Modified java wrapping mechanism
This commit is contained in:
1
modules/features2d/misc/java/filelist
Normal file
1
modules/features2d/misc/java/filelist
Normal file
@@ -0,0 +1 @@
|
||||
misc/java/src/cpp/features2d_manual.hpp
|
112
modules/features2d/misc/java/src/cpp/features2d_converters.cpp
Normal file
112
modules/features2d/misc/java/src/cpp/features2d_converters.cpp
Normal file
@@ -0,0 +1,112 @@
|
||||
#define LOG_TAG "org.opencv.utils.Converters"
|
||||
#include "common.h"
|
||||
#include "features2d_converters.hpp"
|
||||
|
||||
using namespace cv;
|
||||
|
||||
#define CHECK_MAT(cond) if(!(cond)){ LOGD("FAILED: " #cond); return; }
|
||||
|
||||
|
||||
//vector_KeyPoint
|
||||
void Mat_to_vector_KeyPoint(Mat& mat, std::vector<KeyPoint>& v_kp)
|
||||
{
|
||||
v_kp.clear();
|
||||
CHECK_MAT(mat.type()==CV_32FC(7) && mat.cols==1);
|
||||
for(int i=0; i<mat.rows; i++)
|
||||
{
|
||||
Vec<float, 7> v = mat.at< Vec<float, 7> >(i, 0);
|
||||
KeyPoint kp(v[0], v[1], v[2], v[3], v[4], (int)v[5], (int)v[6]);
|
||||
v_kp.push_back(kp);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
void vector_KeyPoint_to_Mat(std::vector<KeyPoint>& v_kp, Mat& mat)
|
||||
{
|
||||
int count = (int)v_kp.size();
|
||||
mat.create(count, 1, CV_32FC(7));
|
||||
for(int i=0; i<count; i++)
|
||||
{
|
||||
KeyPoint kp = v_kp[i];
|
||||
mat.at< Vec<float, 7> >(i, 0) = Vec<float, 7>(kp.pt.x, kp.pt.y, kp.size, kp.angle, kp.response, (float)kp.octave, (float)kp.class_id);
|
||||
}
|
||||
}
|
||||
|
||||
//vector_DMatch
|
||||
void Mat_to_vector_DMatch(Mat& mat, std::vector<DMatch>& v_dm)
|
||||
{
|
||||
v_dm.clear();
|
||||
CHECK_MAT(mat.type()==CV_32FC4 && mat.cols==1);
|
||||
for(int i=0; i<mat.rows; i++)
|
||||
{
|
||||
Vec<float, 4> v = mat.at< Vec<float, 4> >(i, 0);
|
||||
DMatch dm((int)v[0], (int)v[1], (int)v[2], v[3]);
|
||||
v_dm.push_back(dm);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
void vector_DMatch_to_Mat(std::vector<DMatch>& v_dm, Mat& mat)
|
||||
{
|
||||
int count = (int)v_dm.size();
|
||||
mat.create(count, 1, CV_32FC4);
|
||||
for(int i=0; i<count; i++)
|
||||
{
|
||||
DMatch dm = v_dm[i];
|
||||
mat.at< Vec<float, 4> >(i, 0) = Vec<float, 4>((float)dm.queryIdx, (float)dm.trainIdx, (float)dm.imgIdx, dm.distance);
|
||||
}
|
||||
}
|
||||
|
||||
void Mat_to_vector_vector_KeyPoint(Mat& mat, std::vector< std::vector< KeyPoint > >& vv_kp)
|
||||
{
|
||||
std::vector<Mat> vm;
|
||||
vm.reserve( mat.rows );
|
||||
Mat_to_vector_Mat(mat, vm);
|
||||
for(size_t i=0; i<vm.size(); i++)
|
||||
{
|
||||
std::vector<KeyPoint> vkp;
|
||||
Mat_to_vector_KeyPoint(vm[i], vkp);
|
||||
vv_kp.push_back(vkp);
|
||||
}
|
||||
}
|
||||
|
||||
void vector_vector_KeyPoint_to_Mat(std::vector< std::vector< KeyPoint > >& vv_kp, Mat& mat)
|
||||
{
|
||||
std::vector<Mat> vm;
|
||||
vm.reserve( vv_kp.size() );
|
||||
for(size_t i=0; i<vv_kp.size(); i++)
|
||||
{
|
||||
Mat m;
|
||||
vector_KeyPoint_to_Mat(vv_kp[i], m);
|
||||
vm.push_back(m);
|
||||
}
|
||||
vector_Mat_to_Mat(vm, mat);
|
||||
}
|
||||
|
||||
void Mat_to_vector_vector_DMatch(Mat& mat, std::vector< std::vector< DMatch > >& vv_dm)
|
||||
{
|
||||
std::vector<Mat> vm;
|
||||
vm.reserve( mat.rows );
|
||||
Mat_to_vector_Mat(mat, vm);
|
||||
for(size_t i=0; i<vm.size(); i++)
|
||||
{
|
||||
std::vector<DMatch> vdm;
|
||||
Mat_to_vector_DMatch(vm[i], vdm);
|
||||
vv_dm.push_back(vdm);
|
||||
}
|
||||
}
|
||||
|
||||
void vector_vector_DMatch_to_Mat(std::vector< std::vector< DMatch > >& vv_dm, Mat& mat)
|
||||
{
|
||||
std::vector<Mat> vm;
|
||||
vm.reserve( vv_dm.size() );
|
||||
for(size_t i=0; i<vv_dm.size(); i++)
|
||||
{
|
||||
Mat m;
|
||||
vector_DMatch_to_Mat(vv_dm[i], m);
|
||||
vm.push_back(m);
|
||||
}
|
||||
vector_Mat_to_Mat(vm, mat);
|
||||
}
|
@@ -0,0 +1,22 @@
|
||||
#ifndef __FEATURES2D_CONVERTERS_HPP__
|
||||
#define __FEATURES2D_CONVERTERS_HPP__
|
||||
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
#include "opencv2/core.hpp"
|
||||
|
||||
#include "features2d_manual.hpp"
|
||||
|
||||
void Mat_to_vector_KeyPoint(cv::Mat& mat, std::vector<cv::KeyPoint>& v_kp);
|
||||
void vector_KeyPoint_to_Mat(std::vector<cv::KeyPoint>& v_kp, cv::Mat& mat);
|
||||
|
||||
void Mat_to_vector_DMatch(cv::Mat& mat, std::vector<cv::DMatch>& v_dm);
|
||||
void vector_DMatch_to_Mat(std::vector<cv::DMatch>& v_dm, cv::Mat& mat);
|
||||
|
||||
void Mat_to_vector_vector_KeyPoint(cv::Mat& mat, std::vector< std::vector< cv::KeyPoint > >& vv_kp);
|
||||
void vector_vector_KeyPoint_to_Mat(std::vector< std::vector< cv::KeyPoint > >& vv_kp, cv::Mat& mat);
|
||||
|
||||
void Mat_to_vector_vector_DMatch(cv::Mat& mat, std::vector< std::vector< cv::DMatch > >& vv_dm);
|
||||
void vector_vector_DMatch_to_Mat(std::vector< std::vector< cv::DMatch > >& vv_dm, cv::Mat& mat);
|
||||
|
||||
|
||||
#endif
|
434
modules/features2d/misc/java/src/cpp/features2d_manual.hpp
Normal file
434
modules/features2d/misc/java/src/cpp/features2d_manual.hpp
Normal file
@@ -0,0 +1,434 @@
|
||||
#ifndef __OPENCV_FEATURES_2D_MANUAL_HPP__
|
||||
#define __OPENCV_FEATURES_2D_MANUAL_HPP__
|
||||
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCV_FEATURES2D
|
||||
#include "opencv2/features2d.hpp"
|
||||
#include "features2d_converters.hpp"
|
||||
|
||||
#undef SIMPLEBLOB // to solve conflict with wincrypt.h on windows
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
class CV_EXPORTS_AS(FeatureDetector) javaFeatureDetector
|
||||
{
|
||||
public:
|
||||
CV_WRAP void detect( const Mat& image, CV_OUT std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const
|
||||
{ return wrapped->detect(image, keypoints, mask); }
|
||||
|
||||
CV_WRAP void detect( const std::vector<Mat>& images, CV_OUT std::vector<std::vector<KeyPoint> >& keypoints, const std::vector<Mat>& masks=std::vector<Mat>() ) const
|
||||
{ return wrapped->detect(images, keypoints, masks); }
|
||||
|
||||
CV_WRAP bool empty() const
|
||||
{ return wrapped->empty(); }
|
||||
|
||||
enum
|
||||
{
|
||||
FAST = 1,
|
||||
STAR = 2,
|
||||
SIFT = 3,
|
||||
SURF = 4,
|
||||
ORB = 5,
|
||||
MSER = 6,
|
||||
GFTT = 7,
|
||||
HARRIS = 8,
|
||||
SIMPLEBLOB = 9,
|
||||
DENSE = 10,
|
||||
BRISK = 11,
|
||||
AKAZE = 12,
|
||||
|
||||
|
||||
GRIDDETECTOR = 1000,
|
||||
|
||||
GRID_FAST = GRIDDETECTOR + FAST,
|
||||
GRID_STAR = GRIDDETECTOR + STAR,
|
||||
GRID_SIFT = GRIDDETECTOR + SIFT,
|
||||
GRID_SURF = GRIDDETECTOR + SURF,
|
||||
GRID_ORB = GRIDDETECTOR + ORB,
|
||||
GRID_MSER = GRIDDETECTOR + MSER,
|
||||
GRID_GFTT = GRIDDETECTOR + GFTT,
|
||||
GRID_HARRIS = GRIDDETECTOR + HARRIS,
|
||||
GRID_SIMPLEBLOB = GRIDDETECTOR + SIMPLEBLOB,
|
||||
GRID_DENSE = GRIDDETECTOR + DENSE,
|
||||
GRID_BRISK = GRIDDETECTOR + BRISK,
|
||||
GRID_AKAZE = GRIDDETECTOR + AKAZE,
|
||||
|
||||
|
||||
PYRAMIDDETECTOR = 2000,
|
||||
|
||||
PYRAMID_FAST = PYRAMIDDETECTOR + FAST,
|
||||
PYRAMID_STAR = PYRAMIDDETECTOR + STAR,
|
||||
PYRAMID_SIFT = PYRAMIDDETECTOR + SIFT,
|
||||
PYRAMID_SURF = PYRAMIDDETECTOR + SURF,
|
||||
PYRAMID_ORB = PYRAMIDDETECTOR + ORB,
|
||||
PYRAMID_MSER = PYRAMIDDETECTOR + MSER,
|
||||
PYRAMID_GFTT = PYRAMIDDETECTOR + GFTT,
|
||||
PYRAMID_HARRIS = PYRAMIDDETECTOR + HARRIS,
|
||||
PYRAMID_SIMPLEBLOB = PYRAMIDDETECTOR + SIMPLEBLOB,
|
||||
PYRAMID_DENSE = PYRAMIDDETECTOR + DENSE,
|
||||
PYRAMID_BRISK = PYRAMIDDETECTOR + BRISK,
|
||||
PYRAMID_AKAZE = PYRAMIDDETECTOR + AKAZE,
|
||||
|
||||
DYNAMICDETECTOR = 3000,
|
||||
|
||||
DYNAMIC_FAST = DYNAMICDETECTOR + FAST,
|
||||
DYNAMIC_STAR = DYNAMICDETECTOR + STAR,
|
||||
DYNAMIC_SIFT = DYNAMICDETECTOR + SIFT,
|
||||
DYNAMIC_SURF = DYNAMICDETECTOR + SURF,
|
||||
DYNAMIC_ORB = DYNAMICDETECTOR + ORB,
|
||||
DYNAMIC_MSER = DYNAMICDETECTOR + MSER,
|
||||
DYNAMIC_GFTT = DYNAMICDETECTOR + GFTT,
|
||||
DYNAMIC_HARRIS = DYNAMICDETECTOR + HARRIS,
|
||||
DYNAMIC_SIMPLEBLOB = DYNAMICDETECTOR + SIMPLEBLOB,
|
||||
DYNAMIC_DENSE = DYNAMICDETECTOR + DENSE,
|
||||
DYNAMIC_BRISK = DYNAMICDETECTOR + BRISK,
|
||||
DYNAMIC_AKAZE = DYNAMICDETECTOR + AKAZE
|
||||
};
|
||||
|
||||
//supported: FAST STAR SIFT SURF ORB MSER GFTT HARRIS BRISK AKAZE Grid(XXXX) Pyramid(XXXX) Dynamic(XXXX)
|
||||
//not supported: SimpleBlob, Dense
|
||||
CV_WRAP static javaFeatureDetector* create( int detectorType )
|
||||
{
|
||||
//String name;
|
||||
if (detectorType > DYNAMICDETECTOR)
|
||||
{
|
||||
//name = "Dynamic";
|
||||
detectorType -= DYNAMICDETECTOR;
|
||||
}
|
||||
if (detectorType > PYRAMIDDETECTOR)
|
||||
{
|
||||
//name = "Pyramid";
|
||||
detectorType -= PYRAMIDDETECTOR;
|
||||
}
|
||||
if (detectorType > GRIDDETECTOR)
|
||||
{
|
||||
//name = "Grid";
|
||||
detectorType -= GRIDDETECTOR;
|
||||
}
|
||||
|
||||
Ptr<FeatureDetector> fd;
|
||||
switch(detectorType)
|
||||
{
|
||||
case FAST:
|
||||
fd = FastFeatureDetector::create();
|
||||
break;
|
||||
