Fixed test samples for tests with different borders
Added new test (separating two points)
This commit is contained in:
parent
bfdca05f25
commit
41c0a38344
@ -146,7 +146,7 @@ Ptr<SVMSGD> SVMSGD::create()
|
|||||||
|
|
||||||
std::pair<bool,bool> SVMSGDImpl::areClassesEmpty(Mat responses)
|
std::pair<bool,bool> SVMSGDImpl::areClassesEmpty(Mat responses)
|
||||||
{
|
{
|
||||||
CV_Assert(responses.cols == 1);
|
CV_Assert(responses.cols == 1 || responses.rows == 1);
|
||||||
std::pair<bool,bool> emptyInClasses(true, true);
|
std::pair<bool,bool> emptyInClasses(true, true);
|
||||||
int limit_index = responses.rows;
|
int limit_index = responses.rows;
|
||||||
|
|
||||||
|
@ -160,10 +160,7 @@ TEST(ML_DTree, save_load) { CV_SLMLTest test( CV_DTREE ); test.safe_run(); }
|
|||||||
TEST(ML_Boost, save_load) { CV_SLMLTest test( CV_BOOST ); test.safe_run(); }
|
TEST(ML_Boost, save_load) { CV_SLMLTest test( CV_BOOST ); test.safe_run(); }
|
||||||
TEST(ML_RTrees, save_load) { CV_SLMLTest test( CV_RTREES ); test.safe_run(); }
|
TEST(ML_RTrees, save_load) { CV_SLMLTest test( CV_RTREES ); test.safe_run(); }
|
||||||
TEST(DISABLED_ML_ERTrees, save_load) { CV_SLMLTest test( CV_ERTREES ); test.safe_run(); }
|
TEST(DISABLED_ML_ERTrees, save_load) { CV_SLMLTest test( CV_ERTREES ); test.safe_run(); }
|
||||||
TEST(MV_SVMSGD, save_load){
|
TEST(MV_SVMSGD, save_load){ CV_SLMLTest test( CV_SVMSGD ); test.safe_run(); }
|
||||||
CV_SLMLTest test( CV_SVMSGD );
|
|
||||||
test.safe_run();
|
|
||||||
}
|
|
||||||
|
|
||||||
class CV_LegacyTest : public cvtest::BaseTest
|
class CV_LegacyTest : public cvtest::BaseTest
|
||||||
{
|
{
|
||||||
|
@ -58,39 +58,40 @@ public:
|
|||||||
UNIFORM_DIFFERENT_SCALES
|
UNIFORM_DIFFERENT_SCALES
|
||||||
};
|
};
|
||||||
|
|
||||||
CV_SVMSGDTrainTest(Mat _weights, float shift, TrainDataType type, double precision = 0.01);
|
CV_SVMSGDTrainTest(const Mat &_weights, float shift, TrainDataType type, double precision = 0.01);
|
||||||
private:
|
private:
|
||||||
virtual void run( int start_from );
|
virtual void run( int start_from );
|
||||||
static float decisionFunction(const Mat &sample, const Mat &weights, float shift);
|
static float decisionFunction(const Mat &sample, const Mat &weights, float shift);
|
||||||
void makeTrainData(Mat weights, float shift);
|
void makeTrainData(Mat weights, float shift);
|
||||||
void makeTestData(Mat weights, float shift);
|
void makeTestData(Mat weights, float shift);
|
||||||
void generateSameScaleData(Mat &samples);
|
void generateSameBorders(int featureCount);
|
||||||
void generateDifferentScalesData(Mat &samples, float shift);
|
void generateDifferentBorders(int featureCount);
|
||||||
|
|
||||||
TrainDataType type;
|
TrainDataType type;
|
||||||
double precision;
|
double precision;
|
||||||
|
std::vector<std::pair<float,float> > borders;
|
||||||
cv::Ptr<TrainData> data;
|
cv::Ptr<TrainData> data;
|
||||||
cv::Mat testSamples;
|
cv::Mat testSamples;
|
||||||
cv::Mat testResponses;
|
cv::Mat testResponses;
|
||||||
static const int TEST_VALUE_LIMIT = 500;
|
static const int TEST_VALUE_LIMIT = 500;
|
||||||
};
|
};
|
||||||
|
|
||||||
void CV_SVMSGDTrainTest::generateSameScaleData(Mat &samples)
|
void CV_SVMSGDTrainTest::generateSameBorders(int featureCount)
|
||||||
|
{
|
||||||
|
float lowerLimit = -TEST_VALUE_LIMIT;
|
||||||
