Merge remote-tracking branch 'origin/2.4' into merge-2.4
Conflicts: modules/core/include/opencv2/core/operations.hpp modules/core/include/opencv2/core/version.hpp modules/core/src/gpumat.cpp modules/cudaimgproc/src/color.cpp modules/features2d/src/orb.cpp modules/imgproc/src/samplers.cpp modules/ocl/include/opencv2/ocl/matrix_operations.hpp modules/ocl/include/opencv2/ocl/ocl.hpp samples/ocl/facedetect.cpp
This commit is contained in:
commit
464a010f53
2
3rdparty/include/opencl/1.2/CL/cl_platform.h
vendored
2
3rdparty/include/opencl/1.2/CL/cl_platform.h
vendored
@ -454,7 +454,7 @@ typedef unsigned int cl_GLenum;
|
||||
/* Define alignment keys */
|
||||
#if defined( __GNUC__ )
|
||||
#define CL_ALIGNED(_x) __attribute__ ((aligned(_x)))
|
||||
#elif defined( _WIN32) && (_MSC_VER)
|
||||
#elif defined( _WIN32) && defined(_MSC_VER)
|
||||
/* Alignment keys neutered on windows because MSVC can't swallow function arguments with alignment requirements */
|
||||
/* http://msdn.microsoft.com/en-us/library/373ak2y1%28VS.71%29.aspx */
|
||||
/* #include <crtdefs.h> */
|
||||
|
@ -70,7 +70,7 @@ bool CvCascadeImageReader::NegReader::nextImg()
|
||||
_offset.x = std::min( (int)round % winSize.width, src.cols - winSize.width );
|
||||
_offset.y = std::min( (int)round / winSize.width, src.rows - winSize.height );
|
||||
if( !src.empty() && src.type() == CV_8UC1
|
||||
&& offset.x >= 0 && offset.y >= 0 )
|
||||
&& _offset.x >= 0 && _offset.y >= 0 )
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -105,7 +105,7 @@ Building OpenCV
|
||||
Enable hardware optimizations
|
||||
-----------------------------
|
||||
|
||||
Depending on target platfrom architecture different instruction sets can be used. By default
|
||||
Depending on target platform architecture different instruction sets can be used. By default
|
||||
compiler generates code for armv5l without VFPv3 and NEON extensions. Add ``-DUSE_VFPV3=ON``
|
||||
to cmake command line to enable code generation for VFPv3 and ``-DUSE_NEON=ON`` for using
|
||||
NEON SIMD extensions.
|
||||
|
@ -2110,6 +2110,8 @@ void cv::cuda::cvtColor(InputArray src, OutputArray dst, int code, int dcn, Stre
|
||||
|
||||
void cv::cuda::demosaicing(InputArray _src, OutputArray _dst, int code, int dcn, Stream& stream)
|
||||
{
|
||||
CV_Assert( !_src.empty() );
|
||||
|
||||
switch (code)
|
||||
{
|
||||
case cv::COLOR_BayerBG2GRAY: case cv::COLOR_BayerGB2GRAY: case cv::COLOR_BayerRG2GRAY: case cv::COLOR_BayerGR2GRAY:
|
||||
|
@ -2357,6 +2357,7 @@ struct Demosaicing : testing::TestWithParam<cv::cuda::DeviceInfo>
|
||||
CUDA_TEST_P(Demosaicing, BayerBG2BGR)
|
||||
{
|
||||
cv::Mat img = readImage("stereobm/aloe-L.png");
|
||||
ASSERT_FALSE(img.empty()) << "Can't load input image";
|
||||
|
||||
cv::Mat_<uchar> src;
|
||||
mosaic(img, src, cv::Point(1, 1));
|
||||
@ -2370,6 +2371,7 @@ CUDA_TEST_P(Demosaicing, BayerBG2BGR)
|
||||
CUDA_TEST_P(Demosaicing, BayerGB2BGR)
|
||||
{
|
||||
cv::Mat img = readImage("stereobm/aloe-L.png");
|
||||
ASSERT_FALSE(img.empty()) << "Can't load input image";
|
||||
|
||||
cv::Mat_<uchar> src;
|
||||
mosaic(img, src, cv::Point(0, 1));
|
||||
@ -2383,6 +2385,7 @@ CUDA_TEST_P(Demosaicing, BayerGB2BGR)
|
||||
CUDA_TEST_P(Demosaicing, BayerRG2BGR)
|
||||
{
|
||||
cv::Mat img = readImage("stereobm/aloe-L.png");
|
||||
ASSERT_FALSE(img.empty()) << "Can't load input image";
|
||||
|
||||
cv::Mat_<uchar> src;
|
||||
mosaic(img, src, cv::Point(0, 0));
|
||||
@ -2396,6 +2399,7 @@ CUDA_TEST_P(Demosaicing, BayerRG2BGR)
|
||||
CUDA_TEST_P(Demosaicing, BayerGR2BGR)
|
||||
{
|
||||
cv::Mat img = readImage("stereobm/aloe-L.png");
|
||||
ASSERT_FALSE(img.empty()) << "Can't load input image";
|
||||
|
||||
cv::Mat_<uchar> src;
|
||||
mosaic(img, src, cv::Point(1, 0));
|
||||
@ -2409,6 +2413,7 @@ CUDA_TEST_P(Demosaicing, BayerGR2BGR)
|
||||
CUDA_TEST_P(Demosaicing, BayerBG2BGR_MHT)
|
||||
{
|
||||
cv::Mat img = readImage("stereobm/aloe-L.png");
|
||||
ASSERT_FALSE(img.empty()) << "Can't load input image";
|
||||
|
||||
cv::Mat_<uchar> src;
|
||||
mosaic(img, src, cv::Point(1, 1));
|
||||
@ -2422,6 +2427,7 @@ CUDA_TEST_P(Demosaicing, BayerBG2BGR_MHT)
|
||||
CUDA_TEST_P(Demosaicing, BayerGB2BGR_MHT)
|
||||
{
|
||||
cv::Mat img = readImage("stereobm/aloe-L.png");
|
||||
ASSERT_FALSE(img.empty()) << "Can't load input image";
|
||||
|
||||
cv::Mat_<uchar> src;
|
||||
mosaic(img, src, cv::Point(0, 1));
|
||||
@ -2435,6 +2441,7 @@ CUDA_TEST_P(Demosaicing, BayerGB2BGR_MHT)
|
||||
CUDA_TEST_P(Demosaicing, BayerRG2BGR_MHT)
|
||||
{
|
||||
cv::Mat img = readImage("stereobm/aloe-L.png");
|
||||
ASSERT_FALSE(img.empty()) << "Can't load input image";
|
||||
|
||||
cv::Mat_<uchar> src;
|
||||
mosaic(img, src, cv::Point(0, 0));
|
||||
@ -2448,6 +2455,7 @@ CUDA_TEST_P(Demosaicing, BayerRG2BGR_MHT)
|
||||
CUDA_TEST_P(Demosaicing, BayerGR2BGR_MHT)
|
||||
{
|
||||
cv::Mat img = readImage("stereobm/aloe-L.png");
|
||||
ASSERT_FALSE(img.empty()) << "Can't load input image";
|
||||
|
||||
cv::Mat_<uchar> src;
|
||||
mosaic(img, src, cv::Point(1, 0));
|
||||
|
@ -141,12 +141,12 @@ static void computeOrbDescriptor(const KeyPoint& kpt,
|
||||
float x, y;
|
||||
int ix, iy;
|
||||
#if 1
|
||||
#define GET_VALUE(idx) \
|
||||
(x = pattern[idx].x*a - pattern[idx].y*b, \
|
||||
y = pattern[idx].x*b + pattern[idx].y*a, \
|
||||
ix = cvRound(x), \
|
||||
iy = cvRound(y), \
|
||||
*(center + iy*step + ix) )
|
||||
#define GET_VALUE(idx) \
|
||||
(x = pattern[idx].x*a - pattern[idx].y*b, \
|
||||
y = pattern[idx].x*b + pattern[idx].y*a, \
|
||||
ix = cvRound(x), \
|
||||
iy = cvRound(y), \
|
||||
*(center + iy*step + ix) )
|
||||
