added to FeatureDetector test the check of detect() on empty data
This commit is contained in:
parent
27690e3b6e
commit
43716f31b9
@ -60,112 +60,175 @@ public:
|
||||
CvTest( testName, "cv::FeatureDetector::detect"), fdetector(_fdetector) {}
|
||||
|
||||
protected:
|
||||
virtual void run( int /*start_from*/ )
|
||||
{
|
||||
const float maxPtDif = 1.f;
|
||||
const float maxSizeDif = 1.f;
|
||||
const float maxAngleDif = 2.f;
|
||||
const float maxResponseDif = 0.1f;
|
||||
bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 );
|
||||
void compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints );
|
||||
|
||||
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
||||
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz";
|
||||
void emptyDataTest();
|
||||
void regressionTest(); // TODO test of detect() with mask
|
||||
|
||||
if( fdetector.empty() )
|
||||
{
|
||||
ts->printf( CvTS::LOG, "Feature detector is empty" );
|
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
Mat image = imread( imgFilename, 0 );
|
||||
if( image.empty() )
|
||||
{
|
||||
ts->printf( CvTS::LOG, "image %s can not be read \n", imgFilename.c_str() );
|
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
FileStorage fs( resFilename, FileStorage::READ );
|
||||
|
||||
vector<KeyPoint> calcKeypoints;
|
||||
fdetector->detect( image, calcKeypoints );
|
||||
|
||||
if( fs.isOpened() ) // compare computed and valid keypoints
|
||||
{
|
||||
// TODO compare saved feature detector params with current ones
|
||||
vector<KeyPoint> validKeypoints;
|
||||
read( fs["keypoints"], validKeypoints );
|
||||
if( validKeypoints.empty() )
|
||||
{
|
||||
ts->printf( CvTS::LOG, "Keypoints can nod be read\n" );
|
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
int progress = 0, progressCount = validKeypoints.size() * calcKeypoints.size();
|
||||
int badPointCount = 0, commonPointCount = max(validKeypoints.size(), calcKeypoints.size());
|
||||
for( size_t v = 0; v < validKeypoints.size(); v++ )
|
||||
{
|
||||
int nearestIdx = -1;
|
||||
float minDist = std::numeric_limits<float>::max();
|
||||
|
||||
for( size_t c = 0; c < calcKeypoints.size(); c++ )
|
||||
{
|
||||
progress = update_progress( progress, v*calcKeypoints.size() + c, progressCount, 0 );
|
||||
float curDist = (float)norm( calcKeypoints[c].pt - validKeypoints[v].pt );
|
||||
if( curDist < minDist )
|
||||
{
|
||||
minDist = curDist;
|
||||
nearestIdx = c;
|
||||
}
|
||||
}
|
||||
|
||||
if( minDist > maxPtDif ||
|
||||
fabs(calcKeypoints[nearestIdx].size - validKeypoints[v].size) > maxSizeDif ||
|
||||
abs(calcKeypoints[nearestIdx].angle - validKeypoints[v].angle) > maxAngleDif ||
|
||||
abs(calcKeypoints[nearestIdx].response - validKeypoints[v].response) > maxResponseDif ||
|
||||
calcKeypoints[nearestIdx].octave != validKeypoints[v].octave
|
||||
|
||||
// TODO !!!!!!!
|
||||
/*||
|
||||
calcKeypoints[nearestIdx].class_id != validKeypoints[v].class_id*/ )
|
||||
{
|
||||
badPointCount++;
|
||||
}
|
||||
}
|
||||
ts->printf( CvTS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n",
|
||||
badPointCount, validKeypoints.size(), calcKeypoints.size() );
|
||||
if( badPointCount > 0.9 * commonPointCount )
|
||||
{
|
||||
ts->printf( CvTS::LOG, "Bad accuracy!\n" );
|
||||
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
}
|
||||
else // write
|
||||
{
|
||||
fs.open( resFilename, FileStorage::WRITE );
|
||||
if( !fs.isOpened() )
|
||||
{
|
||||
ts->printf( CvTS::LOG, "file %s can not be opened to write\n", resFilename.c_str() );
|
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
fs << "detector_params" << "{";
|
||||
fdetector->write( fs );
|
||||
fs << "}";
|
||||
|
||||
write( fs, "keypoints", calcKeypoints );
|
||||
}
|
||||
}
|
||||
ts->set_failed_test_info( CvTS::OK );
|
||||
}
|
||||
virtual void run( int );
|
||||
|
||||
Ptr<FeatureDetector> fdetector;
|
||||
};
|
||||
|
||||
void CV_FeatureDetectorTest::emptyDataTest()
|
||||
{
|
||||
Mat image;
|
||||
vector<KeyPoint> keypoints;
|
||||
try
|
||||
{
|
||||
fdetector->detect( image, keypoints );
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
ts->printf( CvTS::LOG, "emptyDataTest: Detect() on empty image must not generate exeption\n" );
|
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
|
||||
return;
|
||||
}
|
||||
|
||||
if( !keypoints.empty() )
|
||||
{
|
||||
ts->printf( CvTS::LOG, "emptyDataTest: Detect() on empty image must return empty keypoints vector\n" );
|
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
bool CV_FeatureDetectorTest::isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 )
|
||||
{
|
||||
const float maxPtDif = 1.f;
|
||||
const float maxSizeDif = 1.f;
|
||||
const float maxAngleDif = 2.f;
|
||||
const float maxResponseDif = 0.1f;
|
||||
|
||||
float dist = (float)norm( p1.pt - p2.pt );
|
||||
return (dist < maxPtDif &&
|
||||
fabs(p1.size - p2.size) < maxSizeDif &&
|
||||
abs(p1.angle - p2.angle) < maxAngleDif &&
|
||||
abs(p1.response - p2.response) < maxResponseDif &&
|
||||
p1.octave == p2.octave &&
|
||||
p1.class_id == p2.class_id );
|
||||
}
|
||||
|
||||
void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints )
|
||||
{
|
||||
const float maxCountRatioDif = 0.01f;
|
||||
|
||||
// Compare counts of validation and calculated keypoints.