//case STAR:
|
||||
// fd = xfeatures2d::StarDetector::create();
|
||||
// break;
|
||||
//case SIFT:
|
||||
// name = name + "SIFT";
|
||||
// break;
|
||||
//case SURF:
|
||||
// name = name + "SURF";
|
||||
// break;
|
||||
case ORB:
|
||||
fd = ORB::create();
|
||||
break;
|
||||
case MSER:
|
||||
fd = MSER::create();
|
||||
break;
|
||||
case GFTT:
|
||||
fd = GFTTDetector::create();
|
||||
break;
|
||||
case HARRIS:
|
||||
{
|
||||
Ptr<GFTTDetector> gftt = GFTTDetector::create();
|
||||
gftt->setHarrisDetector(true);
|
||||
fd = gftt;
|
||||
}
|
||||
break;
|
||||
case SIMPLEBLOB:
|
||||
fd = SimpleBlobDetector::create();
|
||||
break;
|
||||
//case DENSE:
|
||||
// name = name + "Dense";
|
||||
// break;
|
||||
case BRISK:
|
||||
fd = BRISK::create();
|
||||
break;
|
||||
case AKAZE:
|
||||
fd = AKAZE::create();
|
||||
break;
|
||||
default:
|
||||
CV_Error( Error::StsBadArg, "Specified feature detector type is not supported." );
|
||||
break;
|
||||
}
|
||||
|
||||
return new javaFeatureDetector(fd);
|
||||
}
|
||||
|
||||
CV_WRAP void write( const String& fileName ) const
|
||||
{
|
||||
FileStorage fs(fileName, FileStorage::WRITE);
|
||||
wrapped->write(fs);
|
||||
}
|
||||
|
||||
CV_WRAP void read( const String& fileName )
|
||||
{
|
||||
FileStorage fs(fileName, FileStorage::READ);
|
||||
wrapped->read(fs.root());
|
||||
}
|
||||
|
||||
private:
|
||||
javaFeatureDetector(Ptr<FeatureDetector> _wrapped) : wrapped(_wrapped)
|
||||
{}
|
||||
|
||||
Ptr<FeatureDetector> wrapped;
|
||||
};
|
||||
|
||||
class CV_EXPORTS_AS(DescriptorMatcher) javaDescriptorMatcher
|
||||
{
|
||||
public:
|
||||
CV_WRAP bool isMaskSupported() const
|
||||
{ return wrapped->isMaskSupported(); }
|
||||
|
||||
CV_WRAP void add( const std::vector<Mat>& descriptors )
|
||||
{ return wrapped->add(descriptors); }
|
||||
|
||||
CV_WRAP const std::vector<Mat>& getTrainDescriptors() const
|
||||
{ return wrapped->getTrainDescriptors(); }
|
||||
|
||||
CV_WRAP void clear()
|
||||
{ return wrapped->clear(); }
|
||||
|
||||
CV_WRAP bool empty() const
|
||||
{ return wrapped->empty(); }
|
||||
|
||||
CV_WRAP void train()
|
||||
{ return wrapped->train(); }
|
||||
|
||||
CV_WRAP void match( const Mat& queryDescriptors, const Mat& trainDescriptors,
|
||||
CV_OUT std::vector<DMatch>& matches, const Mat& mask=Mat() ) const
|
||||
{ return wrapped->match(queryDescriptors, trainDescriptors, matches, mask); }
|
||||
|
||||
CV_WRAP void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
|
||||
CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
|
||||
const Mat& mask=Mat(), bool compactResult=false ) const
|
||||
{ return wrapped->knnMatch(queryDescriptors, trainDescriptors, matches, k, mask, compactResult); }
|
||||
|
||||
CV_WRAP void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
|
||||
CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||||
const Mat& mask=Mat(), bool compactResult=false ) const
|
||||
{ return wrapped->radiusMatch(queryDescriptors, trainDescriptors, matches, maxDistance, mask, compactResult); }
|
||||
|
||||
CV_WRAP void match( const Mat& queryDescriptors, CV_OUT std::vector<DMatch>& matches,
|
||||
const std::vector<Mat>& masks=std::vector<Mat>() )
|
||||
{ return wrapped->match(queryDescriptors, matches, masks); }
|
||||
|
||||
CV_WRAP void knnMatch( const Mat& queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
|
||||
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false )
|
||||
{ return wrapped->knnMatch(queryDescriptors, matches, k, masks, compactResult); }
|
||||
|
||||
CV_WRAP void radiusMatch( const Mat& queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||||
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false )
|
||||
{ return wrapped->radiusMatch(queryDescriptors, matches, maxDistance, masks, compactResult); }
|
||||
|
||||
enum
|
||||
{
|
||||
FLANNBASED = 1,
|
||||
BRUTEFORCE = 2,
|
||||
BRUTEFORCE_L1 = 3,
|
||||
BRUTEFORCE_HAMMING = 4,
|
||||
BRUTEFORCE_HAMMINGLUT = 5,
|
||||
BRUTEFORCE_SL2 = 6
|
||||
};
|
||||
|
||||
CV_WRAP_AS(clone) javaDescriptorMatcher* jclone( bool emptyTrainData=false ) const
|
||||
{
|
||||
return new javaDescriptorMatcher(wrapped->clone(emptyTrainData));
|
||||
}
|
||||
|
||||
//supported: FlannBased, BruteForce, BruteForce-L1, BruteForce-Hamming, BruteForce-HammingLUT
|
||||
CV_WRAP static javaDescriptorMatcher* create( int matcherType )
|
||||
{
|
||||
String name;
|
||||
|
||||
switch(matcherType)
|
||||
{
|
||||
case FLANNBASED:
|
||||
name = "FlannBased";
|
||||
break;
|
||||
case BRUTEFORCE:
|
||||
name = "BruteForce";
|
||||
break;
|
||||
case BRUTEFORCE_L1:
|
||||
name = "BruteForce-L1";
|
||||
break;
|
||||
case BRUTEFORCE_HAMMING:
|
||||
name = "BruteForce-Hamming";
|
||||
break;
|
||||
case BRUTEFORCE_HAMMINGLUT:
|
||||
name = "BruteForce-HammingLUT";
|
||||
break;
|
||||
case BRUTEFORCE_SL2:
|
||||
name = "BruteForce-SL2";
|
||||
break;
|
||||
default:
|
||||
CV_Error( Error::StsBadArg, "Specified descriptor matcher type is not supported." );
|
||||
break;
|
||||
}
|
||||
|
||||
return new javaDescriptorMatcher(DescriptorMatcher::create(name));
|
||||
}
|
||||
|
||||
CV_WRAP void write( const String& fileName ) const
|
||||
{
|
||||
FileStorage fs(fileName, FileStorage::WRITE);
|
||||
wrapped->write(fs);
|
||||
}
|
||||
|
||||
CV_WRAP void read( const String& fileName )
|
||||
{
|
||||
FileStorage fs(fileName, FileStorage::READ);
|
||||
wrapped->read(fs.root());
|
||||
}
|
||||
|
||||
private:
|
||||
javaDescriptorMatcher(Ptr<DescriptorMatcher> _wrapped) : wrapped(_wrapped)
|
||||
{}
|
||||
|
||||
Ptr<DescriptorMatcher> wrapped;
|
||||
};
|
||||
|
||||
class CV_EXPORTS_AS(DescriptorExtractor) javaDescriptorExtractor
|
||||
{
|
||||
public:
|
||||
CV_WRAP void compute( const Mat& image, CV_IN_OUT std::vector<KeyPoint>& keypoints, Mat& descriptors ) const
|
||||
{ return wrapped->compute(image, keypoints, descriptors); }
|
||||
|
||||
CV_WRAP void compute( const std::vector<Mat>& images, CV_IN_OUT std::vector<std::vector<KeyPoint> >& keypoints, CV_OUT std::vector<Mat>& descriptors ) const
|
||||
{ return wrapped->compute(images, keypoints, descriptors); }
|
||||
|
||||
CV_WRAP int descriptorSize() const
|
||||
{ return wrapped->descriptorSize(); }
|
||||
|
||||
CV_WRAP int descriptorType() const
|
||||
{ return wrapped->descriptorType(); }
|
||||
|
||||
CV_WRAP bool empty() const
|
||||
{ return wrapped->empty(); }
|
||||
|
||||
enum
|
||||
{
|
||||
SIFT = 1,
|
||||
SURF = 2,
|
||||
ORB = 3,
|
||||
BRIEF = 4,
|
||||
BRISK = 5,
|
||||
FREAK = 6,
|
||||
AKAZE = 7,
|
||||
|
||||
|
||||
OPPONENTEXTRACTOR = 1000,
|
||||
|
||||
|
||||
|
||||
OPPONENT_SIFT = OPPONENTEXTRACTOR + SIFT,
|
||||
OPPONENT_SURF = OPPONENTEXTRACTOR + SURF,
|
||||
OPPONENT_ORB = OPPONENTEXTRACTOR + ORB,
|
||||
OPPONENT_BRIEF = OPPONENTEXTRACTOR + BRIEF,
|
||||
OPPONENT_BRISK = OPPONENTEXTRACTOR + BRISK,
|
||||
OPPONENT_FREAK = OPPONENTEXTRACTOR + FREAK,
|
||||
OPPONENT_AKAZE = OPPONENTEXTRACTOR + AKAZE
|
||||
};
|
||||
|
||||
//supported SIFT, SURF, ORB, BRIEF, BRISK, FREAK, AKAZE, Opponent(XXXX)
|
||||
//not supported: Calonder
|
||||
CV_WRAP static javaDescriptorExtractor* create( int extractorType )
|
||||
{
|
||||
//String name;
|
||||
|
||||
if (extractorType > OPPONENTEXTRACTOR)
|
||||
{
|
||||
//name = "Opponent";
|
||||
extractorType -= OPPONENTEXTRACTOR;
|
||||
}
|
||||
|
||||
Ptr<DescriptorExtractor> de;
|
||||
switch(extractorType)
|
||||
{
|
||||
//case SIFT:
|
||||
// name = name + "SIFT";
|
||||
// break;
|
||||
//case SURF:
|
||||
// name = name + "SURF";
|
||||
// break;
|
||||
case ORB:
|
||||
de = ORB::create();
|
||||
break;
|
||||
//case BRIEF:
|
||||
// name = name + "BRIEF";
|
||||
// break;
|
||||
case BRISK:
|
||||
de = BRISK::create();
|
||||
break;
|
||||
//case FREAK:
|
||||
// name = name + "FREAK";
|
||||
// break;
|
||||
case AKAZE:
|
||||
de = AKAZE::create();
|
||||
break;
|
||||
default:
|
||||
CV_Error( Error::StsBadArg, "Specified descriptor extractor type is not supported." );
|
||||
break;
|
||||
}
|
||||
|
||||
return new javaDescriptorExtractor(de);
|
||||
}
|
||||
|
||||
CV_WRAP void write( const String& fileName ) const
|
||||
{
|
||||
FileStorage fs(fileName, FileStorage::WRITE);
|
||||
wrapped->write(fs);
|
||||
}
|
||||
|
||||
CV_WRAP void read( const String& fileName )
|
||||
{
|
||||
FileStorage fs(fileName, FileStorage::READ);
|
||||
wrapped->read(fs.root());
|
||||
}
|
||||
|
||||
private:
|
||||
javaDescriptorExtractor(Ptr<DescriptorExtractor> _wrapped) : wrapped(_wrapped)
|
||||
{}
|
||||
|
||||
Ptr<DescriptorExtractor> wrapped;
|
||||
};
|
||||
|
||||
#if 0
|
||||
//DO NOT REMOVE! The block is required for sources parser
|
||||
enum
|
||||
{
|
||||
DRAW_OVER_OUTIMG = 1, // Output image matrix will not be created (Mat::create).
