comments for digits.py sample
This commit is contained in:
@@ -2,6 +2,7 @@ import numpy as np
|
|||||||
import cv2
|
import cv2
|
||||||
import os
|
import os
|
||||||
from contextlib import contextmanager
|
from contextlib import contextmanager
|
||||||
|
import itertools as it
|
||||||
|
|
||||||
image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
|
image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
|
||||||
|
|
||||||
@@ -170,3 +171,22 @@ class RectSelector:
|
|||||||
return
|
return
|
||||||
x0, y0, x1, y1 = self.drag_rect
|
x0, y0, x1, y1 = self.drag_rect
|
||||||
cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
|
cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
|
||||||
|
|
||||||
|
|
||||||
|
def grouper(n, iterable, fillvalue=None):
|
||||||
|
'''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx'''
|
||||||
|
args = [iter(iterable)] * n
|
||||||
|
return it.izip_longest(fillvalue=fillvalue, *args)
|
||||||
|
|
||||||
|
def mosaic(w, imgs):
|
||||||
|
'''Make a grid from images.
|
||||||
|
|
||||||
|
w -- number of grid columns
|
||||||
|
imgs -- images (must have same size and format)
|
||||||
|
'''
|
||||||
|
imgs = iter(imgs)
|
||||||
|
img0 = imgs.next()
|
||||||
|
pad = np.zeros_like(img0)
|
||||||
|
imgs = it.chain([img0], imgs)
|
||||||
|
rows = grouper(w, imgs, pad)
|
||||||
|
return np.vstack(map(np.hstack, rows))
|
||||||
|
@@ -1,89 +1,78 @@
|
|||||||
|
'''
|
||||||
|
Neural network digit recognition sample.
|
||||||
|
Usage:
|
||||||
|
digits.py
|
||||||
|
|
||||||
|
Sample loads a dataset of handwritten digits from 'digits.png'.
|
||||||
|
Then it trains a neural network classifier on it and evaluates
|
||||||
|
its classification accuracy.
|
||||||
|
'''
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
import itertools as it
|
from common import mosaic
|
||||||
|
|
||||||
'''
|
|
||||||
from scipy.io import loadmat
|
|
||||||
|
|
||||||
m = loadmat('ex4data1.mat')
|
|
||||||
X = m['X'].reshape(-1, 20, 20)
|
|
||||||
X = np.transpose(X, (0, 2, 1))
|
|
||||||
img = np.vstack(map(np.hstack, X.reshape(-1, 100, 20, 20)))
|
|
||||||
img = np.uint8(np.clip(img, 0, 1)*255)
|
|
||||||
cv2.imwrite('digits.png', img)
|
|
||||||
'''
|
|
||||||
|
|
||||||
def unroll_responses(responses, class_n):
|
def unroll_responses(responses, class_n):
|
||||||
|
'''[1, 0, 2, ...] -> [[0, 1, 0], [1, 0, 0], [0, 0, 1], ...]'''
|
||||||
sample_n = len(responses)
|
sample_n = len(responses)
|
||||||
new_responses = np.zeros((sample_n, class_n), np.float32)
|
new_responses = np.zeros((sample_n, class_n), np.float32)
|
||||||
new_responses[np.arange(sample_n), responses] = 1
|
new_responses[np.arange(sample_n), responses] = 1
|
||||||
return new_responses
|
return new_responses
|
||||||
|
|
||||||
|
|
||||||
SZ = 20
|
SZ = 20 # size of each digit is SZ x SZ
|
||||||
|
CLASS_N = 10
|
||||||
digits_img = cv2.imread('digits.png', 0)
|
digits_img = cv2.imread('digits.png', 0)
|
||||||
|
|
||||||
|
# prepare dataset
|
||||||
h, w = digits_img.shape
|
h, w = digits_img.shape
|
||||||
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)]
|
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)]
|
||||||
digits = np.float32(digits).reshape(-1, SZ*SZ)
|
digits = np.float32(digits).reshape(-1, SZ*SZ)
|
||||||
N = len(digits)
|
N = len(digits)
|
||||||
labels = np.repeat(np.arange(10), N/10)
|
labels = np.repeat(np.arange(CLASS_N), N/CLASS_N)
|
||||||
|
|
||||||
|
# split it onto train and test subsets
|