|
||||
float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size();
|
||||
if( countRatio < 1 - maxCountRatioDif || countRatio > 1.f + maxCountRatioDif )
|
||||
{
|
||||
ts->printf( CvTS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d)!\n",
|
||||
validKeypoints.size(), calcKeypoints.size() );
|
||||
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
|
||||
int progress = 0, progressCount = validKeypoints.size() * calcKeypoints.size();
|
||||
int badPointCount = 0, commonPointCount = max(validKeypoints.size(), calcKeypoints.size());
|
||||
for( size_t v = 0; v < validKeypoints.size(); v++ )
|
||||
{
|
||||
int nearestIdx = -1;
|
||||
float minDist = std::numeric_limits<float>::max();
|
||||
|
||||
for( size_t c = 0; c < calcKeypoints.size(); c++ )
|
||||
{
|
||||
progress = update_progress( progress, v*calcKeypoints.size() + c, progressCount, 0 );
|
||||
float curDist = (float)norm( calcKeypoints[c].pt - validKeypoints[v].pt );
|
||||
if( curDist < minDist )
|
||||
{
|
||||
minDist = curDist;
|
||||
nearestIdx = c;
|
||||
}
|
||||
}
|
||||
|
||||
assert( minDist >= 0 );
|
||||
if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) )
|
||||
badPointCount++;
|
||||
}
|
||||
ts->printf( CvTS::LOG, "regressionTest: badPointCount = %d; validPointCount = %d; calcPointCount = %d\n",
|
||||
badPointCount, validKeypoints.size(), calcKeypoints.size() );
|
||||
if( badPointCount > 0.9 * commonPointCount )
|
||||
{
|
||||
ts->printf( CvTS::LOG, " - Bad accuracy!\n" );
|
||||
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
ts->printf( CvTS::LOG, " - OK\n" );
|
||||
}
|
||||
|
||||
void CV_FeatureDetectorTest::regressionTest()
|
||||
{
|
||||
assert( !fdetector.empty() );
|
||||
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
||||
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz";
|
||||
|
||||
// Read the test image.
|
||||
Mat image = imread( imgFilename, 0 );
|
||||
if( image.empty() )
|
||||
{
|
||||
ts->printf( CvTS::LOG, "image %s can not be read \n", imgFilename.c_str() );
|
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
FileStorage fs( resFilename, FileStorage::READ );
|
||||
|
||||
// Compute keypoints.
|
||||
vector<KeyPoint> calcKeypoints;
|
||||
fdetector->detect( image, calcKeypoints );
|
||||
|
||||
if( fs.isOpened() ) // Compare computed and valid keypoints.
|
||||
{
|
||||
// TODO compare saved feature detector params with current ones
|
||||
|
||||
// Read validation keypoints set.
|
||||
vector<KeyPoint> validKeypoints;
|
||||
read( fs["keypoints"], validKeypoints );
|
||||
if( validKeypoints.empty() )
|
||||
{
|
||||
ts->printf( CvTS::LOG, "Keypoints can nod be read\n" );
|
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
compareKeypointSets( validKeypoints, calcKeypoints );
|
||||
}
|
||||
else // Write detector parameters and computed keypoints as validation data.
|
||||
{
|
||||
fs.open( resFilename, FileStorage::WRITE );
|
||||
if( !fs.isOpened() )
|
||||
{
|
||||
ts->printf( CvTS::LOG, "file %s can not be opened to write\n", resFilename.c_str() );
|
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
fs << "detector_params" << "{";
|
||||
fdetector->write( fs );
|
||||
fs << "}";
|
||||
|
||||
write( fs, "keypoints", calcKeypoints );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CV_FeatureDetectorTest::run( int /*start_from*/ )
|
||||
{
|
||||
if( fdetector.empty() )
|
||||
{
|
||||
ts->printf( CvTS::LOG, "Feature detector is empty" );
|
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
emptyDataTest();
|
||||
regressionTest();
|
||||
|
||||
ts->set_failed_test_info( CvTS::OK );
|
||||
}
|
||||
|
||||
/****************************************************************************************\
|
||||
* Regression tests for descriptor extractors. *
|
||||
\****************************************************************************************/
|
||||
@ -707,6 +770,7 @@ void CV_DescriptorMatcherTest::run( int )
|
||||
|
||||
/*
|
||||
* Detectors
|
||||
* "detector-fast, detector-gftt, detector-harris, detector-mser, detector-sift, detector-star, detector-surf"
|
||||
*/
|
||||
CV_FeatureDetectorTest fastTest( "detector-fast", createFeatureDetector("FAST") );
|
||||
CV_FeatureDetectorTest gfttTest( "detector-gftt", createFeatureDetector("GFTT") );
|
||||
|
Loading…
x
Reference in New Issue
Block a user