#else
|
||||
#define GET_VALUE(idx) \
|
||||
(x = pattern[idx].x*a - pattern[idx].y*b, \
|
||||
|
@ -1552,9 +1552,9 @@ static gboolean icvOnMouse( GtkWidget *widget, GdkEvent *event, gpointer user_da
|
||||
// image origin is not necessarily at (0,0)
|
||||
int x0 = (widget->allocation.width - image_widget->scaled_image->cols)/2;
|
||||
int y0 = (widget->allocation.height - image_widget->scaled_image->rows)/2;
|
||||
pt.x = cvRound( ((pt32f.x-x0)*image_widget->original_image->cols)/
|
||||
pt.x = cvFloor( ((pt32f.x-x0)*image_widget->original_image->cols)/
|
||||
image_widget->scaled_image->cols );
|
||||
pt.y = cvRound( ((pt32f.y-y0)*image_widget->original_image->rows)/
|
||||
pt.y = cvFloor( ((pt32f.y-y0)*image_widget->original_image->rows)/
|
||||
image_widget->scaled_image->rows );
|
||||
}
|
||||
else{
|
||||
|
@ -64,7 +64,7 @@ adjustRect( const uchar* src, size_t src_step, int pix_size,
|
||||
rect.x = win_size.width;
|
||||
}
|
||||
|
||||
if( ip.x + win_size.width < src_size.width )
|
||||
if( ip.x < src_size.width - win_size.width )
|
||||
rect.width = win_size.width;
|
||||
else
|
||||
{
|
||||
@ -85,7 +85,7 @@ adjustRect( const uchar* src, size_t src_step, int pix_size,
|
||||
else
|
||||
rect.y = -ip.y;
|
||||
|
||||
if( ip.y + win_size.height < src_size.height )
|
||||
if( ip.y < src_size.height - win_size.height )
|
||||
rect.height = win_size.height;
|
||||
else
|
||||
{
|
||||
@ -155,8 +155,8 @@ void getRectSubPix_Cn_(const _Tp* src, size_t src_step, Size src_size,
|
||||
src_step /= sizeof(src[0]);
|
||||
dst_step /= sizeof(dst[0]);
|
||||
|
||||
if( 0 <= ip.x && ip.x + win_size.width < src_size.width &&
|
||||
0 <= ip.y && ip.y + win_size.height < src_size.height )
|
||||
if( 0 <= ip.x && ip.x < src_size.width - win_size.width &&
|
||||
0 <= ip.y && ip.y < src_size.height - win_size.height)
|
||||
{
|
||||
// extracted rectangle is totally inside the image
|
||||
src += ip.y * src_step + ip.x*cn;
|
||||
|
@ -144,14 +144,6 @@ OpenCV C++ 1-D or 2-D dense array class ::
|
||||
//! returns true if oclMatrix data is NULL
|
||||
bool empty() const;
|
||||
|
||||
//! returns pointer to y-th row
|
||||
uchar* ptr(int y = 0);
|
||||
const uchar *ptr(int y = 0) const;
|
||||
|
||||
//! template version of the above method
|
||||
template<typename _Tp> _Tp *ptr(int y = 0);
|
||||
template<typename _Tp> const _Tp *ptr(int y = 0) const;
|
||||
|
||||
//! matrix transposition
|
||||
oclMat t() const;
|
||||
|
||||
|
@ -378,14 +378,6 @@ namespace cv
|
||||
//! returns true if oclMatrix data is NULL
|
||||
bool empty() const;
|
||||
|
||||
//! returns pointer to y-th row
|
||||
uchar* ptr(int y = 0);
|
||||
const uchar *ptr(int y = 0) const;
|
||||
|
||||
//! template version of the above method
|
||||
template<typename _Tp> _Tp *ptr(int y = 0);
|
||||
template<typename _Tp> const _Tp *ptr(int y = 0) const;
|
||||
|
||||
//! matrix transposition
|
||||
oclMat t() const;
|
||||
|
||||
|
@ -456,36 +456,6 @@ namespace cv
|
||||
return data == 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
inline uchar *oclMat::ptr(int y)
|
||||
{
|
||||
CV_DbgAssert( (unsigned)y < (unsigned)rows );
|
||||
CV_Error(Error::GpuNotSupported, "This function hasn't been supported yet.\n");
|
||||
return data + step * y;
|
||||
}
|
||||
|
||||
inline const uchar *oclMat::ptr(int y) const
|
||||
{
|
||||
CV_DbgAssert( (unsigned)y < (unsigned)rows );
|
||||
CV_Error(Error::GpuNotSupported, "This function hasn't been supported yet.\n");
|
||||
return data + step * y;
|
||||
}
|
||||
|
||||
template<typename _Tp> inline _Tp *oclMat::ptr(int y)
|
||||
{
|
||||
CV_DbgAssert( (unsigned)y < (unsigned)rows );
|
||||
CV_Error(Error::GpuNotSupported, "This function hasn't been supported yet.\n");
|
||||
return (_Tp *)(data + step * y);
|
||||
}
|
||||
|
||||
template<typename _Tp> inline const _Tp *oclMat::ptr(int y) const
|
||||
{
|
||||
CV_DbgAssert( (unsigned)y < (unsigned)rows );
|
||||
CV_Error(Error::GpuNotSupported, "This function hasn't been supported yet.\n");
|
||||
return (const _Tp *)(data + step * y);
|
||||
}
|
||||
|
||||
inline oclMat oclMat::t() const
|
||||
{
|
||||
oclMat tmp;
|
||||
|
@ -73,10 +73,10 @@ PERF_TEST_P(MomentsFixture, Moments,
|
||||
Mat src(srcSize, type), dst(7, 1, CV_64F);
|
||||
randu(src, 0, 255);
|
||||
|
||||
oclMat src_d(src);
|
||||
cv::Moments mom;
|
||||
if (RUN_OCL_IMPL)
|
||||
{
|
||||
oclMat src_d(src);
|
||||
OCL_TEST_CYCLE() mom = cv::ocl::ocl_moments(src_d, binaryImage);
|
||||
}
|
||||
else if (RUN_PLAIN_IMPL)
|
||||
|
@ -676,7 +676,7 @@ void cv::ocl::BruteForceMatcher_OCL_base::matchCollection(const oclMat &query, c
|
||||
ensureSizeIsEnough(1, nQuery, CV_32S, imgIdx);
|
||||
ensureSizeIsEnough(1, nQuery, CV_32F, distance);
|
||||
|
||||
matchDispatcher(query, (const oclMat *)trainCollection.ptr(), trainCollection.cols, masks, trainIdx, imgIdx, distance, distType);
|
||||
matchDispatcher(query, &trainCollection, trainCollection.cols, masks, trainIdx, imgIdx, distance, distType);
|
||||
|
||||
return;
|
||||
}
|
||||
|
@ -290,8 +290,9 @@ void openCLFree(void *devPtr)
|
||||
}
|
||||
#else
|
||||
// TODO FIXIT Attach clReleaseMemObject call to event completion callback
|
||||
Context* ctx = Context::getContext();
|
||||
clFinish(getClCommandQueue(ctx));
|
||||
// TODO 2013/12/04 Disable workaround
|
||||
// Context* ctx = Context::getContext();
|
||||
// clFinish(getClCommandQueue(ctx));
|
||||
#endif
|
||||
openCLSafeCall(clReleaseMemObject(data.mainBuffer));
|
||||
}
|
||||
|
@ -62,13 +62,13 @@ typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode
|
||||
GpuHidHaarTreeNode;
|
||||
|
||||
|
||||
typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier
|
||||
{
|
||||
int count __attribute__((aligned (4)));
|
||||
GpuHidHaarTreeNode* node __attribute__((aligned (8)));
|
||||
float* alpha __attribute__((aligned (8)));
|
||||
}
|
||||
GpuHidHaarClassifier;
|
||||
//typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier
|
||||
//{
|
||||
// int count __attribute__((aligned (4)));
|
||||
// GpuHidHaarTreeNode* node __attribute__((aligned (8)));
|
||||
// float* alpha __attribute__((aligned (8)));
|
||||
//}
|
||||
//GpuHidHaarClassifier;
|
||||
|
||||
|
||||
typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier
|
||||
@ -84,22 +84,22 @@ typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier
|
||||
GpuHidHaarStageClassifier;
|
||||
|
||||
|
||||
typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
|
||||
{
|
||||
int count __attribute__((aligned (4)));
|
||||
int is_stump_based __attribute__((aligned (4)));
|
||||
int has_tilted_features __attribute__((aligned (4)));
|
||||
int is_tree __attribute__((aligned (4)));
|
||||
int pq0 __attribute__((aligned (4)));
|
||||
int pq1 __attribute__((aligned (4)));
|
||||
int pq2 __attribute__((aligned (4)));
|
||||
int pq3 __attribute__((aligned (4)));
|
||||
int p0 __attribute__((aligned (4)));
|
||||
int p1 __attribute__((aligned (4)));
|
||||
int p2 __attribute__((aligned (4)));
|
||||
int p3 __attribute__((aligned (4)));
|
||||
float inv_window_area __attribute__((aligned (4)));
|
||||
} GpuHidHaarClassifierCascade;
|
||||
//typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
|
||||
//{
|
||||
// int count __attribute__((aligned (4)));
|
||||
// int is_stump_based __attribute__((aligned (4)));
|
||||
// int has_tilted_features __attribute__((aligned (4)));
|
||||
// int is_tree __attribute__((aligned (4)));
|
||||
// int pq0 __attribute__((aligned (4)));
|
||||
// int pq1 __attribute__((aligned (4)));
|
||||
// int pq2 __attribute__((aligned (4)));
|
||||
// int pq3 __attribute__((aligned (4)));
|
||||
// int p0 __attribute__((aligned (4)));
|
||||
// int p1 __attribute__((aligned (4)));
|
||||
// int p2 __attribute__((aligned (4)));
|
||||
// int p3 __attribute__((aligned (4)));
|
||||
// float inv_window_area __attribute__((aligned (4)));
|
||||
//} GpuHidHaarClassifierCascade;
|
||||
|
||||
|
||||
#ifdef PACKED_CLASSIFIER
|
||||
@ -196,10 +196,12 @@ __kernel void gpuRunHaarClassifierCascadePacked(
|
||||
for(int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++ )
|
||||
{// iterate until candidate is exist
|
||||
float stage_sum = 0.0f;
|
||||
int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
|
||||
float stagethreshold = as_float(stageinfo.y);
|
||||
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
|
||||
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
|
||||
int stagecount = stageinfo->count;
|
||||
float stagethreshold = stageinfo->threshold;
|
||||
int lcl_off = (lid_y*DATA_SIZE_X)+(lid_x);
|
||||
for(int nodeloop = 0; nodeloop < stageinfo.x; nodecounter++,nodeloop++ )
|
||||
for(int nodeloop = 0; nodeloop < stagecount; nodecounter++,nodeloop++ )
|
||||
{
|
||||
// simple macro to extract shorts from int
|
||||
#define M0(_t) ((_t)&0xFFFF)
|
||||
@ -355,14 +357,17 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
variance_norm_factor = variance_norm_factor * correction - mean * mean;
|
||||
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1.f;
|
||||
|
||||
for(int stageloop = start_stage; (stageloop < split_stage) && result; stageloop++ )
|
||||
for(int stageloop = start_stage; (stageloop < split_stage) && result; stageloop++ )
|
||||
{
|
||||
float stage_sum = 0.f;
|
||||
int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
|
||||
float stagethreshold = as_float(stageinfo.y);
|
||||
for(int nodeloop = 0; nodeloop < stageinfo.x; )
|
||||
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
|
||||
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
|
||||
int stagecount = stageinfo->count;
|
||||
float stagethreshold = stageinfo->threshold;
|
||||
for(int nodeloop = 0; nodeloop < stagecount; )
|
||||
{
|
||||
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter);
|
||||
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*)
|
||||
(((__global uchar*)nodeptr) + nodecounter * sizeof(GpuHidHaarTreeNode));
|
||||
|
||||
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
||||
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
||||
@ -418,7 +423,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
#endif
|
||||
}
|
||||
|
||||
result = (stage_sum >= stagethreshold);
|
||||
result = (stage_sum >= stagethreshold) ? 1 : 0;
|
||||
}
|
||||
if(factor < 2)
|
||||
{
|
||||
@ -447,14 +452,17 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
lclcount[0]=0;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
|
||||
float stagethreshold = as_float(stageinfo.y);
|
||||
//int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
|
||||
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
|
||||
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
|
||||
int stagecount = stageinfo->count;
|
||||
float stagethreshold = stageinfo->threshold;
|
||||
|
||||
int perfscale = queuecount > 4 ? 3 : 2;
|
||||
int queuecount_loop = (queuecount + (1<<perfscale)-1) >> perfscale;
|
||||
int lcl_compute_win = lcl_sz >> perfscale;
|
||||
int lcl_compute_win_id = (lcl_id >>(6-perfscale));
|
||||
int lcl_loops = (stageinfo.x + lcl_compute_win -1) >> (6-perfscale);
|
||||
int lcl_loops = (stagecount + lcl_compute_win -1) >> (6-perfscale);
|
||||
int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale));
|
||||
