added to FeatureDetector test the check of detect() on empty data
This commit is contained in:
parent
27690e3b6e
commit
43716f31b9
@ -60,112 +60,175 @@ public:
|
|||||||
CvTest( testName, "cv::FeatureDetector::detect"), fdetector(_fdetector) {}
|
CvTest( testName, "cv::FeatureDetector::detect"), fdetector(_fdetector) {}
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
virtual void run( int /*start_from*/ )
|
bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 );
|
||||||
{
|
void compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints );
|
||||||
const float maxPtDif = 1.f;
|
|
||||||
const float maxSizeDif = 1.f;
|
|
||||||
const float maxAngleDif = 2.f;
|
|
||||||
const float maxResponseDif = 0.1f;
|
|
||||||
|
|
||||||
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
void emptyDataTest();
|
||||||
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz";
|
void regressionTest(); // TODO test of detect() with mask
|
||||||
|
|
||||||
if( fdetector.empty() )
|
virtual void run( int );
|
||||||
{
|
|
||||||
ts->printf( CvTS::LOG, "Feature detector is empty" );
|
|
||||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
Mat image = imread( imgFilename, 0 );
|
|
||||||
if( image.empty() )
|
|
||||||
{
|
|
||||||
ts->printf( CvTS::LOG, "image %s can not be read \n", imgFilename.c_str() );
|
|
||||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
FileStorage fs( resFilename, FileStorage::READ );
|
|
||||||
|
|
||||||
vector<KeyPoint> calcKeypoints;
|
|
||||||
fdetector->detect( image, calcKeypoints );
|
|
||||||
|
|
||||||
if( fs.isOpened() ) // compare computed and valid keypoints
|
|
||||||
{
|
|
||||||
// TODO compare saved feature detector params with current ones
|
|
||||||
vector<KeyPoint> validKeypoints;
|
|
||||||
read( fs["keypoints"], validKeypoints );
|
|
||||||
if( validKeypoints.empty() )
|
|
||||||
{
|
|
||||||
ts->printf( CvTS::LOG, "Keypoints can nod be read\n" );
|
|
||||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
int progress = 0, progressCount = validKeypoints.size() * calcKeypoints.size();
|
|
||||||
int badPointCount = 0, commonPointCount = max(validKeypoints.size(), calcKeypoints.size());
|
|
||||||
for( size_t v = 0; v < validKeypoints.size(); v++ )
|
|
||||||
{
|
|
||||||
int nearestIdx = -1;
|
|
||||||
float minDist = std::numeric_limits<float>::max();
|
|
||||||
|
|
||||||
for( size_t c = 0; c < calcKeypoints.size(); c++ )
|
|
||||||
{
|
|
||||||
progress = update_progress( progress, v*calcKeypoints.size() + c, progressCount, 0 );
|
|
||||||
float curDist = (float)norm( calcKeypoints[c].pt - validKeypoints[v].pt );
|
|
||||||
if( curDist < minDist )
|
|
||||||
{
|
|
||||||
minDist = curDist;
|
|
||||||
nearestIdx = c;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if( minDist > maxPtDif ||
|
|
||||||
fabs(calcKeypoints[nearestIdx].size - validKeypoints[v].size) > maxSizeDif ||
|
|
||||||
abs(calcKeypoints[nearestIdx].angle - validKeypoints[v].angle) > maxAngleDif ||
|
|
||||||
abs(calcKeypoints[nearestIdx].response - validKeypoints[v].response) > maxResponseDif ||
|
|
||||||
calcKeypoints[nearestIdx].octave != validKeypoints[v].octave
|
|
||||||
|
|
||||||
// TODO !!!!!!!