||||||
shuffle = np.random.permutation(N)
|
shuffle = np.random.permutation(N)
|
||||||
train_n = int(0.9*N)
|
train_n = int(0.9*N)
|
||||||
|
|
||||||
digits_train, digits_test = np.split(digits[shuffle], [train_n])
|
digits_train, digits_test = np.split(digits[shuffle], [train_n])
|
||||||
labels_train, labels_test = np.split(labels[shuffle], [train_n])
|
labels_train, labels_test = np.split(labels[shuffle], [train_n])
|
||||||
|
|
||||||
labels_train_unrolled = unroll_responses(labels_train, 10)
|
# train model
|
||||||
|
|
||||||
model = cv2.ANN_MLP()
|
model = cv2.ANN_MLP()
|
||||||
layer_sizes = np.int32([SZ*SZ, 25, 10])
|
layer_sizes = np.int32([SZ*SZ, 25, CLASS_N])
|
||||||
model.create(layer_sizes)
|
model.create(layer_sizes)
|
||||||
|
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 100, 0.01),
|
||||||
# CvANN_MLP_TrainParams::BACKPROP,0.001
|
|
||||||
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01),
|
|
||||||
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
|
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
|
||||||
bp_dw_scale = 0.001,
|
bp_dw_scale = 0.001,
|
||||||
bp_moment_scale = 0.0 )
|
bp_moment_scale = 0.0 )
|
||||||
print 'training...'
|
print 'training...'
|
||||||
|
labels_train_unrolled = unroll_responses(labels_train, CLASS_N)
|
||||||
model.train(digits_train, labels_train_unrolled, None, params=params)
|
model.train(digits_train, labels_train_unrolled, None, params=params)
|
||||||
model.save('dig_nn.dat')
|
model.save('dig_nn.dat')
|
||||||
model.load('dig_nn.dat')
|
model.load('dig_nn.dat')
|
||||||
|
|
||||||
ret, resp = model.predict(digits_test)
|
def evaluate(model, samples, labels):
|
||||||
|
'''Evaluates classifier preformance on a given labeled samples set.'''
|
||||||
|
ret, resp = model.predict(samples)
|
||||||
resp = resp.argmax(-1)
|
resp = resp.argmax(-1)
|
||||||
error_mask = (resp == labels_test)
|
error_mask = (resp == labels)
|
||||||
print error_mask.mean()
|
accuracy = error_mask.mean()
|
||||||
|
return accuracy, error_mask
|
||||||
|
|
||||||
def grouper(n, iterable, fillvalue=None):
|
# evaluate model
|
||||||
"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
|
train_accuracy, _ = evaluate(model, digits_train, labels_train)
|
||||||
args = [iter(iterable)] * n
|
print 'train accuracy: ', train_accuracy
|
||||||
return it.izip_longest(fillvalue=fillvalue, *args)
|
test_accuracy, test_error_mask = evaluate(model, digits_test, labels_test)
|
||||||
|
print 'test accuracy: ', test_accuracy
|
||||||
|
|
||||||
def mosaic(w, imgs):
|
# visualize test results
|
||||||
imgs = iter(imgs)
|
vis = []
|
||||||
img0 = imgs.next()
|
for img, flag in zip(digits_test, test_error_mask):
|
||||||
pad = np.zeros_like(img0)
|
img = np.uint8(img).reshape(SZ, SZ)
|
||||||
imgs = it.chain([img0], imgs)
|
|
||||||
rows = grouper(w, imgs, pad)
|
|
||||||
return np.vstack(map(np.hstack, rows))
|
|
||||||
|
|
||||||
test_img = np.uint8(digits_test).reshape(-1, SZ, SZ)
|
|
||||||
|
|
||||||
def vis_resp(img, flag):
|
|
||||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||||||
if not flag:
|
if not flag:
|
||||||
img[...,:2] = 0
|
img[...,:2] = 0
|
||||||
return img
|
vis.append(img)
|
||||||
|
vis = mosaic(25, vis)
|
||||||
test_img = mosaic(25, it.starmap(vis_resp, it.izip(test_img, error_mask)))
|
cv2.imshow('test', vis)
|
||||||
cv2.imshow('test', test_img)
|
|
||||||
cv2.waitKey()
|
cv2.waitKey()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user