for(int queueloop=0; queueloop<queuecount_loop; queueloop++)
|
||||
{
|
||||
@ -469,10 +477,10 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
float part_sum = 0.f;
|
||||
const int stump_factor = STUMP_BASED ? 1 : 2;
|
||||
int root_offset = 0;
|
||||
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stageinfo.x;)
|
||||
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stagecount;)
|
||||
{
|
||||
__global GpuHidHaarTreeNode* currentnodeptr =
|
||||
nodeptr + (nodecounter + tempnodecounter) * stump_factor + root_offset;
|
||||
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*)
|
||||
(((__global uchar*)nodeptr) + sizeof(GpuHidHaarTreeNode) * ((nodecounter + tempnodecounter) * stump_factor + root_offset));
|
||||
|
||||
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
||||
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
||||
@ -549,7 +557,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
|
||||
queuecount = lclcount[0];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
nodecounter += stageinfo.x;
|
||||
nodecounter += stagecount;
|
||||
}//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++)
|
||||
|
||||
if(lcl_id<queuecount)
|
||||
|
@ -59,13 +59,13 @@ typedef struct __attribute__((aligned(128))) GpuHidHaarTreeNode
|
||||
int right __attribute__((aligned(4)));
|
||||
}
|
||||
GpuHidHaarTreeNode;
|
||||
typedef struct __attribute__((aligned(32))) GpuHidHaarClassifier
|
||||
{
|
||||
int count __attribute__((aligned(4)));
|
||||
GpuHidHaarTreeNode *node __attribute__((aligned(8)));
|
||||
float *alpha __attribute__((aligned(8)));
|
||||
}
|
||||
GpuHidHaarClassifier;
|
||||
//typedef struct __attribute__((aligned(32))) GpuHidHaarClassifier
|
||||
//{
|
||||
// int count __attribute__((aligned(4)));
|
||||
// GpuHidHaarTreeNode *node __attribute__((aligned(8)));
|
||||
// float *alpha __attribute__((aligned(8)));
|
||||
//}
|
||||
//GpuHidHaarClassifier;
|
||||
typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier
|
||||
{
|
||||
int count __attribute__((aligned(4)));
|
||||
@ -77,29 +77,29 @@ typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier
|
||||
int reserved3 __attribute__((aligned(8)));
|
||||
}
|
||||
GpuHidHaarStageClassifier;
|
||||
typedef struct __attribute__((aligned(64))) GpuHidHaarClassifierCascade
|
||||
{
|
||||
int count __attribute__((aligned(4)));
|
||||
int is_stump_based __attribute__((aligned(4)));
|
||||
int has_tilted_features __attribute__((aligned(4)));
|
||||
int is_tree __attribute__((aligned(4)));
|
||||
int pq0 __attribute__((aligned(4)));
|
||||
int pq1 __attribute__((aligned(4)));
|
||||
int pq2 __attribute__((aligned(4)));
|
||||
int pq3 __attribute__((aligned(4)));
|
||||
int p0 __attribute__((aligned(4)));
|
||||
int p1 __attribute__((aligned(4)));
|
||||
int p2 __attribute__((aligned(4)));
|
||||
int p3 __attribute__((aligned(4)));
|
||||
float inv_window_area __attribute__((aligned(4)));
|
||||
} GpuHidHaarClassifierCascade;
|
||||
//typedef struct __attribute__((aligned(64))) GpuHidHaarClassifierCascade
|
||||
//{
|
||||
// int count __attribute__((aligned(4)));
|
||||
// int is_stump_based __attribute__((aligned(4)));
|
||||
// int has_tilted_features __attribute__((aligned(4)));
|
||||
// int is_tree __attribute__((aligned(4)));
|
||||
// int pq0 __attribute__((aligned(4)));
|
||||
// int pq1 __attribute__((aligned(4)));
|
||||
// int pq2 __attribute__((aligned(4)));
|
||||
// int pq3 __attribute__((aligned(4)));
|
||||
// int p0 __attribute__((aligned(4)));
|
||||
// int p1 __attribute__((aligned(4)));
|
||||
// int p2 __attribute__((aligned(4)));
|
||||
// int p3 __attribute__((aligned(4)));
|
||||
// float inv_window_area __attribute__((aligned(4)));
|
||||
//} GpuHidHaarClassifierCascade;
|
||||
|
||||
__kernel void gpuRunHaarClassifierCascade_scaled2(
|
||||
global GpuHidHaarStageClassifier *stagecascadeptr,
|
||||
global GpuHidHaarStageClassifier *stagecascadeptr_,
|
||||
global int4 *info,
|
||||
global GpuHidHaarTreeNode *nodeptr,
|
||||
global GpuHidHaarTreeNode *nodeptr_,
|
||||
global const int *restrict sum,
|
||||
global const float *restrict sqsum,
|
||||
global const float *restrict sqsum,
|
||||
global int4 *candidate,
|
||||
const int rows,
|
||||
const int cols,
|
||||
@ -132,8 +132,7 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
|
||||
int max_idx = rows * cols - 1;
|
||||
for (int scalei = 0; scalei < loopcount; scalei++)
|
||||
{
|
||||
int4 scaleinfo1;
|
||||
scaleinfo1 = info[scalei];
|
||||
int4 scaleinfo1 = info[scalei];
|
||||
int grpnumperline = (scaleinfo1.y & 0xffff0000) >> 16;
|
||||
int totalgrp = scaleinfo1.y & 0xffff;
|
||||
float factor = as_float(scaleinfo1.w);
|
||||
@ -174,15 +173,18 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
|
||||
for (int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++)
|
||||
{
|
||||
float stage_sum = 0.f;
|
||||
int stagecount = stagecascadeptr[stageloop].count;
|
||||
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
|
||||
(((__global uchar*)stagecascadeptr_)+stageloop*sizeof(GpuHidHaarStageClassifier));
|
||||
int stagecount = stageinfo->count;
|
||||
for (int nodeloop = 0; nodeloop < stagecount;)
|
||||
{
|
||||
__global GpuHidHaarTreeNode *currentnodeptr = (nodeptr + nodecounter);
|
||||
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*)
|
||||
(((__global uchar*)nodeptr_) + nodecounter * sizeof(GpuHidHaarTreeNode));
|
||||
int4 info1 = *(__global int4 *)(&(currentnodeptr->p[0][0]));
|
||||
int4 info2 = *(__global int4 *)(&(currentnodeptr->p[1][0]));
|
||||
int4 info3 = *(__global int4 *)(&(currentnodeptr->p[2][0]));
|
||||