|
|
||||||
/*||
|
|
||||||
calcKeypoints[nearestIdx].class_id != validKeypoints[v].class_id*/ )
|
|
||||||
{
|
|
||||||
badPointCount++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
ts->printf( CvTS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n",
|
|
||||||
badPointCount, validKeypoints.size(), calcKeypoints.size() );
|
|
||||||
if( badPointCount > 0.9 * commonPointCount )
|
|
||||||
{
|
|
||||||
ts->printf( CvTS::LOG, "Bad accuracy!\n" );
|
|
||||||
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY );
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else // write
|
|
||||||
{
|
|
||||||
fs.open( resFilename, FileStorage::WRITE );
|
|
||||||
if( !fs.isOpened() )
|
|
||||||
{
|
|
||||||
ts->printf( CvTS::LOG, "file %s can not be opened to write\n", resFilename.c_str() );
|
|
||||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
fs << "detector_params" << "{";
|
|
||||||
fdetector->write( fs );
|
|
||||||
fs << "}";
|
|
||||||
|
|
||||||
write( fs, "keypoints", calcKeypoints );
|
|
||||||
}
|
|
||||||
}
|
|
||||||
ts->set_failed_test_info( CvTS::OK );
|
|
||||||
}
|
|
||||||
|
|
||||||
Ptr<FeatureDetector> fdetector;
|
Ptr<FeatureDetector> fdetector;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
void CV_FeatureDetectorTest::emptyDataTest()
|
||||||
|
{
|
||||||
|
Mat image;
|
||||||
|
vector<KeyPoint> keypoints;
|
||||||
|
try
|
||||||
|
{
|
||||||
|
fdetector->detect( image, keypoints );
|
||||||
|
}
|
||||||
|
catch(...)
|
||||||
|
{
|
||||||
|
ts->printf( CvTS::LOG, "emptyDataTest: Detect() on empty image must not generate exeption\n" );
|
||||||
|
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if( !keypoints.empty() )
|
||||||
|
{
|
||||||
|
ts->printf( CvTS::LOG, "emptyDataTest: Detect() on empty image must return empty keypoints vector\n" );
|
||||||
|
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CV_FeatureDetectorTest::isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 )
|
||||||
|
{
|
||||||
|
const float maxPtDif = 1.f;
|
||||||
|
const float maxSizeDif = 1.f;
|
||||||
|
const float maxAngleDif = 2.f;
|
||||||
|
const float maxResponseDif = 0.1f;
|
||||||
|
|
||||||
|
float dist = (float)norm( p1.pt - p2.pt );
|
||||||
|
return (dist < maxPtDif &&
|
||||||
|
fabs(p1.size - p2.size) < maxSizeDif &&
|
||||||
|
abs(p1.angle - p2.angle) < maxAngleDif &&
|
||||||
|
abs(p1.response - p2.response) < maxResponseDif &&
|
||||||
|
p1.octave == p2.octave &&
|
||||||
|
p1.class_id == p2.class_id );
|
||||||
|
}
|
||||||
|
|
||||||
|
void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints )
|
||||||
|
{
|
||||||
|
const float maxCountRatioDif = 0.01f;
|
||||||
|
|
||||||
|
// Compare counts of validation and calculated keypoints.
|
||||||
|
float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size();
|
||||||
|
if( countRatio < 1 - maxCountRatioDif || countRatio > 1.f + maxCountRatioDif )
|
||||||
|
{
|
||||||
|
ts->printf( CvTS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d)!\n",
|
||||||
|
validKeypoints.size(), calcKeypoints.size() );
|
||||||
|
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY );
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
int progress = 0, progressCount = validKeypoints.size() * calcKeypoints.size();
|
||||||
|
int badPointCount = 0, commonPointCount = max(validKeypoints.size(), calcKeypoints.size());
|
||||||
|
for( size_t v = 0; v < validKeypoints.size(); v++ )
|
||||||
|
{
|
||||||
|
int nearestIdx = -1;
|
||||||
|
float minDist = std::numeric_limits<float>::max();
|
||||||
|
|
||||||
|
for( size_t c = 0; c < calcKeypoints.size(); c++ )
|
||||||
|
{
|
||||||
|
progress = update_progress( progress, v*calcKeypoints.size() + c, progressCount, 0 );
|
||||||
|
float curDist = (float)norm( calcKeypoints[c].pt - validKeypoints[v].pt );
|
||||||
|
if( curDist < minDist )
|
||||||
|
{
|
||||||
|
minDist = curDist;
|
||||||
|
nearestIdx = c;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
assert( minDist >= 0 );
|
||||||
|
if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) )
|
||||||
|
badPointCount++;
|
||||||
|
}
|
||||||
|
ts->printf( CvTS::LOG, "regressionTest: badPointCount = %d; validPointCount = %d; calcPointCount = %d\n",
|
||||||
|
badPointCount, validKeypoints.size(), calcKeypoints.size() );
|
||||||
|
if( badPointCount > 0.9 * commonPointCount )
|
||||||
|
{
|
||||||
|
ts->printf( CvTS::LOG, " - Bad accuracy!\n" );
|
||||||
|
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY );
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
ts->printf( CvTS::LOG, " - OK\n" );
|
||||||
|
}
|
||||||
|
|
||||||
|
void CV_FeatureDetectorTest::regressionTest()
|
||||||
|
{
|
||||||
|
assert( !fdetector.empty() );
|
||||||
|
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
||||||
|
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz";
|
||||||
|
|
||||||
|
// Read the test image.