|
||||
// Matches will be drawn on existing content of output image.
|
||||
NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn.
|
||||
DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around keypoint with keypoint size and
|
||||
// orientation will be drawn.
|
||||
};
|
||||
|
||||
// Draw keypoints.
|
||||
CV_EXPORTS_W void drawKeypoints( const Mat& image, const std::vector<KeyPoint>& keypoints, Mat& outImage,
|
||||
const Scalar& color=Scalar::all(-1), int flags=0 );
|
||||
|
||||
// Draws matches of keypints from two images on output image.
|
||||
CV_EXPORTS_W void drawMatches( const Mat& img1, const std::vector<KeyPoint>& keypoints1,
|
||||
const Mat& img2, const std::vector<KeyPoint>& keypoints2,
|
||||
const std::vector<DMatch>& matches1to2, Mat& outImg,
|
||||
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
|
||||
const std::vector<char>& matchesMask=std::vector<char>(), int flags=0 );
|
||||
|
||||
CV_EXPORTS_AS(drawMatches2) void drawMatches( const Mat& img1, const std::vector<KeyPoint>& keypoints1,
|
||||
const Mat& img2, const std::vector<KeyPoint>& keypoints2,
|
||||
const std::vector<std::vector<DMatch> >& matches1to2, Mat& outImg,
|
||||
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
|
||||
const std::vector<std::vector<char> >& matchesMask=std::vector<std::vector<char> >(), int flags=0);
|
||||
|
||||
#endif
|
||||
|
||||
} //cv
|
||||
|
||||
#endif // HAVE_OPENCV_FEATURES2D
|
||||
|
||||
#endif // __OPENCV_FEATURES_2D_MANUAL_HPP__
|
@@ -0,0 +1,102 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.features2d.DescriptorExtractor;
|
||||
import org.opencv.core.KeyPoint;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
public class BRIEFDescriptorExtractorTest extends OpenCVTestCase {
|
||||
|
||||
DescriptorExtractor extractor;
|
||||
int matSize;
|
||||
|
||||
private Mat getTestImg() {
|
||||
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
|
||||
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
|
||||
|
||||
return cross;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
extractor = DescriptorExtractor.create(DescriptorExtractor.BRIEF);
|
||||
matSize = 100;
|
||||
}
|
||||
|
||||
public void testComputeListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testComputeMatListOfKeyPointMat() {
|
||||
KeyPoint point = new KeyPoint(55.775577545166016f, 44.224422454833984f, 16, 9.754629f, 8617.863f, 1, -1);
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint(point);
|
||||
Mat img = getTestImg();
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
Mat truth = new Mat(1, 32, CvType.CV_8UC1) {
|
||||
{
|
||||
put(0, 0, 96, 0, 76, 24, 47, 182, 68, 137,
|
||||
149, 195, 67, 16, 187, 224, 74, 8,
|
||||
82, 169, 87, 70, 44, 4, 192, 56,
|
||||
13, 128, 44, 106, 146, 72, 194, 245);
|
||||
}
|
||||
};
|
||||
|
||||
assertMatEqual(truth, descriptors);
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(extractor);
|
||||
}
|
||||
|
||||
public void testDescriptorSize() {
|
||||
assertEquals(32, extractor.descriptorSize());
|
||||
}
|
||||
|
||||
public void testDescriptorType() {
|
||||
assertEquals(CvType.CV_8U, extractor.descriptorType());
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertFalse(extractor.empty());
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\ndescriptorSize: 64\n");
|
||||
|
||||
extractor.read(filename);
|
||||
|
||||
assertEquals(64, extractor.descriptorSize());
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("xml");
|
||||
|
||||
extractor.write(filename);
|
||||
|
||||
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<descriptorSize>32</descriptorSize>\n</opencv_storage>\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
public void testWriteYml() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
extractor.write(filename);
|
||||
|
||||
String truth = "%YAML:1.0\ndescriptorSize: 32\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,295 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfDMatch;
|
||||
import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.core.DMatch;
|
||||
import org.opencv.features2d.DescriptorExtractor;
|
||||
import org.opencv.features2d.DescriptorMatcher;
|
||||
import org.opencv.features2d.FeatureDetector;
|
||||
import org.opencv.core.KeyPoint;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
public class BruteForceDescriptorMatcherTest extends OpenCVTestCase {
|
||||
|
||||
DescriptorMatcher matcher;
|
||||
int matSize;
|
||||
DMatch[] truth;
|
||||
|
||||
private Mat getMaskImg() {
|
||||
return new Mat(5, 2, CvType.CV_8U, new Scalar(0)) {
|
||||
{
|
||||
put(0, 0, 1, 1, 1, 1);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
private Mat getQueryDescriptors() {
|
||||
Mat img = getQueryImg();
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
FeatureDetector detector = FeatureDetector.create(FeatureDetector.SURF);
|
||||
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.SURF);
|
||||
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n");
|
||||
detector.read(filename);
|
||||
|
||||
detector.detect(img, keypoints);
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
return descriptors;
|
||||
}
|
||||
|
||||
private Mat getQueryImg() {
|
||||
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(cross, new Point(30, matSize / 2), new Point(matSize - 31, matSize / 2), new Scalar(100), 3);
|
||||
Imgproc.line(cross, new Point(matSize / 2, 30), new Point(matSize / 2, matSize - 31), new Scalar(100), 3);
|
||||
|
||||
return cross;
|
||||
}
|
||||
|
||||
private Mat getTrainDescriptors() {
|
||||
Mat img = getTrainImg();
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint(new KeyPoint(50, 50, 16, 0, 20000, 1, -1), new KeyPoint(42, 42, 16, 160, 10000, 1, -1));
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.SURF);
|
||||
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
return descriptors;
|
||||
}
|
||||
|
||||
private Mat getTrainImg() {
|
||||
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
|
||||
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
|
||||
|
||||
return cross;
|
||||
}
|
||||
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE);
|
||||
matSize = 100;
|
||||
|
||||
truth = new DMatch[] {
|
||||
new DMatch(0, 0, 0, 0.6211397f),
|
||||
new DMatch(1, 1, 0, 0.9177120f),
|
||||
new DMatch(2, 1, 0, 0.3112163f),
|
||||
new DMatch(3, 1, 0, 0.2925074f),
|
||||
new DMatch(4, 1, 0, 0.9309178f)
|
||||
};
|
||||
}
|
||||
|
||||
public void testAdd() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
assertFalse(matcher.empty());
|
||||
}
|
||||
|
||||
public void testClear() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
matcher.clear();
|
||||
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testClone() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone();
|
||||
|
||||
assertNotNull(cloned);
|
||||
|
||||
List<Mat> descriptors = cloned.getTrainDescriptors();
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testCloneBoolean() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone(true);
|
||||
|
||||
assertNotNull(cloned);
|
||||
assertTrue(cloned.empty());
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(matcher);
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testGetTrainDescriptors() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
List<Mat> descriptors = matcher.getTrainDescriptors();
|
||||
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testIsMaskSupported() {
|
||||
assertTrue(matcher.isMaskSupported());
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchIntListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchIntListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchInt() {
|
||||
final int k = 3;
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
List<MatOfDMatch> matches = new ArrayList<MatOfDMatch>();
|
||||
matcher.knnMatch(query, train, matches, k);
|
||||
/*
|
||||
Log.d("knnMatch", "train = " + train);
|
||||
Log.d("knnMatch", "query = " + query);
|
||||
|
||||
matcher.add(train);
|
||||
matcher.knnMatch(query, matches, k);
|
||||
*/
|
||||
assertEquals(query.rows(), matches.size());
|
||||
for(int i = 0; i<matches.size(); i++)
|
||||
{
|
||||
MatOfDMatch vdm = matches.get(i);
|
||||
//Log.d("knn", "vdm["+i+"]="+vdm.dump());
|
||||
assertTrue(Math.min(k, train.rows()) >= vdm.total());
|
||||
for(DMatch dm : vdm.toArray())
|
||||
{
|
||||
assertEquals(dm.queryIdx, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchIntMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchIntMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches);
|
||||
|
||||
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatchListOfMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches, Arrays.asList(mask));
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
|
||||
matcher.match(query, train, matches);
|
||||
|
||||
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
|
||||
|
||||
// OpenCVTestRunner.Log("matches found: " + matches.size());
|
||||
// for (DMatch m : matches)
|
||||
// OpenCVTestRunner.Log(m.toString());
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatchMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
|
||||
matcher.match(query, train, matches, mask);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloatMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloatMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\n");
|
||||
|
||||
matcher.read(filename);
|
||||
assertTrue(true);// BruteforceMatcher has no settings
|
||||
}
|
||||
|
||||
public void testTrain() {
|
||||
matcher.train();// BruteforceMatcher does not need to train
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
matcher.write(filename);
|
||||
|
||||
String truth = "%YAML:1.0\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,263 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfDMatch;
|
||||
import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.core.DMatch;
|
||||
import org.opencv.features2d.DescriptorExtractor;
|
||||
import org.opencv.features2d.DescriptorMatcher;
|
||||
import org.opencv.features2d.FeatureDetector;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
public class BruteForceHammingDescriptorMatcherTest extends OpenCVTestCase {
|
||||
|
||||
DescriptorMatcher matcher;
|
||||
int matSize;
|
||||
DMatch[] truth;
|
||||
|
||||
private Mat getMaskImg() {
|
||||
return new Mat(4, 4, CvType.CV_8U, new Scalar(0)) {
|
||||
{
|
||||
put(0, 0, 1, 1, 1, 1, 1, 1, 1, 1);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
private Mat getQueryDescriptors() {
|
||||
return getTestDescriptors(getQueryImg());
|
||||
}
|
||||
|
||||
private Mat getQueryImg() {
|
||||
Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(img, new Point(40, matSize - 40), new Point(matSize - 50, 50), new Scalar(0), 8);
|
||||
return img;
|
||||
}
|
||||
|
||||
private Mat getTestDescriptors(Mat img) {
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
FeatureDetector detector = FeatureDetector.create(FeatureDetector.FAST);
|
||||
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.BRIEF);
|
||||
|
||||
detector.detect(img, keypoints);
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
return descriptors;
|
||||
}
|
||||
|
||||
private Mat getTrainDescriptors() {
|
||||
return getTestDescriptors(getTrainImg());
|
||||
}
|
||||
|
||||
private Mat getTrainImg() {
|
||||
Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(img, new Point(40, 40), new Point(matSize - 40, matSize - 40), new Scalar(0), 8);
|
||||
return img;
|
||||
}
|
||||
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
|
||||
matSize = 100;
|
||||
|
||||
truth = new DMatch[] {
|
||||
new DMatch(0, 0, 0, 51),
|
||||
new DMatch(1, 2, 0, 42),
|
||||
new DMatch(2, 1, 0, 40),
|
||||
new DMatch(3, 3, 0, 53) };
|
||||
}
|
||||
|
||||
public void testAdd() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
assertFalse(matcher.empty());
|
||||
}
|
||||
|
||||
public void testClear() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
matcher.clear();
|
||||
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testClone() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone();
|
||||
|
||||
assertNotNull(cloned);
|
||||
|
||||
List<Mat> descriptors = cloned.getTrainDescriptors();
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testCloneBoolean() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone(true);
|
||||
|
||||
assertNotNull(cloned);
|
||||
assertTrue(cloned.empty());
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(matcher);
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testGetTrainDescriptors() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
List<Mat> descriptors = matcher.getTrainDescriptors();
|
||||
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testIsMaskSupported() {
|
||||
assertTrue(matcher.isMaskSupported());