float4 w = *(__global float4 *)(&(currentnodeptr->weight[0]));
|
||||
float3 alpha3 = *(__global float3 *)(&(currentnodeptr->alpha[0]));
|
||||
float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0]));
|
||||
float nodethreshold = w.w * variance_norm_factor;
|
||||
|
||||
info1.x += p_offset;
|
||||
@ -204,7 +206,7 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
|
||||
sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)]
|
||||
+ sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z;
|
||||
|
||||
bool passThres = classsum >= nodethreshold;
|
||||
bool passThres = (classsum >= nodethreshold) ? 1 : 0;
|
||||
|
||||
#if STUMP_BASED
|
||||
stage_sum += passThres ? alpha3.y : alpha3.x;
|
||||
@ -234,7 +236,8 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
|
||||
}
|
||||
#endif
|
||||
}
|
||||
result = (int)(stage_sum >= stagecascadeptr[stageloop].threshold);
|
||||
|
||||
result = (stage_sum >= stageinfo->threshold) ? 1 : 0;
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
@ -281,11 +284,14 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
|
||||
}
|
||||
}
|
||||
}
|
||||
__kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuHidHaarTreeNode *newnode, float scale, float weight_scale, int nodenum)
|
||||
__kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuHidHaarTreeNode *newnode, float scale, float weight_scale, const int nodenum)
|
||||
{
|
||||
int counter = get_global_id(0);
|
||||
const int counter = get_global_id(0);
|
||||
int tr_x[3], tr_y[3], tr_h[3], tr_w[3], i = 0;
|
||||
GpuHidHaarTreeNode t1 = *(orinode + counter);
|
||||
GpuHidHaarTreeNode t1 = *(__global GpuHidHaarTreeNode*)
|
||||
(((__global uchar*)orinode) + counter * sizeof(GpuHidHaarTreeNode));
|
||||
__global GpuHidHaarTreeNode* pNew = (__global GpuHidHaarTreeNode*)
|
||||
(((__global uchar*)newnode) + (counter + nodenum) * sizeof(GpuHidHaarTreeNode));
|
||||
|
||||
#pragma unroll
|
||||
for (i = 0; i < 3; i++)
|
||||
@ -297,22 +303,21 @@ __kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuH
|
||||
}
|
||||
|
||||
t1.weight[0] = -(t1.weight[1] * tr_h[1] * tr_w[1] + t1.weight[2] * tr_h[2] * tr_w[2]) / (tr_h[0] * tr_w[0]);
|
||||
counter += nodenum;
|
||||
|
||||
#pragma unroll
|
||||
for (i = 0; i < 3; i++)
|
||||
{
|
||||
newnode[counter].p[i][0] = tr_x[i];
|
||||
newnode[counter].p[i][1] = tr_y[i];
|
||||
newnode[counter].p[i][2] = tr_x[i] + tr_w[i];
|
||||
newnode[counter].p[i][3] = tr_y[i] + tr_h[i];
|
||||
newnode[counter].weight[i] = t1.weight[i] * weight_scale;
|
||||
pNew->p[i][0] = tr_x[i];
|
||||
pNew->p[i][1] = tr_y[i];
|
||||
pNew->p[i][2] = tr_x[i] + tr_w[i];
|
||||
pNew->p[i][3] = tr_y[i] + tr_h[i];
|
||||
pNew->weight[i] = t1.weight[i] * weight_scale;
|
||||
}
|
||||
|
||||
newnode[counter].left = t1.left;
|
||||
newnode[counter].right = t1.right;
|
||||
newnode[counter].threshold = t1.threshold;
|
||||
newnode[counter].alpha[0] = t1.alpha[0];
|
||||
newnode[counter].alpha[1] = t1.alpha[1];
|
||||
newnode[counter].alpha[2] = t1.alpha[2];
|
||||
pNew->left = t1.left;
|
||||
pNew->right = t1.right;
|
||||
pNew->threshold = t1.threshold;
|
||||
pNew->alpha[0] = t1.alpha[0];
|
||||
pNew->alpha[1] = t1.alpha[1];
|
||||
pNew->alpha[2] = t1.alpha[2];
|
||||
}
|
||||
|
@ -74,11 +74,11 @@ __kernel void threshold(__global const T * restrict src, int src_offset, int src
|
||||
VT vthresh = (VT)(thresh);
|
||||
|
||||
#ifdef THRESH_BINARY
|
||||
VT vecValue = sdata > vthresh ? max_val : (VT)(0);
|
||||
VT vecValue = sdata > vthresh ? (VT)max_val : (VT)(0);
|
||||
#elif defined THRESH_BINARY_INV
|
||||
VT vecValue = sdata > vthresh ? (VT)(0) : max_val;
|
||||
VT vecValue = sdata > vthresh ? (VT)(0) : (VT)max_val;
|
||||
#elif defined THRESH_TRUNC
|
||||
VT vecValue = sdata > vthresh ? thresh : sdata;
|
||||
VT vecValue = sdata > vthresh ? (VT)thresh : sdata;
|
||||
#elif defined THRESH_TOZERO
|
||||
VT vecValue = sdata > vthresh ? sdata : (VT)(0);
|
||||
#elif defined THRESH_TOZERO_INV
|
||||
|
@ -1,8 +1,8 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
package="org.opencv.engine"
|
||||
android:versionCode="214@ANDROID_PLATFORM_VERSION_CODE@"
|
||||
android:versionName="2.14" >
|
||||
android:versionCode="216@ANDROID_PLATFORM_VERSION_CODE@"
|
||||
android:versionName="2.16" >
|
||||
|
||||
<uses-sdk android:minSdkVersion="@ANDROID_NATIVE_API_LEVEL@" />
|
||||
<uses-feature android:name="android.hardware.touchscreen" android:required="false"/>
|
||||
|
@ -170,7 +170,7 @@ inline string JoinPlatform(int platform)
|
||||
return result;
|
||||
}
|
||||
|
||||
inline int SplitPlatfrom(const vector<string>& features)
|
||||
inline int SplitPlatform(const vector<string>& features)
|
||||
{
|
||||
int result = 0;
|
||||
|
||||
@ -419,7 +419,7 @@ InstallPath(install_path)
|
||||
return;
|
||||
}
|
||||
|
||||
Platform = SplitPlatfrom(features);
|
||||
Platform = SplitPlatform(features);
|
||||
if (PLATFORM_UNKNOWN != Platform)
|
||||
{
|
||||
switch (Platform)
|
||||
|
@ -170,7 +170,7 @@ TEST(CpuID, CheckVFPv3)
|
||||
EXPECT_TRUE(cpu_id & FEATURES_HAS_VFPv3);
|
||||
}
|
||||
|
||||
TEST(PlatfromDetector, CheckTegra)
|
||||
TEST(PlatformDetector, CheckTegra)
|
||||
{
|
||||
EXPECT_NE(PLATFORM_UNKNOWN, DetectKnownPlatforms());
|
||||
}
|
||||
|
@ -90,28 +90,28 @@ public class ManagerActivity extends Activity
|
||||
mInstalledPackageView.setAdapter(mInstalledPacksAdapter);
|
||||
|
||||
TextView HardwarePlatformView = (TextView)findViewById(R.id.HardwareValue);
|
||||
int Platfrom = HardwareDetector.DetectKnownPlatforms();
|
||||
int Platform = HardwareDetector.DetectKnownPlatforms();
|
||||
int CpuId = HardwareDetector.GetCpuID();