|
float upperLimit = TEST_VALUE_LIMIT;
|
||||||
|
|
||||||
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
|
||||||
|
{
|
||||||
|
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void CV_SVMSGDTrainTest::generateDifferentBorders(int featureCount)
|
||||||
{
|
{
|
||||||
float lowerLimit = -TEST_VALUE_LIMIT;
|
float lowerLimit = -TEST_VALUE_LIMIT;
|
||||||
float upperLimit = TEST_VALUE_LIMIT;
|
float upperLimit = TEST_VALUE_LIMIT;
|
||||||
cv::RNG rng(0);
|
cv::RNG rng(0);
|
||||||
rng.fill(samples, RNG::UNIFORM, lowerLimit, upperLimit);
|
|
||||||
}
|
|
||||||
|
|
||||||
void CV_SVMSGDTrainTest::generateDifferentScalesData(Mat &samples, float shift)
|
|
||||||
{
|
|
||||||
int featureCount = samples.cols;
|
|
||||||
|
|
||||||
float lowerLimit = -TEST_VALUE_LIMIT;
|
|
||||||
float upperLimit = TEST_VALUE_LIMIT;
|
|
||||||
cv::RNG rng(10);
|
|
||||||
|
|
||||||
|
|
||||||
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
|
||||||
{
|
{
|
||||||
@ -98,11 +99,11 @@ void CV_SVMSGDTrainTest::generateDifferentScalesData(Mat &samples, float shift)
|
|||||||
|
|
||||||
if (crit > 0)
|
if (crit > 0)
|
||||||
{
|
{
|
||||||
rng.fill(samples.col(featureIndex), RNG::UNIFORM, lowerLimit - shift, upperLimit - shift);
|
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit));
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
rng.fill(samples.col(featureIndex), RNG::UNIFORM, lowerLimit/10, upperLimit/10);
|
borders.push_back(std::pair<float,float>(lowerLimit/1000, upperLimit/1000));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -111,21 +112,16 @@ void CV_SVMSGDTrainTest::makeTrainData(Mat weights, float shift)
|
|||||||
{
|
{
|
||||||
int datasize = 100000;
|
int datasize = 100000;
|
||||||
int featureCount = weights.cols;
|
int featureCount = weights.cols;
|
||||||
cv::Mat samples = cv::Mat::zeros(datasize, featureCount, CV_32FC1);
|
RNG rng(0);
|
||||||
cv::Mat responses = cv::Mat::zeros(datasize, 1, CV_32FC1);
|
|
||||||
|
|
||||||
switch(type)
|
cv::Mat samples = cv::Mat::zeros(datasize, featureCount, CV_32FC1);
|
||||||
|
|
||||||
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
|
||||||
{
|
{
|
||||||
case UNIFORM_SAME_SCALE:
|
rng.fill(samples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second);
|
||||||
generateSameScaleData(samples);
|
|
||||||
break;
|
|
||||||
case UNIFORM_DIFFERENT_SCALES:
|
|
||||||
generateDifferentScalesData(samples, shift);
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
CV_Error(CV_StsBadArg, "Unknown train data type");
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
cv::Mat responses = cv::Mat::zeros(datasize, 1, CV_32FC1);
|
||||||
for (int sampleIndex = 0; sampleIndex < datasize; sampleIndex++)
|
for (int sampleIndex = 0; sampleIndex < datasize; sampleIndex++)
|
||||||
{
|
{
|
||||||
responses.at<float>(sampleIndex) = decisionFunction(samples.row(sampleIndex), weights, shift) > 0 ? 1 : -1;
|
responses.at<float>(sampleIndex) = decisionFunction(samples.row(sampleIndex), weights, shift) > 0 ? 1 : -1;
|
||||||
@ -138,14 +134,14 @@ void CV_SVMSGDTrainTest::makeTestData(Mat weights, float shift)
|
|||||||
{
|
{
|
||||||
int testSamplesCount = 100000;
|
int testSamplesCount = 100000;
|
||||||
int featureCount = weights.cols;
|
int featureCount = weights.cols;
|
||||||
|
|
||||||
float lowerLimit = -TEST_VALUE_LIMIT;