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchIntListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchIntListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchIntMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchIntMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth), matches.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatchListOfMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches, Arrays.asList(mask));
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
|
||||
matcher.match(query, train, matches);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth), matches.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatchMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
|
||||
matcher.match(query, train, matches, mask);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
ArrayList<MatOfDMatch> matches = new ArrayList<MatOfDMatch>();
|
||||
|
||||
matcher.radiusMatch(query, train, matches, 50.f);
|
||||
|
||||
assertEquals(matches.size(), 4);
|
||||
assertTrue(matches.get(0).empty());
|
||||
assertMatEqual(matches.get(1), new MatOfDMatch(truth[1]), EPS);
|
||||
assertMatEqual(matches.get(2), new MatOfDMatch(truth[2]), EPS);
|
||||
assertTrue(matches.get(3).empty());
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloatMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloatMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\n");
|
||||
|
||||
matcher.read(filename);
|
||||
assertTrue(true);// BruteforceMatcher has no settings
|
||||
}
|
||||
|
||||
public void testTrain() {
|
||||
matcher.train();// BruteforceMatcher does not need to train
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
matcher.write(filename);
|
||||
|
||||
String truth = "%YAML:1.0\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,258 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfDMatch;
|
||||
import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.core.DMatch;
|
||||
import org.opencv.features2d.DescriptorExtractor;
|
||||
import org.opencv.features2d.DescriptorMatcher;
|
||||
import org.opencv.features2d.FeatureDetector;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
public class BruteForceHammingLUTDescriptorMatcherTest extends OpenCVTestCase {
|
||||
|
||||
DescriptorMatcher matcher;
|
||||
int matSize;
|
||||
DMatch[] truth;
|
||||
|
||||
private Mat getMaskImg() {
|
||||
return new Mat(4, 4, CvType.CV_8U, new Scalar(0)) {
|
||||
{
|
||||
put(0, 0, 1, 1, 1, 1, 1, 1, 1, 1);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
private Mat getQueryDescriptors() {
|
||||
return getTestDescriptors(getQueryImg());
|
||||
}
|
||||
|
||||
private Mat getQueryImg() {
|
||||
Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(img, new Point(40, matSize - 40), new Point(matSize - 50, 50), new Scalar(0), 8);
|
||||
return img;
|
||||
}
|
||||
|
||||
private Mat getTestDescriptors(Mat img) {
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
FeatureDetector detector = FeatureDetector.create(FeatureDetector.FAST);
|
||||
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.BRIEF);
|
||||
|
||||
detector.detect(img, keypoints);
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
return descriptors;
|
||||
}
|
||||
|
||||
private Mat getTrainDescriptors() {
|
||||
return getTestDescriptors(getTrainImg());
|
||||
}
|
||||
|
||||
private Mat getTrainImg() {
|
||||
Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(img, new Point(40, 40), new Point(matSize - 40, matSize - 40), new Scalar(0), 8);
|
||||
return img;
|
||||
}
|
||||
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMINGLUT);
|
||||
matSize = 100;
|
||||
|
||||
truth = new DMatch[] {
|
||||
new DMatch(0, 0, 0, 51),
|
||||
new DMatch(1, 2, 0, 42),
|
||||
new DMatch(2, 1, 0, 40),
|
||||
new DMatch(3, 3, 0, 53) };
|
||||
}
|
||||
|
||||
public void testAdd() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
assertFalse(matcher.empty());
|
||||
}
|
||||
|
||||
public void testClear() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
matcher.clear();
|
||||
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testClone() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone();
|
||||
|
||||
assertNotNull(cloned);
|
||||
|
||||
List<Mat> descriptors = cloned.getTrainDescriptors();
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testCloneBoolean() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone(true);
|
||||
|
||||
assertNotNull(cloned);
|
||||
assertTrue(cloned.empty());
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(matcher);
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testGetTrainDescriptors() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
List<Mat> descriptors = matcher.getTrainDescriptors();
|
||||
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testIsMaskSupported() {
|
||||
assertTrue(matcher.isMaskSupported());
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchIntListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchIntListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchIntMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchIntMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches);
|
||||
|
||||
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatchListOfMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches, Arrays.asList(mask));
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
|
||||
matcher.match(query, train, matches);
|
||||
|
||||
/*
|
||||
OpenCVTestRunner.Log("matches found: " + matches.size());
|
||||
for (DMatch m : matches.toArray())
|
||||
OpenCVTestRunner.Log(m.toString());
|
||||
*/
|
||||
|
||||
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatchMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
|
||||
matcher.match(query, train, matches, mask);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloatMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloatMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\n");
|
||||
|
||||
matcher.read(filename);
|
||||
assertTrue(true);// BruteforceMatcher has no settings
|
||||
}
|
||||
|
||||
public void testTrain() {
|
||||
matcher.train();// BruteforceMatcher does not need to train
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
matcher.write(filename);
|
||||
|
||||
String truth = "%YAML:1.0\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,269 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfDMatch;
|
||||
import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.core.DMatch;
|
||||
import org.opencv.features2d.DescriptorExtractor;
|
||||
import org.opencv.features2d.DescriptorMatcher;
|
||||
import org.opencv.features2d.FeatureDetector;
|
||||
import org.opencv.core.KeyPoint;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
public class BruteForceL1DescriptorMatcherTest extends OpenCVTestCase {
|
||||
|
||||
DescriptorMatcher matcher;
|
||||
int matSize;
|
||||
DMatch[] truth;
|
||||
|
||||
private Mat getMaskImg() {
|
||||
return new Mat(5, 2, CvType.CV_8U, new Scalar(0)) {
|
||||
{
|
||||
put(0, 0, 1, 1, 1, 1);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
private Mat getQueryDescriptors() {
|
||||
Mat img = getQueryImg();
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
FeatureDetector detector = FeatureDetector.create(FeatureDetector.SURF);
|
||||
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.SURF);
|
||||
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
//writeFile(filename, "%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n");
|
||||
writeFile(filename, "%YAML:1.0\nname: \"Feature2D.SURF\"\nextended: 1\nhessianThreshold: 8000.\nnOctaveLayers: 2\nnOctaves: 3\nupright: 0\n");
|
||||
detector.read(filename);
|
||||
|
||||
detector.detect(img, keypoints);
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
return descriptors;
|
||||
}
|
||||
|
||||
private Mat getQueryImg() {
|
||||
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(cross, new Point(30, matSize / 2), new Point(matSize - 31, matSize / 2), new Scalar(100), 3);
|
||||
Imgproc.line(cross, new Point(matSize / 2, 30), new Point(matSize / 2, matSize - 31), new Scalar(100), 3);
|
||||
|
||||
return cross;
|
||||
}
|
||||
|
||||
private Mat getTrainDescriptors() {
|
||||
Mat img = getTrainImg();
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint(new KeyPoint(50, 50, 16, 0, 20000, 1, -1), new KeyPoint(42, 42, 16, 160, 10000, 1, -1));
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.SURF);
|
||||
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
return descriptors;
|
||||
}
|
||||
|
||||
private Mat getTrainImg() {
|
||||
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
|
||||
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
|
||||
|
||||
return cross;
|
||||
}
|
||||
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_L1);
|
||||
matSize = 100;
|
||||
|
||||
truth = new DMatch[] {
|
||||
new DMatch(0, 0, 0, 3.0975165f),
|
||||
new DMatch(1, 1, 0, 3.5680308f),
|
||||
new DMatch(2, 1, 0, 1.3722466f),
|
||||
new DMatch(3, 1, 0, 1.3041023f),
|
||||
new DMatch(4, 1, 0, 3.5970376f)
|
||||
};
|
||||
}
|
||||
|
||||
public void testAdd() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
assertFalse(matcher.empty());
|
||||
}
|
||||
|
||||
public void testClear() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
matcher.clear();
|
||||
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testClone() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone();
|
||||
|
||||
assertNotNull(cloned);
|
||||
|
||||
List<Mat> descriptors = cloned.getTrainDescriptors();
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testCloneBoolean() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone(true);
|
||||
|
||||
assertNotNull(cloned);
|
||||
assertTrue(cloned.empty());
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(matcher);
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testGetTrainDescriptors() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
List<Mat> descriptors = matcher.getTrainDescriptors();
|
||||
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testIsMaskSupported() {
|
||||
assertTrue(matcher.isMaskSupported());
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchIntListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchIntListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchIntMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchIntMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches);
|
||||
|
||||
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatchListOfMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches, Arrays.asList(mask));
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
|
||||
matcher.match(query, train, matches);
|
||||
|
||||
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatchMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
|
||||
matcher.match(query, train, matches, mask);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloatMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloatMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\n");
|
||||
|
||||
matcher.read(filename);
|
||||
assertTrue(true);// BruteforceMatcher has no settings
|
||||
}
|
||||
|
||||
public void testTrain() {
|
||||
matcher.train();// BruteforceMatcher does not need to train
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
matcher.write(filename);
|
||||
|
||||
String truth = "%YAML:1.0\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,281 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfDMatch;
|
||||
import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.core.DMatch;
|
||||
import org.opencv.features2d.DescriptorExtractor;
|
||||
import org.opencv.features2d.DescriptorMatcher;
|
||||
import org.opencv.features2d.FeatureDetector;
|
||||
import org.opencv.core.KeyPoint;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
public class BruteForceSL2DescriptorMatcherTest extends OpenCVTestCase {
|
||||
|
||||
DescriptorMatcher matcher;
|
||||
int matSize;
|
||||
DMatch[] truth;
|
||||
|
||||
private Mat getMaskImg() {
|
||||
return new Mat(5, 2, CvType.CV_8U, new Scalar(0)) {
|
||||
{
|
||||
put(0, 0, 1, 1, 1, 1);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/*
|
||||
private float sqr(float val){
|
||||
return val * val;
|
||||
}
|
||||
*/
|
||||
|
||||
private Mat getQueryDescriptors() {
|
||||
Mat img = getQueryImg();
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
FeatureDetector detector = FeatureDetector.create(FeatureDetector.SURF);
|
||||
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.SURF);
|
||||
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n");
|
||||
detector.read(filename);
|
||||
|
||||
detector.detect(img, keypoints);
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
return descriptors;
|
||||
}
|
||||
|
||||
private Mat getQueryImg() {
|
||||
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(cross, new Point(30, matSize / 2), new Point(matSize - 31, matSize / 2), new Scalar(100), 3);
|
||||