|
||||
|
||||
if (HardwareDetector.PLATFORM_UNKNOWN != Platfrom)
|
||||
if (HardwareDetector.PLATFORM_UNKNOWN != Platform)
|
||||
{
|
||||
if (HardwareDetector.PLATFORM_TEGRA == Platfrom)
|
||||
if (HardwareDetector.PLATFORM_TEGRA == Platform)
|
||||
{
|
||||
HardwarePlatformView.setText("Tegra");
|
||||
}
|
||||
else if (HardwareDetector.PLATFORM_TEGRA2 == Platfrom)
|
||||
else if (HardwareDetector.PLATFORM_TEGRA2 == Platform)
|
||||
{
|
||||
HardwarePlatformView.setText("Tegra 2");
|
||||
}
|
||||
else if (HardwareDetector.PLATFORM_TEGRA3 == Platfrom)
|
||||
else if (HardwareDetector.PLATFORM_TEGRA3 == Platform)
|
||||
{
|
||||
HardwarePlatformView.setText("Tegra 3");
|
||||
}
|
||||
else if (HardwareDetector.PLATFORM_TEGRA4i == Platfrom)
|
||||
else if (HardwareDetector.PLATFORM_TEGRA4i == Platform)
|
||||
{
|
||||
HardwarePlatformView.setText("Tegra 4i");
|
||||
}
|
||||
else if (HardwareDetector.PLATFORM_TEGRA4 == Platfrom)
|
||||
else if (HardwareDetector.PLATFORM_TEGRA4 == Platform)
|
||||
{
|
||||
HardwarePlatformView.setText("Tegra 4");
|
||||
}
|
||||
|
@ -14,20 +14,20 @@ manually using adb tool:
|
||||
|
||||
.. code-block:: sh
|
||||
|
||||
adb install OpenCV-2.4.7-android-sdk/apk/OpenCV_2.4.7_Manager_2.14_<platform>.apk
|
||||
adb install OpenCV-2.4.7.1-android-sdk/apk/OpenCV_2.4.7.1_Manager_2.15_<platform>.apk
|
||||
|
||||
Use the table below to determine proper OpenCV Manager package for your device:
|
||||
|
||||
+------------------------------+--------------+----------------------------------------------------+
|
||||
| Hardware Platform | Android ver. | Package name |
|
||||
+==============================+==============+====================================================+
|
||||
| armeabi-v7a (ARMv7-A + NEON) | >= 2.3 | OpenCV_2.4.7_Manager_2.14_armv7a-neon.apk |
|
||||
+------------------------------+--------------+----------------------------------------------------+
|
||||
| armeabi-v7a (ARMv7-A + NEON) | = 2.2 | OpenCV_2.4.7_Manager_2.14_armv7a-neon-android8.apk |
|
||||
+------------------------------+--------------+----------------------------------------------------+
|
||||
| armeabi (ARMv5, ARMv6) | >= 2.3 | OpenCV_2.4.7_Manager_2.14_armeabi.apk |
|
||||
+------------------------------+--------------+----------------------------------------------------+
|
||||
| Intel x86 | >= 2.3 | OpenCV_2.4.7_Manager_2.14_x86.apk |
|
||||
+------------------------------+--------------+----------------------------------------------------+
|
||||
| MIPS | >= 2.3 | OpenCV_2.4.7_Manager_2.14_mips.apk |
|
||||
+------------------------------+--------------+----------------------------------------------------+
|
||||
+------------------------------+--------------+------------------------------------------------------+
|
||||
| Hardware Platform | Android ver. | Package name |
|
||||
+==============================+==============+======================================================+
|
||||
| armeabi-v7a (ARMv7-A + NEON) | >= 2.3 | OpenCV_2.4.7.1_Manager_2.15_armv7a-neon.apk |
|
||||
+------------------------------+--------------+------------------------------------------------------+
|
||||
| armeabi-v7a (ARMv7-A + NEON) | = 2.2 | OpenCV_2.4.7.1_Manager_2.15_armv7a-neon-android8.apk |
|
||||
+------------------------------+--------------+------------------------------------------------------+
|
||||
| armeabi (ARMv5, ARMv6) | >= 2.3 | OpenCV_2.4.7.1_Manager_2.15_armeabi.apk |
|
||||
+------------------------------+--------------+------------------------------------------------------+
|
||||
| Intel x86 | >= 2.3 | OpenCV_2.4.7.1_Manager_2.15_x86.apk |
|
||||
+------------------------------+--------------+------------------------------------------------------+
|
||||
| MIPS | >= 2.3 | OpenCV_2.4.7.1_Manager_2.15_mips.apk |
|
||||
+------------------------------+--------------+------------------------------------------------------+
|
||||
|
@ -29,6 +29,10 @@ if(BUILD_EXAMPLES AND OCV_DEPENDENCIES_FOUND)
|
||||
ocv_include_directories("${OpenCV_SOURCE_DIR}/modules/cudafilters/include")
|
||||
endif()
|
||||
|
||||
if(HAVE_opencv_ocl)
|
||||
ocv_include_directories("${OpenCV_SOURCE_DIR}/modules/ocl/include")
|
||||
endif()
|
||||
|
||||
if(CMAKE_COMPILER_IS_GNUCXX AND NOT ENABLE_NOISY_WARNINGS)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wno-unused-function")
|
||||
endif()
|
||||
@ -56,6 +60,10 @@ if(BUILD_EXAMPLES AND OCV_DEPENDENCIES_FOUND)
|
||||
target_link_libraries(${the_target} opencv_cudaarithm opencv_cudafilters)
|
||||
endif()
|
||||
|
||||
if(HAVE_opencv_ocl)
|
||||
target_link_libraries(${the_target} opencv_ocl)
|
||||
endif()
|
||||
|
||||
set_target_properties(${the_target} PROPERTIES
|
||||
OUTPUT_NAME "cpp-${sample_kind}-${name}"
|
||||
PROJECT_LABEL "(${sample_KIND}) ${name}")
|
||||
|
@ -1,8 +1,13 @@
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/features2d/features2d.hpp"
|
||||
#include "opencv2/nonfree/nonfree.hpp"
|
||||
#include "opencv2/ml/ml.hpp"
|
||||
#ifdef HAVE_OPENCV_OCL
|
||||
#define _OCL_SVM_ 1 //select whether using ocl::svm method or not, default is using
|
||||
#include "opencv2/ocl/ocl.hpp"
|
||||
#endif
|
||||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
@ -2373,9 +2378,15 @@ static void setSVMTrainAutoParams( CvParamGrid& c_grid, CvParamGrid& gamma_grid,
|
||||
degree_grid.step = 0;
|
||||
}
|
||||
|
||||
#if defined HAVE_OPENCV_OCL && _OCL_SVM_
|
||||
static void trainSVMClassifier( cv::ocl::CvSVM_OCL& svm, const SVMTrainParamsExt& svmParamsExt, const string& objClassName, VocData& vocData,
|
||||
Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