|
||||||
|
Mat image = imread( imgFilename, 0 );
|
||||||
|
if( image.empty() )
|
||||||
|
{
|
||||||
|
ts->printf( CvTS::LOG, "image %s can not be read \n", imgFilename.c_str() );
|
||||||
|
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
FileStorage fs( resFilename, FileStorage::READ );
|
||||||
|
|
||||||
|
// Compute keypoints.
|
||||||
|
vector<KeyPoint> calcKeypoints;
|
||||||
|
fdetector->detect( image, calcKeypoints );
|
||||||
|
|
||||||
|
if( fs.isOpened() ) // Compare computed and valid keypoints.
|
||||||
|
{
|
||||||
|
// TODO compare saved feature detector params with current ones
|
||||||
|
|
||||||
|
// Read validation keypoints set.
|
||||||
|
vector<KeyPoint> validKeypoints;
|
||||||
|
read( fs["keypoints"], validKeypoints );
|
||||||
|
if( validKeypoints.empty() )
|
||||||
|
{
|
||||||
|
ts->printf( CvTS::LOG, "Keypoints can nod be read\n" );
|
||||||
|
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
compareKeypointSets( validKeypoints, calcKeypoints );
|
||||||
|
}
|
||||||
|
else // Write detector parameters and computed keypoints as validation data.
|
||||||
|
{
|
||||||
|
fs.open( resFilename, FileStorage::WRITE );
|
||||||
|
if( !fs.isOpened() )
|
||||||
|
{
|
||||||
|
ts->printf( CvTS::LOG, "file %s can not be opened to write\n", resFilename.c_str() );
|
||||||
|
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
fs << "detector_params" << "{";
|
||||||
|
fdetector->write( fs );
|
||||||
|
fs << "}";
|
||||||
|
|
||||||
|
write( fs, "keypoints", calcKeypoints );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void CV_FeatureDetectorTest::run( int /*start_from*/ )
|
||||||
|
{
|
||||||
|
if( fdetector.empty() )
|
||||||
|
{
|
||||||
|
ts->printf( CvTS::LOG, "Feature detector is empty" );
|
||||||
|
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
emptyDataTest();
|
||||||
|
regressionTest();
|
||||||
|
|
||||||
|
ts->set_failed_test_info( CvTS::OK );
|
||||||
|
}
|
||||||
|
|
||||||
/****************************************************************************************\
|
/****************************************************************************************\
|
||||||
* Regression tests for descriptor extractors. *
|
* Regression tests for descriptor extractors. *
|
||||||
\****************************************************************************************/
|
\****************************************************************************************/
|
||||||
@ -707,6 +770,7 @@ void CV_DescriptorMatcherTest::run( int )
|
|||||||
|
|
||||||
/*
|
/*
|
||||||
* Detectors
|
* Detectors
|
||||||
|
* "detector-fast, detector-gftt, detector-harris, detector-mser, detector-sift, detector-star, detector-surf"
|
||||||
*/
|
*/
|
||||||
CV_FeatureDetectorTest fastTest( "detector-fast", createFeatureDetector("FAST") );
|
CV_FeatureDetectorTest fastTest( "detector-fast", createFeatureDetector("FAST") );
|
||||||
CV_FeatureDetectorTest gfttTest( "detector-gftt", createFeatureDetector("GFTT") );
|
CV_FeatureDetectorTest gfttTest( "detector-gftt", createFeatureDetector("GFTT") );
|
||||||
|
Loading…
x
Reference in New Issue
Block a user