Imgproc.line(cross, new Point(matSize / 2, 30), new Point(matSize / 2, matSize - 31), new Scalar(100), 3);
|
||||
|
||||
return cross;
|
||||
}
|
||||
|
||||
private Mat getTrainDescriptors() {
|
||||
Mat img = getTrainImg();
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint(new KeyPoint(50, 50, 16, 0, 20000, 1, -1), new KeyPoint(42, 42, 16, 160, 10000, 1, -1));
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.SURF);
|
||||
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
return descriptors;
|
||||
}
|
||||
|
||||
private Mat getTrainImg() {
|
||||
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
|
||||
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
|
||||
|
||||
return cross;
|
||||
}
|
||||
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_SL2);
|
||||
matSize = 100;
|
||||
|
||||
truth = new DMatch[] {
|
||||
new DMatch(0, 0, 0, 0.3858146f),
|
||||
new DMatch(1, 1, 0, 0.8421953f),
|
||||
new DMatch(2, 1, 0, 0.0968556f),
|
||||
new DMatch(3, 1, 0, 0.0855606f),
|
||||
new DMatch(4, 1, 0, 0.8666080f)
|
||||
};
|
||||
}
|
||||
|
||||
public void testAdd() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
assertFalse(matcher.empty());
|
||||
}
|
||||
|
||||
public void testClear() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
matcher.clear();
|
||||
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testClone() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone();
|
||||
|
||||
assertNotNull(cloned);
|
||||
|
||||
List<Mat> descriptors = cloned.getTrainDescriptors();
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testCloneBoolean() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone(true);
|
||||
|
||||
assertNotNull(cloned);
|
||||
assertTrue(cloned.empty());
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(matcher);
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testGetTrainDescriptors() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
List<Mat> descriptors = matcher.getTrainDescriptors();
|
||||
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testIsMaskSupported() {
|
||||
assertTrue(matcher.isMaskSupported());
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchIntListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchIntListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchIntMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchIntMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches);
|
||||
OpenCVTestRunner.Log(matches);
|
||||
OpenCVTestRunner.Log(matches);
|
||||
OpenCVTestRunner.Log(matches);
|
||||
|
||||
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatchListOfMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
matcher.match(query, matches, Arrays.asList(mask));
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
|
||||
matcher.match(query, train, matches);
|
||||
|
||||
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
|
||||
|
||||
// OpenCVTestRunner.Log("matches found: " + matches.size());
|
||||
// for (DMatch m : matches)
|
||||
// OpenCVTestRunner.Log(m.toString());
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatchMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
|
||||
matcher.match(query, train, matches, mask);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth[0], truth[1]), matches.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloatMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloatMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\n");
|
||||
|
||||
matcher.read(filename);
|
||||
assertTrue(true);// BruteforceMatcher has no settings
|
||||
}
|
||||
|
||||
public void testTrain() {
|
||||
matcher.train();// BruteforceMatcher does not need to train
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
matcher.write(filename);
|
||||
|
||||
String truth = "%YAML:1.0\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class DENSEFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class DynamicDENSEFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class DynamicFASTFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class DynamicGFTTFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class DynamicHARRISFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class DynamicMSERFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class DynamicORBFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class DynamicSIFTFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class DynamicSIMPLEBLOBFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class DynamicSTARFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class DynamicSURFFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
146
modules/features2d/misc/java/test/FASTFeatureDetectorTest.java
Normal file
146
modules/features2d/misc/java/test/FASTFeatureDetectorTest.java
Normal file
@@ -0,0 +1,146 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.features2d.FeatureDetector;
|
||||
import org.opencv.core.KeyPoint;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
public class FASTFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
FeatureDetector detector;
|
||||
KeyPoint[] truth;
|
||||
|
||||
private Mat getMaskImg() {
|
||||
Mat mask = new Mat(100, 100, CvType.CV_8U, new Scalar(255));
|
||||
Mat right = mask.submat(0, 100, 50, 100);
|
||||
right.setTo(new Scalar(0));
|
||||
return mask;
|
||||
}
|
||||
|
||||
private Mat getTestImg() {
|
||||
Mat img = new Mat(100, 100, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(img, new Point(30, 30), new Point(70, 70), new Scalar(0), 8);
|
||||
return img;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
detector = FeatureDetector.create(FeatureDetector.FAST);
|
||||
truth = new KeyPoint[] { new KeyPoint(32, 27, 7, -1, 254, 0, -1), new KeyPoint(27, 32, 7, -1, 254, 0, -1), new KeyPoint(73, 68, 7, -1, 254, 0, -1),
|
||||
new KeyPoint(68, 73, 7, -1, 254, 0, -1) };
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(detector);
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
Mat img = getTestImg();
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
||||
|
||||
detector.detect(img, keypoints);
|
||||
|
||||
assertListKeyPointEquals(Arrays.asList(truth), keypoints.toList(), EPS);
|
||||
|
||||
// OpenCVTestRunner.Log("points found: " + keypoints.size());
|
||||
// for (KeyPoint kp : keypoints)
|
||||
// OpenCVTestRunner.Log(kp.toString());
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
Mat img = getTestImg();
|
||||
Mat mask = getMaskImg();
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
||||
|
||||
detector.detect(img, keypoints, mask);
|
||||
|
||||
assertListKeyPointEquals(Arrays.asList(truth[0], truth[1]), keypoints.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertFalse(detector.empty());
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
writeFile(filename, "%YAML:1.0\nthreshold: 130\nnonmaxSuppression: 1\n");
|
||||
detector.read(filename);
|
||||
|
||||
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
|
||||
|
||||
detector.detect(grayChess, keypoints1);
|
||||
|
||||
writeFile(filename, "%YAML:1.0\nthreshold: 150\nnonmaxSuppression: 1\n");
|
||||
detector.read(filename);
|
||||
|
||||
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
|
||||
|
||||
detector.detect(grayChess, keypoints2);
|
||||
|
||||
assertTrue(keypoints2.total() <= keypoints1.total());
|
||||
}
|
||||
|
||||
public void testReadYml() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
writeFile(filename,
|
||||
"<?xml version=\"1.0\"?>\n<opencv_storage>\n<threshold>130</threshold>\n<nonmaxSuppression>1</nonmaxSuppression>\n</opencv_storage>\n");
|
||||
detector.read(filename);
|
||||
|
||||
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
|
||||
|
||||
detector.detect(grayChess, keypoints1);
|
||||
|
||||
writeFile(filename,
|
||||
"<?xml version=\"1.0\"?>\n<opencv_storage>\n<threshold>150</threshold>\n<nonmaxSuppression>1</nonmaxSuppression>\n</opencv_storage>\n");
|
||||
detector.read(filename);
|
||||
|
||||
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
|
||||
|
||||
detector.detect(grayChess, keypoints2);
|
||||
|
||||
assertTrue(keypoints2.total() <= keypoints1.total());
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("xml");
|
||||
|
||||
detector.write(filename);
|
||||
|
||||
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.FAST</name>\n<nonmaxSuppression>1</nonmaxSuppression>\n<threshold>10</threshold>\n<type>2</type>\n</opencv_storage>\n";
|
||||
String data = readFile(filename);
|
||||
//Log.d("qqq", "\"" + data + "\"");
|
||||
assertEquals(truth, data);
|
||||
}
|
||||
|
||||
public void testWriteYml() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
detector.write(filename);
|
||||
|
||||
String truth = "%YAML:1.0\nname: \"Feature2D.FAST\"\nnonmaxSuppression: 1\nthreshold: 10\ntype: 2\n";
|
||||
String data = readFile(filename);
|
||||
|
||||
//Log.d("qqq", "\"" + data + "\"");
|
||||
assertEquals(truth, data);
|
||||
}
|
||||
}
|
145
modules/features2d/misc/java/test/Features2dTest.java
Normal file
145
modules/features2d/misc/java/test/Features2dTest.java
Normal file
@@ -0,0 +1,145 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
import org.opencv.calib3d.Calib3d;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfDMatch;
|
||||
import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.MatOfPoint2f;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Range;
|
||||
import org.opencv.core.DMatch;
|
||||
import org.opencv.features2d.DescriptorExtractor;
|
||||
import org.opencv.features2d.DescriptorMatcher;
|
||||
import org.opencv.features2d.FeatureDetector;
|
||||
import org.opencv.features2d.Features2d;
|
||||
import org.opencv.core.KeyPoint;
|
||||
import org.opencv.imgcodecs.Imgcodecs;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
|
||||
public class Features2dTest extends OpenCVTestCase {
|
||||
|
||||
public void testDrawKeypointsMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDrawKeypointsMatListOfKeyPointMatScalar() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDrawKeypointsMatListOfKeyPointMatScalarInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDrawMatches2MatListOfKeyPointMatListOfKeyPointListOfListOfDMatchMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDrawMatches2MatListOfKeyPointMatListOfKeyPointListOfListOfDMatchMatScalar() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDrawMatches2MatListOfKeyPointMatListOfKeyPointListOfListOfDMatchMatScalarScalar() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDrawMatches2MatListOfKeyPointMatListOfKeyPointListOfListOfDMatchMatScalarScalarListOfListOfByte() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDrawMatches2MatListOfKeyPointMatListOfKeyPointListOfListOfDMatchMatScalarScalarListOfListOfByteInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDrawMatchesMatListOfKeyPointMatListOfKeyPointListOfDMatchMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDrawMatchesMatListOfKeyPointMatListOfKeyPointListOfDMatchMatScalar() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDrawMatchesMatListOfKeyPointMatListOfKeyPointListOfDMatchMatScalarScalar() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDrawMatchesMatListOfKeyPointMatListOfKeyPointListOfDMatchMatScalarScalarListOfByte() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDrawMatchesMatListOfKeyPointMatListOfKeyPointListOfDMatchMatScalarScalarListOfByteInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testPTOD()
|
||||
{
|
||||
String detectorCfg = "%YAML:1.0\nhessianThreshold: 4000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n";
|
||||
String extractorCfg = "%YAML:1.0\nnOctaves: 4\nnOctaveLayers: 2\nextended: 0\nupright: 0\n";
|
||||
|
||||
FeatureDetector detector = FeatureDetector.create(FeatureDetector.SURF);
|
||||
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.SURF);
|
||||
DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE);
|
||||
|
||||
String detectorCfgFile = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(detectorCfgFile, detectorCfg);
|
||||
detector.read(detectorCfgFile);
|
||||
|
||||
String extractorCfgFile = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(extractorCfgFile, extractorCfg);
|
||||
extractor.read(extractorCfgFile);
|
||||
|
||||
Mat imgTrain = Imgcodecs.imread(OpenCVTestRunner.LENA_PATH, Imgcodecs.CV_LOAD_IMAGE_GRAYSCALE);
|
||||
Mat imgQuery = imgTrain.submat(new Range(0, imgTrain.rows() - 100), Range.all());
|
||||
|
||||
MatOfKeyPoint trainKeypoints = new MatOfKeyPoint();
|
||||
MatOfKeyPoint queryKeypoints = new MatOfKeyPoint();
|
||||
|
||||
detector.detect(imgTrain, trainKeypoints);
|
||||
detector.detect(imgQuery, queryKeypoints);
|
||||
|
||||
// OpenCVTestRunner.Log("Keypoints found: " + trainKeypoints.size() +
|
||||
// ":" + queryKeypoints.size());
|
||||
|
||||
Mat trainDescriptors = new Mat();
|
||||
Mat queryDescriptors = new Mat();
|
||||
|
||||
extractor.compute(imgTrain, trainKeypoints, trainDescriptors);
|
||||
