : matches)
|
||||
// OpenCVTestRunner.Log(m.toString());
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatchListOfMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
List<DMatch> matches = new ArrayList<DMatch>();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches, Arrays.asList(mask));
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches, EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
List<DMatch> matches = new ArrayList<DMatch>();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth), matches, EPS);
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\n");
|
||||
|
||||
matcher.read(filename);
|
||||
assertTrue(true);// BruteforceMatcher has no settings
|
||||
}
|
||||
|
||||
public void testTrain() {
|
||||
matcher.train();// BruteforceMatcher does not need to train
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
matcher.write(filename);
|
||||
|
||||
String truth = "%YAML:1.0\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
}
|
||||
@@ -11,6 +11,7 @@ import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
public class FASTFeatureDetectorTest extends OpenCVTestCase {
|
||||
@@ -52,11 +53,7 @@ public class FASTFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
detector.detect(img, keypoints, mask);
|
||||
|
||||
KeyPoint[] _truth = new KeyPoint[] { truth[0], truth[1] };
|
||||
|
||||
assertEquals(_truth.length, keypoints.size());
|
||||
for (int i = 0; i < _truth.length; i++)
|
||||
assertKeyPointEqual(_truth[i], keypoints.get(i), EPS);
|
||||
assertListKeyPointEquals(Arrays.asList(truth[0], truth[1]), keypoints, EPS);
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
@@ -65,9 +62,7 @@ public class FASTFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
detector.detect(img, keypoints);
|
||||
|
||||
assertEquals(truth.length, keypoints.size());
|
||||
for (int i = 0; i < truth.length; i++)
|
||||
assertKeyPointEqual(truth[i], keypoints.get(i), EPS);
|
||||
assertListKeyPointEquals(Arrays.asList(truth), keypoints, EPS);
|
||||
|
||||
// OpenCVTestRunner.Log("points found: " + keypoints.size());
|
||||
// for (KeyPoint kp : keypoints)
|
||||
|
||||
@@ -11,6 +11,7 @@ import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
public class STARFeatureDetectorTest extends OpenCVTestCase {
|
||||
@@ -71,11 +72,7 @@ public class STARFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
detector.detect(img, keypoints, mask);
|
||||
|
||||
KeyPoint[] _truth = new KeyPoint[] { truth[0], truth[2], truth[5], truth[7] };
|
||||
|
||||
assertEquals(_truth.length, keypoints.size());
|
||||
for (int i = 0; i < _truth.length; i++)
|
||||
assertKeyPointEqual(_truth[i], keypoints.get(i), EPS);
|
||||
assertListKeyPointEquals(Arrays.asList(truth[0], truth[2], truth[5], truth[7]), keypoints, EPS);
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
@@ -84,9 +81,7 @@ public class STARFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
detector.detect(img, keypoints);
|
||||
|
||||
assertEquals(truth.length, keypoints.size());
|
||||
for (int i = 0; i < truth.length; i++)
|
||||
assertKeyPointEqual(truth[i], keypoints.get(i), EPS);
|
||||
assertListKeyPointEquals(Arrays.asList(truth), keypoints, EPS);
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
|
||||
@@ -11,6 +11,7 @@ import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.Collections;
|
||||
import java.util.Comparator;
|
||||
import java.util.List;
|
||||
@@ -77,12 +78,8 @@ public class SURFFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
detector.detect(img, keypoints, mask);
|
||||
|
||||
KeyPoint[] _truth = new KeyPoint[] { truth[1], truth[2] };
|
||||
|
||||
assertEquals(_truth.length, keypoints.size());
|
||||
order(keypoints);
|
||||
for (int i = 0; i < _truth.length; i++)
|
||||
assertKeyPointEqual(_truth[i], keypoints.get(i), EPS);
|
||||
assertListKeyPointEquals(Arrays.asList(truth[1], truth[2]), keypoints, EPS);
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
@@ -95,10 +92,8 @@ public class SURFFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
detector.detect(cross, keypoints);
|
||||
|
||||
assertEquals(truth.length, keypoints.size());
|
||||
order(keypoints);
|
||||
for (int i = 0; i < truth.length; i++)
|
||||
assertKeyPointEqual(truth[i], keypoints.get(i), EPS);
|
||||
assertListKeyPointEquals(Arrays.asList(truth), keypoints, EPS);
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
|
||||
Reference in New Issue
Block a user