|
||||
const string& resPath )
|
||||
#else
|
||||
static void trainSVMClassifier( CvSVM& svm, const SVMTrainParamsExt& svmParamsExt, const string& objClassName, VocData& vocData,
|
||||
Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
|
||||
const string& resPath )
|
||||
#endif
|
||||
{
|
||||
/* first check if a previously trained svm for the current class has been saved to file */
|
||||
string svmFilename = resPath + svmsDir + "/" + objClassName + ".xml.gz";
|
||||
@ -2448,9 +2459,15 @@ static void trainSVMClassifier( CvSVM& svm, const SVMTrainParamsExt& svmParamsEx
|
||||
}
|
||||
}
|
||||
|
||||
#if defined HAVE_OPENCV_OCL && _OCL_SVM_
|
||||
static void computeConfidences( cv::ocl::CvSVM_OCL& svm, const string& objClassName, VocData& vocData,
|
||||
Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
|
||||
const string& resPath )
|
||||
#else
|
||||
static void computeConfidences( CvSVM& svm, const string& objClassName, VocData& vocData,
|
||||
Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
|
||||
const string& resPath )
|
||||
#endif
|
||||
{
|
||||
cout << "*** CALCULATING CONFIDENCES FOR CLASS " << objClassName << " ***" << endl;
|
||||
cout << "CALCULATING BOW VECTORS FOR TEST SET OF " << objClassName << "..." << endl;
|
||||
@ -2589,7 +2606,11 @@ int main(int argc, char** argv)
|
||||
for( size_t classIdx = 0; classIdx < objClasses.size(); ++classIdx )
|
||||
{
|
||||
// Train a classifier on train dataset
|
||||
#if defined HAVE_OPENCV_OCL && _OCL_SVM_
|
||||
cv::ocl::CvSVM_OCL svm;
|
||||
#else
|
||||
CvSVM svm;
|
||||
#endif
|
||||
trainSVMClassifier( svm, svmTrainParamsExt, objClasses[classIdx], vocData,
|
||||
bowExtractor, featureDetector, resPath );
|
||||
|
||||
|
@ -1,6 +1,12 @@
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/ml/ml.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#ifdef HAVE_OPENCV_OCL
|
||||
#define _OCL_KNN_ 1 // select whether using ocl::KNN method or not, default is using
|
||||
#define _OCL_SVM_ 1 // select whether using ocl::svm method or not, default is using
|
||||
#include "opencv2/ocl/ocl.hpp"
|
||||
#endif
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
@ -133,7 +139,14 @@ static void find_decision_boundary_KNN( int K )
|
||||
prepare_train_data( trainSamples, trainClasses );
|
||||
|
||||
// learn classifier
|
||||
#if defined HAVE_OPENCV_OCL && _OCL_KNN_
|
||||
cv::ocl::KNearestNeighbour knnClassifier;
|
||||
Mat temp, result;
|
||||
knnClassifier.train(trainSamples, trainClasses, temp, false, K);
|
||||
cv::ocl::oclMat testSample_ocl, reslut_ocl;
|
||||
#else
|
||||
CvKNearest knnClassifier( trainSamples, trainClasses, Mat(), false, K );
|
||||
#endif
|
||||
|
||||
Mat testSample( 1, 2, CV_32FC1 );
|
||||
for( int y = 0; y < img.rows; y += testStep )
|
||||
@ -142,9 +155,19 @@ static void find_decision_boundary_KNN( int K )
|
||||
{
|
||||
testSample.at<float>(0) = (float)x;
|
||||
testSample.at<float>(1) = (float)y;
|
||||
#if defined HAVE_OPENCV_OCL && _OCL_KNN_
|
||||
testSample_ocl.upload(testSample);
|
||||
|
||||
knnClassifier.find_nearest(testSample_ocl, K, reslut_ocl);
|
||||
|
||||
reslut_ocl.download(result);
|
||||
int response = saturate_cast<int>(result.at<float>(0));
|
||||
circle(imgDst, Point(x, y), 1, classColors[response]);
|
||||
#else
|
||||
|
||||
int response = (int)knnClassifier.find_nearest( testSample, K );
|
||||
circle( imgDst, Point(x,y), 1, classColors[response] );
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -159,7 +182,11 @@ static void find_decision_boundary_SVM( CvSVMParams params )
|
||||
prepare_train_data( trainSamples, trainClasses );
|
||||
|
||||
// learn classifier
|
||||
#if defined HAVE_OPENCV_OCL && _OCL_SVM_
|
||||
cv::ocl::CvSVM_OCL svmClassifier(trainSamples, trainClasses, Mat(), Mat(), params);
|
||||
#else
|
||||
CvSVM svmClassifier( trainSamples, trainClasses, Mat(), Mat(), params );
|
||||
#endif
|
||||
|
||||
Mat testSample( 1, 2, CV_32FC1 );
|
||||
for( int y = 0; y < img.rows; y += testStep )
|
||||
@ -178,7 +205,7 @@ static void find_decision_boundary_SVM( CvSVMParams params )
|
||||
for( int i = 0; i < svmClassifier.get_support_vector_count(); i++ )
|
||||
{
|
||||
const float* supportVector = svmClassifier.get_support_vector(i);
|
||||
circle( imgDst, Point(supportVector[0],supportVector[1]), 5, Scalar(255,255,255), -1 );
|
||||
circle( imgDst, Point(saturate_cast<int>(supportVector[0]),saturate_cast<int>(supportVector[1])), 5, CV_RGB(255,255,255), -1 );
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -8,11 +8,16 @@
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
|
||||
#if defined(_MSC_VER) && (_MSC_VER >= 1700)
|
||||
# include <thread>
|
||||
#endif
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
#define LOOP_NUM 1
|
||||
|
||||
///////////////////////////single-threading faces detecting///////////////////////////////
|
||||
|
||||
const static Scalar colors[] = { CV_RGB(0,0,255),
|
||||
CV_RGB(0,128,255),
|
||||
CV_RGB(0,255,255),
|
||||
@ -26,7 +31,7 @@ const static Scalar colors[] = { CV_RGB(0,0,255),
|
||||
|
||||
int64 work_begin = 0;
|
||||
int64 work_end = 0;
|
||||
string outputName;
|
||||
string inputName, outputName, cascadeName;
|
||||
|
||||
static void workBegin()
|
||||
{
|
||||
@ -61,41 +66,17 @@ static void Draw(Mat& img, vector<Rect>& faces, double scale);
|
||||
// Else if will return (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels)
|
||||
double checkRectSimilarity(Size sz, vector<Rect>& cpu_rst, vector<Rect>& gpu_rst);
|
||||
|
||||
int main( int argc, const char** argv )
|
||||
static int facedetect_one_thread(bool useCPU, double scale )