extractor.compute(imgQuery, queryKeypoints, queryDescriptors);
|
||||
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
|
||||
matcher.add(Arrays.asList(trainDescriptors));
|
||||
matcher.match(queryDescriptors, matches);
|
||||
|
||||
// OpenCVTestRunner.Log("Matches found: " + matches.size());
|
||||
|
||||
DMatch adm[] = matches.toArray();
|
||||
List<Point> lp1 = new ArrayList<Point>(adm.length);
|
||||
List<Point> lp2 = new ArrayList<Point>(adm.length);
|
||||
KeyPoint tkp[] = trainKeypoints.toArray();
|
||||
KeyPoint qkp[] = queryKeypoints.toArray();
|
||||
for (int i = 0; i < adm.length; i++) {
|
||||
DMatch dm = adm[i];
|
||||
lp1.add(tkp[dm.trainIdx].pt);
|
||||
lp2.add(qkp[dm.queryIdx].pt);
|
||||
}
|
||||
|
||||
MatOfPoint2f points1 = new MatOfPoint2f(lp1.toArray(new Point[0]));
|
||||
MatOfPoint2f points2 = new MatOfPoint2f(lp2.toArray(new Point[0]));
|
||||
|
||||
Mat hmg = Calib3d.findHomography(points1, points2, Calib3d.RANSAC, 3);
|
||||
|
||||
assertMatEqual(Mat.eye(3, 3, CvType.CV_64F), hmg, EPS);
|
||||
|
||||
Mat outimg = new Mat();
|
||||
Features2d.drawMatches(imgQuery, queryKeypoints, imgTrain, trainKeypoints, matches, outimg);
|
||||
String outputPath = OpenCVTestRunner.getOutputFileName("PTODresult.png");
|
||||
Imgcodecs.imwrite(outputPath, outimg);
|
||||
// OpenCVTestRunner.Log("Output image is saved to: " + outputPath);
|
||||
}
|
||||
}
|
@@ -0,0 +1,127 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class FernGenericDescriptorMatcherTest extends OpenCVTestCase {
|
||||
|
||||
public void testAdd() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testClassifyMatListOfKeyPointMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testClassifyMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testClear() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testCloneBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testClone() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGetTrainImages() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGetTrainKeypoints() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testIsMaskSupported() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfKeyPointMatListOfKeyPointListOfListOfDMatchIntMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfKeyPointMatListOfKeyPointListOfListOfDMatchIntMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfKeyPointMatListOfKeyPointListOfListOfDMatchInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfKeyPointListOfListOfDMatchIntListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfKeyPointListOfListOfDMatchIntListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfKeyPointListOfListOfDMatchInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testMatchMatListOfKeyPointMatListOfKeyPointListOfDMatchMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testMatchMatListOfKeyPointMatListOfKeyPointListOfDMatch() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testMatchMatListOfKeyPointListOfDMatchListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testMatchMatListOfKeyPointListOfDMatch() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfKeyPointMatListOfKeyPointListOfListOfDMatchFloatMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfKeyPointMatListOfKeyPointListOfListOfDMatchFloatMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfKeyPointMatListOfKeyPointListOfListOfDMatchFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfKeyPointListOfListOfDMatchFloatListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfKeyPointListOfListOfDMatchFloatListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfKeyPointListOfListOfDMatchFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testTrain() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,366 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvException;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfDMatch;
|
||||
import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.core.DMatch;
|
||||
import org.opencv.features2d.DescriptorExtractor;
|
||||
import org.opencv.features2d.DescriptorMatcher;
|
||||
import org.opencv.features2d.FeatureDetector;
|
||||
import org.opencv.core.KeyPoint;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
public class FlannBasedDescriptorMatcherTest extends OpenCVTestCase {
|
||||
|
||||
static final String xmlParamsDefault = "<?xml version=\"1.0\"?>\n"
|
||||
+ "<opencv_storage>\n"
|
||||
+ "<indexParams>\n"
|
||||
+ " <_>\n"
|
||||
+ " <name>algorithm</name>\n"
|
||||
+ " <type>23</type>\n"
|
||||
+ " <value>1</value></_>\n"
|
||||
+ " <_>\n"
|
||||
+ " <name>trees</name>\n"
|
||||
+ " <type>4</type>\n"
|
||||
+ " <value>4</value></_></indexParams>\n"
|
||||
+ "<searchParams>\n"
|
||||
+ " <_>\n"
|
||||
+ " <name>checks</name>\n"
|
||||
+ " <type>4</type>\n"
|
||||
+ " <value>32</value></_>\n"
|
||||
+ " <_>\n"
|
||||
+ " <name>eps</name>\n"
|
||||
+ " <type>5</type>\n"
|
||||
+ " <value>0.</value></_>\n"
|
||||
+ " <_>\n"
|
||||
+ " <name>sorted</name>\n"
|
||||
+ " <type>15</type>\n"
|
||||
+ " <value>1</value></_></searchParams>\n"
|
||||
+ "</opencv_storage>\n";
|
||||
static final String ymlParamsDefault = "%YAML:1.0\n"
|
||||
+ "indexParams:\n"
|
||||
+ " -\n"
|
||||
+ " name: algorithm\n"
|
||||
+ " type: 23\n"
|
||||
+ " value: 1\n"
|
||||
+ " -\n"
|
||||
+ " name: trees\n"
|
||||
+ " type: 4\n"
|
||||
+ " value: 4\n"
|
||||
+ "searchParams:\n"
|
||||
+ " -\n"
|
||||
+ " name: checks\n"
|
||||
+ " type: 4\n"
|
||||
+ " value: 32\n"
|
||||
+ " -\n"
|
||||
+ " name: eps\n"
|
||||
+ " type: 5\n"
|
||||
+ " value: 0.\n"
|
||||
+ " -\n"
|
||||
+ " name: sorted\n"
|
||||
+ " type: 15\n"
|
||||
+ " value: 1\n";
|
||||
static final String ymlParamsModified = "%YAML:1.0\n"
|
||||
+ "indexParams:\n"
|
||||
+ " -\n"
|
||||
+ " name: algorithm\n"
|
||||
+ " type: 23\n"
|
||||
+ " value: 6\n"// this line is changed!
|
||||
+ " -\n"
|
||||
+ " name: trees\n"
|
||||
+ " type: 4\n"
|
||||
+ " value: 4\n"
|
||||
+ "searchParams:\n"
|
||||
+ " -\n"
|
||||
+ " name: checks\n"
|
||||
+ " type: 4\n"
|
||||
+ " value: 32\n"
|
||||
+ " -\n"
|
||||
+ " name: eps\n"
|
||||
+ " type: 5\n"
|
||||
+ " value: 4.\n"// this line is changed!
|
||||
+ " -\n"
|
||||
+ " name: sorted\n"
|
||||
+ " type: 15\n"
|
||||
+ " value: 1\n";
|
||||
|
||||
DescriptorMatcher matcher;
|
||||
|
||||
int matSize;
|
||||
|
||||
DMatch[] truth;
|
||||
|
||||
private Mat getMaskImg() {
|
||||
return new Mat(5, 2, CvType.CV_8U, new Scalar(0)) {
|
||||
{
|
||||
put(0, 0, 1, 1, 1, 1);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
private Mat getQueryDescriptors() {
|
||||
Mat img = getQueryImg();
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
FeatureDetector detector = FeatureDetector.create(FeatureDetector.SURF);
|
||||
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.SURF);
|
||||
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n");
|
||||
detector.read(filename);
|
||||
|
||||
detector.detect(img, keypoints);
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
return descriptors;
|
||||
}
|
||||
|
||||
private Mat getQueryImg() {
|
||||
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(cross, new Point(30, matSize / 2), new Point(matSize - 31, matSize / 2), new Scalar(100), 3);
|
||||
Imgproc.line(cross, new Point(matSize / 2, 30), new Point(matSize / 2, matSize - 31), new Scalar(100), 3);
|
||||
|
||||
return cross;
|
||||
}
|
||||
|
||||
private Mat getTrainDescriptors() {
|
||||
Mat img = getTrainImg();
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint(new KeyPoint(50, 50, 16, 0, 20000, 1, -1), new KeyPoint(42, 42, 16, 160, 10000, 1, -1));
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.SURF);
|
||||
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
return descriptors;
|
||||
}
|
||||
|
||||
private Mat getTrainImg() {
|
||||
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
|
||||
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
|
||||
|
||||
return cross;
|
||||
}
|
||||
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
matcher = DescriptorMatcher.create(DescriptorMatcher.FLANNBASED);
|
||||
matSize = 100;
|
||||
truth = new DMatch[] {
|
||||
new DMatch(0, 0, 0, 0.6211397f),
|
||||
new DMatch(1, 1, 0, 0.9177120f),
|
||||
new DMatch(2, 1, 0, 0.3112163f),
|
||||
new DMatch(3, 1, 0, 0.2925075f),
|
||||
new DMatch(4, 1, 0, 0.9309179f)
|
||||
};
|
||||
}
|
||||
|
||||
public void testAdd() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
assertFalse(matcher.empty());
|
||||
}
|
||||
|
||||
public void testClear() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
matcher.clear();
|
||||
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testClone() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
try {
|
||||
matcher.clone();
|
||||
fail("Expected CvException (CV_StsNotImplemented)");
|
||||
} catch (CvException cverr) {
|
||||
// expected
|
||||
}
|
||||
}
|
||||
|
||||
public void testCloneBoolean() {
|
||||
matcher.add(Arrays.asList(new Mat()));
|
||||
|
||||
DescriptorMatcher cloned = matcher.clone(true);
|
||||
|
||||
assertNotNull(cloned);
|
||||
assertTrue(cloned.empty());
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(matcher);
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertTrue(matcher.empty());
|
||||
}
|
||||
|
||||
public void testGetTrainDescriptors() {
|
||||
Mat train = new Mat(1, 1, CvType.CV_8U, new Scalar(123));
|
||||
Mat truth = train.clone();
|
||||
matcher.add(Arrays.asList(train));
|
||||
|
||||
List<Mat> descriptors = matcher.getTrainDescriptors();
|
||||
|
||||
assertEquals(1, descriptors.size());
|
||||
assertMatEqual(truth, descriptors.get(0));
|
||||
}
|
||||
|
||||
public void testIsMaskSupported() {
|
||||
assertFalse(matcher.isMaskSupported());
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchIntListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfListOfDMatchIntListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchIntMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatMatListOfListOfDMatchIntMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
matcher.add(Arrays.asList(train));
|
||||
matcher.train();
|
||||
|
||||
matcher.match(query, matches);
|
||||
|
||||
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatListOfDMatchListOfMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
matcher.add(Arrays.asList(train));
|
||||
matcher.train();
|
||||
|
||||
matcher.match(query, matches, Arrays.asList(mask));
|
||||
|
||||
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatch() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
|
||||
matcher.match(query, train, matches);
|
||||
|
||||
assertArrayDMatchEquals(truth, matches.toArray(), EPS);
|
||||
|
||||
// OpenCVTestRunner.Log(matches.toString());
|
||||
// OpenCVTestRunner.Log(matches);
|
||||
}
|
||||
|
||||
public void testMatchMatMatListOfDMatchMat() {
|
||||
Mat train = getTrainDescriptors();
|
||||
Mat query = getQueryDescriptors();
|
||||
Mat mask = getMaskImg();
|
||||
MatOfDMatch matches = new MatOfDMatch();
|
||||
|
||||
matcher.match(query, train, matches, mask);
|
||||
|
||||
assertListDMatchEquals(Arrays.asList(truth), matches.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfListOfDMatchFloatListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloatMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatMatListOfListOfDMatchFloatMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
String filenameR = OpenCVTestRunner.getTempFileName("yml");
|
||||
String filenameW = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filenameR, ymlParamsModified);
|
||||
|
||||
matcher.read(filenameR);
|
||||
matcher.write(filenameW);
|
||||
|
||||
assertEquals(ymlParamsModified, readFile(filenameW));
|
||||
}
|
||||
|
||||
public void testTrain() {
|
||||
Mat train = getTrainDescriptors();
|
||||
matcher.add(Arrays.asList(train));
|
||||
matcher.train();
|
||||
}
|
||||
|
||||
public void testTrainNoData() {
|
||||
try {
|
||||
matcher.train();
|
||||
fail("Expected CvException - FlannBasedMatcher::train should fail on empty train set");
|
||||
} catch (CvException cverr) {
|
||||
// expected
|
||||
}
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("xml");
|
||||
|
||||
matcher.write(filename);
|
||||
|
||||
assertEquals(xmlParamsDefault, readFile(filename));
|
||||
}
|
||||
|
||||
public void testWriteYml() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
matcher.write(filename);
|
||||
|
||||
assertEquals(ymlParamsDefault, readFile(filename));
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class GFTTFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class GridDENSEFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class GridFASTFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class GridGFTTFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class GridHARRISFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class GridMSERFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class GridORBFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class GridSIFTFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class GridSIMPLEBLOBFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class GridSTARFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class GridSURFFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class HARRISFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class MSERFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,120 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.features2d.DescriptorExtractor;
|
||||
import org.opencv.core.KeyPoint;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
public class ORBDescriptorExtractorTest extends OpenCVTestCase {
|
||||
|
||||
DescriptorExtractor extractor;
|
||||
int matSize;
|
||||
|
||||
public static void assertDescriptorsClose(Mat expected, Mat actual, int allowedDistance) {
|
||||
double distance = Core.norm(expected, actual, Core.NORM_HAMMING);
|
||||
assertTrue("expected:<" + allowedDistance + "> but was:<" + distance + ">", distance <= allowedDistance);
|
||||
}
|
||||
|
||||
private Mat getTestImg() {
|
||||
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
|
||||
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
|
||||
|
||||
return cross;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
extractor = DescriptorExtractor.create(DescriptorExtractor.ORB);
|
||||
matSize = 100;
|
||||
}
|
||||
|
||||
public void testComputeListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testComputeMatListOfKeyPointMat() {
|
||||
KeyPoint point = new KeyPoint(55.775577545166016f, 44.224422454833984f, 16, 9.754629f, 8617.863f, 1, -1);
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint(point);
|
||||
Mat img = getTestImg();
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
Mat truth = new Mat(1, 32, CvType.CV_8UC1) {
|
||||
{
|
||||
put(0, 0,
|
||||
6, 74, 6, 129, 2, 130, 56, 0, 36, 132, 66, 165, 172, 6, 3, 72, 102, 61, 163, 214, 0, 144, 65, 232, 4, 32, 138, 129, 4, 21, 37, 88);
|
||||
}
|
||||
};
|
||||
assertDescriptorsClose(truth, descriptors, 1);
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(extractor);
|
||||
}
|
||||
|
||||
public void testDescriptorSize() {
|
||||
assertEquals(32, extractor.descriptorSize());
|
||||
}
|
||||
|
||||
public void testDescriptorType() {
|
||||
assertEquals(CvType.CV_8U, extractor.descriptorType());
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertFalse(extractor.empty());
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
KeyPoint point = new KeyPoint(55.775577545166016f, 44.224422454833984f, 16, 9.754629f, 8617.863f, 1, -1);
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint(point);
|
||||
Mat img = getTestImg();
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\nscaleFactor: 1.1\nnLevels: 3\nfirstLevel: 0\nedgeThreshold: 31\npatchSize: 31\n");
|
||||
extractor.read(filename);
|
||||
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
Mat truth = new Mat(1, 32, CvType.CV_8UC1) {
|
||||
{
|
||||
put(0, 0,
|
||||
6, 10, 22, 5, 2, 130, 56, 0, 44, 164, 66, 165, 140, 6, 1, 72, 38, 61, 163, 210, 0, 208, 1, 104, 4, 32, 10, 131, 0, 37, 37, 67);
|
||||
}
|
||||
};
|
||||
assertDescriptorsClose(truth, descriptors, 1);
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("xml");
|
||||
|
||||
extractor.write(filename);
|
||||
|
||||
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.ORB</name>\n<WTA_K>2</WTA_K>\n<edgeThreshold>31</edgeThreshold>\n<firstLevel>0</firstLevel>\n<nFeatures>500</nFeatures>\n<nLevels>8</nLevels>\n<patchSize>31</patchSize>\n<scaleFactor>1.2000000476837158e+00</scaleFactor>\n<scoreType>0</scoreType>\n</opencv_storage>\n";
|
||||
String actual = readFile(filename);
|
||||
actual = actual.replaceAll("e\\+000", "e+00"); // NOTE: workaround for different platforms double representation
|
||||
assertEquals(truth, actual);
|
||||
}
|
||||
|
||||
public void testWriteYml() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
extractor.write(filename);
|
||||
|
||||
String truth = "%YAML:1.0\nname: \"Feature2D.ORB\"\nWTA_K: 2\nedgeThreshold: 31\nfirstLevel: 0\nnFeatures: 500\nnLevels: 8\npatchSize: 31\nscaleFactor: 1.2000000476837158e+00\nscoreType: 0\n";
|
||||
String actual = readFile(filename);
|
||||
actual = actual.replaceAll("e\\+000", "e+00"); // NOTE: workaround for different platforms double representation
|
||||
assertEquals(truth, actual);
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class ORBFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,127 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class OneWayGenericDescriptorMatcherTest extends OpenCVTestCase {
|
||||
|
||||
public void testAdd() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testClassifyMatListOfKeyPointMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testClassifyMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testClear() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testCloneBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testClone() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGetTrainImages() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGetTrainKeypoints() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testIsMaskSupported() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfKeyPointMatListOfKeyPointListOfListOfDMatchIntMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfKeyPointMatListOfKeyPointListOfListOfDMatchIntMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfKeyPointMatListOfKeyPointListOfListOfDMatchInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfKeyPointListOfListOfDMatchIntListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfKeyPointListOfListOfDMatchIntListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testKnnMatchMatListOfKeyPointListOfListOfDMatchInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testMatchMatListOfKeyPointMatListOfKeyPointListOfDMatchMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testMatchMatListOfKeyPointMatListOfKeyPointListOfDMatch() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testMatchMatListOfKeyPointListOfDMatchListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testMatchMatListOfKeyPointListOfDMatch() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfKeyPointMatListOfKeyPointListOfListOfDMatchFloatMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfKeyPointMatListOfKeyPointListOfListOfDMatchFloatMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfKeyPointMatListOfKeyPointListOfListOfDMatchFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfKeyPointListOfListOfDMatchFloatListOfMatBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfKeyPointListOfListOfDMatchFloatListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRadiusMatchMatListOfKeyPointListOfListOfDMatchFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testTrain() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class OpponentBRIEFDescriptorExtractorTest extends OpenCVTestCase {
|
||||
|
||||
public void testComputeListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testComputeMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDescriptorSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDescriptorType() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class OpponentORBDescriptorExtractorTest extends OpenCVTestCase {
|
||||
|
||||
public void testComputeListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testComputeMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDescriptorSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDescriptorType() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class OpponentSIFTDescriptorExtractorTest extends OpenCVTestCase {
|
||||
|
||||
public void testComputeListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testComputeMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDescriptorSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDescriptorType() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class OpponentSURFDescriptorExtractorTest extends OpenCVTestCase {
|
||||
|
||||
public void testComputeListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testComputeMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDescriptorSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDescriptorType() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class PyramidDENSEFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class PyramidFASTFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class PyramidGFTTFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class PyramidHARRISFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class PyramidMSERFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class PyramidORBFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class PyramidSIFTFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class PyramidSIMPLEBLOBFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class PyramidSTARFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class PyramidSURFFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,107 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.features2d.DescriptorExtractor;
|
||||
import org.opencv.core.KeyPoint;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
public class SIFTDescriptorExtractorTest extends OpenCVTestCase {
|
||||
|
||||
DescriptorExtractor extractor;
|
||||
KeyPoint keypoint;
|
||||
int matSize;
|
||||
Mat truth;
|
||||
|
||||
private Mat getTestImg() {
|
||||
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
|
||||
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
|
||||
|
||||
return cross;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
extractor = DescriptorExtractor.create(DescriptorExtractor.SIFT);
|
||||
keypoint = new KeyPoint(55.775577545166016f, 44.224422454833984f, 16, 9.754629f, 8617.863f, 1, -1);
|
||||
matSize = 100;
|
||||
truth = new Mat(1, 128, CvType.CV_32FC1) {
|
||||
{
|
||||
put(0, 0,
|
||||
0, 0, 0, 1, 3, 0, 0, 0, 15, 23, 22, 20, 24, 2, 0, 0, 7, 8, 2, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 16, 13, 2, 0, 0, 117,
|
||||
86, 79, 68, 117, 42, 5, 5, 79, 60, 117, 25, 9, 2, 28, 19, 11, 13,
|
||||
20, 2, 0, 0, 5, 8, 0, 0, 76, 58, 34, 31, 97, 16, 95, 49, 117, 92,
|
||||
117, 112, 117, 76, 117, 54, 117, 25, 29, 22, 117, 117, 16, 11, 14,
|
||||
1, 0, 0, 22, 26, 0, 0, 0, 0, 1, 4, 15, 2, 47, 8, 0, 0, 82, 56, 31,
|
||||
17, 81, 12, 0, 0, 26, 23, 18, 23, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
public void testComputeListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testComputeMatListOfKeyPointMat() {
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint(keypoint);
|
||||
Mat img = getTestImg();
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
assertMatEqual(truth, descriptors, EPS);
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(extractor);
|
||||
}
|
||||
|
||||
public void testDescriptorSize() {
|
||||
assertEquals(128, extractor.descriptorSize());
|
||||
}
|
||||
|
||||
public void testDescriptorType() {
|
||||
assertEquals(CvType.CV_32F, extractor.descriptorType());
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertFalse(extractor.empty());
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("xml");
|
||||
|
||||
extractor.write(filename);
|
||||
|
||||
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.SIFT</name>\n<contrastThreshold>4.0000000000000001e-02</contrastThreshold>\n<edgeThreshold>10.</edgeThreshold>\n<nFeatures>0</nFeatures>\n<nOctaveLayers>3</nOctaveLayers>\n<sigma>1.6000000000000001e+00</sigma>\n</opencv_storage>\n";
|
||||
String actual = readFile(filename);
|
||||
actual = actual.replaceAll("e([+-])0(\\d\\d)", "e$1$2"); // NOTE: workaround for different platforms double representation
|
||||
assertEquals(truth, actual);
|
||||
}
|
||||
|
||||
public void testWriteYml() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
extractor.write(filename);
|
||||
|
||||
String truth = "%YAML:1.0\nname: \"Feature2D.SIFT\"\ncontrastThreshold: 4.0000000000000001e-02\nedgeThreshold: 10.\nnFeatures: 0\nnOctaveLayers: 3\nsigma: 1.6000000000000001e+00\n";
|
||||
String actual = readFile(filename);
|
||||
actual = actual.replaceAll("e([+-])0(\\d\\d)", "e$1$2"); // NOTE: workaround for different platforms double representation
|
||||
assertEquals(truth, actual);
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class SIFTFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,39 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class SIMPLEBLOBFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCreate() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
131
modules/features2d/misc/java/test/STARFeatureDetectorTest.java
Normal file
131
modules/features2d/misc/java/test/STARFeatureDetectorTest.java
Normal file
@@ -0,0 +1,131 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.features2d.FeatureDetector;
|
||||