|
||||
{
|
||||
const char* keys =
|
||||
"{ h help | false | print help message }"
|
||||
"{ i input | | specify input image }"
|
||||
"{ t template | haarcascade_frontalface_alt.xml |"
|
||||
" specify template file path }"
|
||||
"{ c scale | 1.0 | scale image }"
|
||||
"{ s use_cpu | false | use cpu or gpu to process the image }"
|
||||
"{ o output | facedetect_output.jpg |"
|
||||
" specify output image save path(only works when input is images) }";
|
||||
|
||||
CommandLineParser cmd(argc, argv, keys);
|
||||
if (cmd.get<bool>("help"))
|
||||
{
|
||||
cout << "Usage : facedetect [options]" << endl;
|
||||
cout << "Available options:" << endl;
|
||||
cmd.printMessage();
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
CvCapture* capture = 0;
|
||||
Mat frame, frameCopy0, frameCopy, image;
|
||||
|
||||
bool useCPU = cmd.get<bool>("s");
|
||||
string inputName = cmd.get<string>("i");
|
||||
outputName = cmd.get<string>("o");
|
||||
string cascadeName = cmd.get<string>("t");
|
||||
double scale = cmd.get<double>("c");
|
||||
ocl::OclCascadeClassifier cascade;
|
||||
CascadeClassifier cpu_cascade;
|
||||
|
||||
if( !cascade.load( cascadeName ) || !cpu_cascade.load(cascadeName) )
|
||||
{
|
||||
cout << "ERROR: Could not load classifier cascade" << endl;
|
||||
cout << "ERROR: Could not load classifier cascade: " << cascadeName << endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
@ -186,9 +167,114 @@ int main( int argc, const char** argv )
|
||||
}
|
||||
|
||||
cvDestroyWindow("result");
|
||||
std::cout<< "single-threaded sample has finished" <<std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
///////////////////////////////////////detectfaces with multithreading////////////////////////////////////////////
|
||||
#if defined(_MSC_VER) && (_MSC_VER >= 1700)
|
||||
|
||||
#define MAX_THREADS 10
|
||||
|
||||
static void detectFaces(std::string fileName)
|
||||
{
|
||||
ocl::OclCascadeClassifier cascade;
|
||||
if(!cascade.load(cascadeName))
|
||||
{
|
||||
std::cout << "ERROR: Could not load classifier cascade: " << cascadeName << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
Mat img = imread(fileName, CV_LOAD_IMAGE_COLOR);
|
||||
if (img.empty())
|
||||
{
|
||||
std::cout << "cann't open file " + fileName <<std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
ocl::oclMat d_img;
|
||||
d_img.upload(img);
|
||||
|
||||
std::vector<Rect> oclfaces;
|
||||
cascade.detectMultiScale(d_img, oclfaces, 1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30), Size(0, 0));
|
||||
|
||||
for(unsigned int i = 0; i<oclfaces.size(); i++)
|
||||
rectangle(img, Point(oclfaces[i].x, oclfaces[i].y), Point(oclfaces[i].x + oclfaces[i].width, oclfaces[i].y + oclfaces[i].height), colors[i%8], 3);
|
||||
|
||||
std::string::size_type pos = outputName.rfind('.');
|
||||
std::string outputNameTid = outputName + '-' + std::to_string(_threadid);
|
||||
if(pos == std::string::npos)
|
||||
{
|
||||
std::cout << "Invalid output file name: " << outputName << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
outputNameTid = outputName.substr(0, pos) + "_" + std::to_string(_threadid) + outputName.substr(pos);
|
||||
imwrite(outputNameTid, img);
|
||||
}
|
||||
imshow(outputNameTid, img);
|
||||
waitKey(0);
|
||||
}
|
||||
|
||||
static void facedetect_multithreading(int nthreads)
|
||||
{
|
||||
int thread_number = MAX_THREADS < nthreads ? MAX_THREADS : nthreads;
|
||||
std::vector<std::thread> threads;
|
||||
for(int i = 0; i<thread_number; i++)
|
||||
threads.push_back(std::thread(detectFaces, inputName));
|
||||
for(int i = 0; i<thread_number; i++)
|
||||
threads[i].join();
|
||||
}
|
||||
#endif
|
||||
|
||||
int main( int argc, const char** argv )
|
||||
{
|
||||
|
||||
const char* keys =
|
||||
"{ h help | false | print help message }"
|
||||
"{ i input | | specify input image }"
|
||||
"{ t template | haarcascade_frontalface_alt.xml |"
|
||||
" specify template file path }"
|
||||
"{ c scale | 1.0 | scale image }"
|
||||
"{ s use_cpu | false | use cpu or gpu to process the image }"
|
||||
"{ o output | facedetect_output.jpg |"
|
||||
" specify output image save path(only works when input is images) }"
|
||||
"{ n thread_num | 1 | set number of threads >= 1 }";
|
||||
|
||||
CommandLineParser cmd(argc, argv, keys);
|
||||
if (cmd.has("help"))
|
||||
{
|
||||
cout << "Usage : facedetect [options]" << endl;
|
||||
cout << "Available options:" << endl;
|
||||
cmd.printMessage();
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
bool useCPU = cmd.get<bool>("s");
|
||||
inputName = cmd.get<string>("i");
|
||||
outputName = cmd.get<string>("o");
|
||||
cascadeName = cmd.get<string>("t");
|
||||
double scale = cmd.get<double>("c");
|
||||
int n = cmd.get<int>("n");
|
||||
|
||||
if(n > 1)
|
||||
{
|
||||
#if defined(_MSC_VER) && (_MSC_VER >= 1700)
|
||||
std::cout<<"multi-threaded sample is running" <<std::endl;
|
||||
facedetect_multithreading(n);
|
||||
std::cout<<"multi-threaded sample has finished" <<std::endl;
|
||||
return 0;
|
||||
#else
|
||||
std::cout << "std::thread is not supported, running a single-threaded version" << std::endl;
|
||||
#endif
|
||||
}
|
||||
if (n<0)
|
||||
std::cout<<"incorrect number of threads:" << n << ", running a single-threaded version" <<std::endl;
|
||||
else
|
||||
std::cout<<"single-threaded sample is running" <<std::endl;
|
||||
return facedetect_one_thread(useCPU, scale);
|
||||
|
||||
}
|
||||
|
||||
void detect( Mat& img, vector<Rect>& faces,
|
||||
ocl::OclCascadeClassifier& cascade,
|
||||
double scale)
|
||||
|
Loading…
Reference in New Issue
Block a user