import org.opencv.core.KeyPoint;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
public class STARFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
FeatureDetector detector;
|
||||
int matSize;
|
||||
KeyPoint[] truth;
|
||||
|
||||
private Mat getMaskImg() {
|
||||
Mat mask = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Mat right = mask.submat(0, matSize, matSize / 2, matSize);
|
||||
right.setTo(new Scalar(0));
|
||||
return mask;
|
||||
}
|
||||
|
||||
private Mat getTestImg() {
|
||||
Scalar color = new Scalar(0);
|
||||
int center = matSize / 2;
|
||||
int radius = 6;
|
||||
int offset = 40;
|
||||
|
||||
Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.circle(img, new Point(center - offset, center), radius, color, -1);
|
||||
Imgproc.circle(img, new Point(center + offset, center), radius, color, -1);
|
||||
Imgproc.circle(img, new Point(center, center - offset), radius, color, -1);
|
||||
Imgproc.circle(img, new Point(center, center + offset), radius, color, -1);
|
||||
Imgproc.circle(img, new Point(center, center), radius, color, -1);
|
||||
return img;
|
||||
}
|
||||
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
detector = FeatureDetector.create(FeatureDetector.STAR);
|
||||
matSize = 200;
|
||||
truth = new KeyPoint[] {
|
||||
new KeyPoint( 95, 80, 22, -1, 31.5957f, 0, -1),
|
||||
new KeyPoint(105, 80, 22, -1, 31.5957f, 0, -1),
|
||||
new KeyPoint( 80, 95, 22, -1, 31.5957f, 0, -1),
|
||||
new KeyPoint(120, 95, 22, -1, 31.5957f, 0, -1),
|
||||
new KeyPoint(100, 100, 8, -1, 30.f, 0, -1),
|
||||
new KeyPoint( 80, 105, 22, -1, 31.5957f, 0, -1),
|
||||
new KeyPoint(120, 105, 22, -1, 31.5957f, 0, -1),
|
||||
new KeyPoint( 95, 120, 22, -1, 31.5957f, 0, -1),
|
||||
new KeyPoint(105, 120, 22, -1, 31.5957f, 0, -1)
|
||||
};
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(detector);
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
Mat img = getTestImg();
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
||||
|
||||
detector.detect(img, keypoints);
|
||||
|
||||
assertListKeyPointEquals(Arrays.asList(truth), keypoints.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
Mat img = getTestImg();
|
||||
Mat mask = getMaskImg();
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
||||
|
||||
detector.detect(img, keypoints, mask);
|
||||
|
||||
assertListKeyPointEquals(Arrays.asList(truth[0], truth[2], truth[5], truth[7]), keypoints.toList(), EPS);
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertFalse(detector.empty());
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
Mat img = getTestImg();
|
||||
|
||||
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
|
||||
detector.detect(img, keypoints1);
|
||||
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\nmaxSize: 45\nresponseThreshold: 150\nlineThresholdProjected: 10\nlineThresholdBinarized: 8\nsuppressNonmaxSize: 5\n");
|
||||
detector.read(filename);
|
||||
|
||||
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
|
||||
detector.detect(img, keypoints2);
|
||||
|
||||
assertTrue(keypoints2.total() <= keypoints1.total());
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("xml");
|
||||
|
||||
detector.write(filename);
|
||||
|
||||
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.STAR</name>\n<lineThresholdBinarized>8</lineThresholdBinarized>\n<lineThresholdProjected>10</lineThresholdProjected>\n<maxSize>45</maxSize>\n<responseThreshold>30</responseThreshold>\n<suppressNonmaxSize>5</suppressNonmaxSize>\n</opencv_storage>\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
public void testWriteYml() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
detector.write(filename);
|
||||
|
||||
String truth = "%YAML:1.0\nname: \"Feature2D.STAR\"\nlineThresholdBinarized: 8\nlineThresholdProjected: 10\nmaxSize: 45\nresponseThreshold: 30\nsuppressNonmaxSize: 5\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,118 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.features2d.DescriptorExtractor;
|
||||
import org.opencv.core.KeyPoint;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
public class SURFDescriptorExtractorTest extends OpenCVTestCase {
|
||||
|
||||
DescriptorExtractor extractor;
|
||||
int matSize;
|
||||
|
||||
private Mat getTestImg() {
|
||||
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
|
||||
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
|
||||
|
||||
return cross;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
|
||||
extractor = DescriptorExtractor.create(DescriptorExtractor.SURF);
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\nextended: 1\nhessianThreshold: 100.\nnOctaveLayers: 2\nnOctaves: 4\nupright: 0");
|
||||
extractor.read(filename);
|
||||
|
||||
matSize = 100;
|
||||
}
|
||||
|
||||
public void testComputeListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testComputeMatListOfKeyPointMat() {
|
||||
KeyPoint point = new KeyPoint(55.775577545166016f, 44.224422454833984f, 16, 9.754629f, 8617.863f, 1, -1);
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint(point);
|
||||
Mat img = getTestImg();
|
||||
Mat descriptors = new Mat();
|
||||
|
||||
extractor.compute(img, keypoints, descriptors);
|
||||
|
||||
Mat truth = new Mat(1, 128, CvType.CV_32FC1) {
|
||||
{
|
||||
put(0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0.058821894, 0.058821894, -0.045962855, 0.046261817, 0.0085156476,
|
||||
0.0085754395, -0.0064509804, 0.0064509804, 0.00044069235, 0.00044069235, 0, 0, 0.00025723741,
|
||||
0.00025723741, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00025723741, 0.00025723741, -0.00044069235,
|
||||
0.00044069235, 0, 0, 0.36278215, 0.36278215, -0.24688604, 0.26173124, 0.052068226, 0.052662034,
|
||||
-0.032815345, 0.032815345, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.0064523756,
|
||||
0.0064523756, 0.0082002236, 0.0088908644, -0.059001274, 0.059001274, 0.045789491, 0.04648013,
|
||||
0.11961588, 0.22789426, -0.01322381, 0.18291828, -0.14042182, 0.23973691, 0.073782086, 0.23769434,
|
||||
-0.027880307, 0.027880307, 0.049587864, 0.049587864, -0.33991757, 0.33991757, 0.21437603, 0.21437603,
|
||||
-0.0020763327, 0.0020763327, 0.006245892, 0.006245892, -0.04067041, 0.04067041, 0.019361559,
|
||||
0.019361559, 0, 0, -0.0035977389, 0.0035977389, 0, 0, -0.00099993451, 0.00099993451, 0.040670406,
|
||||
0.040670406, -0.019361559, 0.019361559, 0.006245892, 0.006245892, -0.0020763327, 0.0020763327,
|
||||
-0.00034532088, 0.00034532088, 0, 0, 0, 0, 0.00034532088, 0.00034532088, -0.00099993451,
|
||||
0.00099993451, 0, 0, 0, 0, 0.0035977389, 0.0035977389
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
assertMatEqual(truth, descriptors, EPS);
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(extractor);
|
||||
}
|
||||
|
||||
public void testDescriptorSize() {
|
||||
assertEquals(128, extractor.descriptorSize());
|
||||
}
|
||||
|
||||
public void testDescriptorType() {
|
||||
assertEquals(CvType.CV_32F, extractor.descriptorType());
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertFalse(extractor.empty());
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\nnOctaves: 4\nnOctaveLayers: 2\nextended: 1\nupright: 0\n");
|
||||
|
||||
extractor.read(filename);
|
||||
|
||||
assertEquals(128, extractor.descriptorSize());
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("xml");
|
||||
|
||||
extractor.write(filename);
|
||||
|
||||
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.SURF</name>\n<extended>1</extended>\n<hessianThreshold>100.</hessianThreshold>\n<nOctaveLayers>2</nOctaveLayers>\n<nOctaves>4</nOctaves>\n<upright>0</upright>\n</opencv_storage>\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
public void testWriteYml() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
extractor.write(filename);
|
||||
|
||||
String truth = "%YAML:1.0\nname: \"Feature2D.SURF\"\nextended: 1\nhessianThreshold: 100.\nnOctaveLayers: 2\nnOctaves: 4\nupright: 0\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
}
|
167
modules/features2d/misc/java/test/SURFFeatureDetectorTest.java
Normal file
167
modules/features2d/misc/java/test/SURFFeatureDetectorTest.java
Normal file
@@ -0,0 +1,167 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.Collections;
|
||||
import java.util.Comparator;
|
||||
import java.util.List;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.features2d.FeatureDetector;
|
||||
import org.opencv.core.KeyPoint;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
public class SURFFeatureDetectorTest extends OpenCVTestCase {
|
||||
|
||||
FeatureDetector detector;
|
||||
int matSize;
|
||||
KeyPoint[] truth;
|
||||
|
||||
private Mat getMaskImg() {
|
||||
Mat mask = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Mat right = mask.submat(0, matSize, matSize / 2, matSize);
|
||||
right.setTo(new Scalar(0));
|
||||
return mask;
|
||||
}
|
||||
|
||||
private Mat getTestImg() {
|
||||
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
|
||||
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
|
||||
|
||||
return cross;
|
||||
}
|
||||
|
||||
private void order(List<KeyPoint> points) {
|
||||
Collections.sort(points, new Comparator<KeyPoint>() {
|
||||
public int compare(KeyPoint p1, KeyPoint p2) {
|
||||
if (p1.angle < p2.angle)
|
||||
return -1;
|
||||
if (p1.angle > p2.angle)
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
detector = FeatureDetector.create(FeatureDetector.SURF);
|
||||
matSize = 100;
|
||||
truth = new KeyPoint[] {
|
||||
new KeyPoint(55.775578f, 55.775578f, 16, 80.245735f, 8617.8633f, 0, -1),
|
||||
new KeyPoint(44.224422f, 55.775578f, 16, 170.24574f, 8617.8633f, 0, -1),
|
||||
new KeyPoint(44.224422f, 44.224422f, 16, 260.24573f, 8617.8633f, 0, -1),
|
||||
new KeyPoint(55.775578f, 44.224422f, 16, 350.24573f, 8617.8633f, 0, -1)
|
||||
};
|
||||
}
|
||||
|
||||
public void testCreate() {
|
||||
assertNotNull(detector);
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPoint() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n");
|
||||
detector.read(filename);
|
||||
|
||||
List<MatOfKeyPoint> keypoints = new ArrayList<MatOfKeyPoint>();
|
||||
Mat cross = getTestImg();
|
||||
List<Mat> crosses = new ArrayList<Mat>(3);
|
||||
crosses.add(cross);
|
||||
crosses.add(cross);
|
||||
crosses.add(cross);
|
||||
|
||||
detector.detect(crosses, keypoints);
|
||||
|
||||
assertEquals(3, keypoints.size());
|
||||
|
||||
for (MatOfKeyPoint mkp : keypoints) {
|
||||
List<KeyPoint> lkp = mkp.toList();
|
||||
order(lkp);
|
||||
assertListKeyPointEquals(Arrays.asList(truth), lkp, EPS);
|
||||
}
|
||||
}
|
||||
|
||||
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPoint() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n");
|
||||
detector.read(filename);
|
||||
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
||||
Mat cross = getTestImg();
|
||||
|
||||
detector.detect(cross, keypoints);
|
||||
|
||||
List<KeyPoint> lkp = keypoints.toList();
|
||||
order(lkp);
|
||||
assertListKeyPointEquals(Arrays.asList(truth), lkp, EPS);
|
||||
}
|
||||
|
||||
public void testDetectMatListOfKeyPointMat() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n");
|
||||
detector.read(filename);
|
||||
|
||||
Mat img = getTestImg();
|
||||
Mat mask = getMaskImg();
|
||||
MatOfKeyPoint keypoints = new MatOfKeyPoint();
|
||||
|
||||
detector.detect(img, keypoints, mask);
|
||||
|
||||
List<KeyPoint> lkp = keypoints.toList();
|
||||
order(lkp);
|
||||
assertListKeyPointEquals(Arrays.asList(truth[1], truth[2]), lkp, EPS);
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
assertFalse(detector.empty());
|
||||
}
|
||||
|
||||
public void testRead() {
|
||||
Mat cross = getTestImg();
|
||||
|
||||
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
|
||||
detector.detect(cross, keypoints1);
|
||||
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
writeFile(filename, "%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n");
|
||||
detector.read(filename);
|
||||
|
||||
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
|
||||
detector.detect(cross, keypoints2);
|
||||
|
||||
assertTrue(keypoints2.total() <= keypoints1.total());
|
||||
}
|
||||
|
||||
public void testWrite() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("xml");
|
||||
|
||||
detector.write(filename);
|
||||
|
||||
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.SURF</name>\n<extended>0</extended>\n<hessianThreshold>100.</hessianThreshold>\n<nOctaveLayers>3</nOctaveLayers>\n<nOctaves>4</nOctaves>\n<upright>0</upright>\n</opencv_storage>\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
public void testWriteYml() {
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
|
||||
detector.write(filename);
|
||||
|
||||
String truth = "%YAML:1.0\nname: \"Feature2D.SURF\"\nextended: 0\nhessianThreshold: 100.\nnOctaveLayers: 3\nnOctaves: 4\nupright: 0\n";
|
||||
assertEquals(truth, readFile(filename));
|
||||
}
|
||||
|
||||
}
|
Reference in New Issue
Block a user