|
|
||||||
float upperLimit = TEST_VALUE_LIMIT;
|
|
||||||
|
|
||||||
cv::RNG rng(0);
|
cv::RNG rng(0);
|
||||||
|
|
||||||
testSamples.create(testSamplesCount, featureCount, CV_32FC1);
|
testSamples.create(testSamplesCount, featureCount, CV_32FC1);
|
||||||
rng.fill(testSamples, RNG::UNIFORM, lowerLimit, upperLimit);
|
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
|
||||||
|
{
|
||||||
|
rng.fill(testSamples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second);
|
||||||
|
}
|
||||||
|
|
||||||
testResponses.create(testSamplesCount, 1, CV_32FC1);
|
testResponses.create(testSamplesCount, 1, CV_32FC1);
|
||||||
|
|
||||||
for (int i = 0 ; i < testSamplesCount; i++)
|
for (int i = 0 ; i < testSamplesCount; i++)
|
||||||
@ -154,10 +150,25 @@ void CV_SVMSGDTrainTest::makeTestData(Mat weights, float shift)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(Mat weights, float shift, TrainDataType _type, double _precision)
|
CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(const Mat &weights, float shift, TrainDataType _type, double _precision)
|
||||||
{
|
{
|
||||||
type = _type;
|
type = _type;
|
||||||
precision = _precision;
|
precision = _precision;
|
||||||
|
|
||||||
|
int featureCount = weights.cols;
|
||||||
|
|
||||||
|
switch(type)
|
||||||
|
{
|
||||||
|
case UNIFORM_SAME_SCALE:
|
||||||
|
generateSameBorders(featureCount);
|
||||||
|
break;
|
||||||
|
case UNIFORM_DIFFERENT_SCALES:
|
||||||
|
generateDifferentBorders(featureCount);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
CV_Error(CV_StsBadArg, "Unknown train data type");
|
||||||
|
}
|
||||||
|
|
||||||
makeTrainData(weights, shift);
|
makeTrainData(weights, shift);
|
||||||
makeTestData(weights, shift);
|
makeTestData(weights, shift);
|
||||||
}
|
}
|
||||||
@ -271,7 +282,7 @@ TEST(ML_SVMSGD, trainDifferentScales5)
|
|||||||
float shift = 0;
|
float shift = 0;
|
||||||
makeWeightsAndShift(featureCount, weights, shift);
|
makeWeightsAndShift(featureCount, weights, shift);
|
||||||
|
|
||||||
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.05);
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01);
|
||||||
test.safe_run();
|
test.safe_run();
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -284,6 +295,44 @@ TEST(ML_SVMSGD, trainDifferentScales100)
|
|||||||
float shift = 0;
|
float shift = 0;
|
||||||
makeWeightsAndShift(featureCount, weights, shift);
|
makeWeightsAndShift(featureCount, weights, shift);
|
||||||
|
|
||||||
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.10);
|
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01);
|
||||||
test.safe_run();
|
test.safe_run();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST(ML_SVMSGD, twoPoints)
|
||||||
|
{
|
||||||
|
Mat samples(2, 2, CV_32FC1);
|
||||||
|
samples.at<float>(0,0) = 0;
|
||||||
|
samples.at<float>(0,1) = 0;
|
||||||
|
samples.at<float>(1,0) = 1000;
|
||||||
|
samples.at<float>(1,1) = 1;
|
||||||
|
|
||||||
|
Mat responses(2, 1, CV_32FC1);
|
||||||
|
responses.at<float>(0) = -1;
|
||||||
|
responses.at<float>(1) = 1;
|
||||||
|
|
||||||
|
cv::Ptr<TrainData> trainData = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses);
|
||||||
|
|
||||||
|
Mat realWeights(1, 2, CV_32FC1);
|
||||||
|
realWeights.at<float>(0) = 1000;
|
||||||
|
realWeights.at<float>(1) = 1;
|
||||||
|
|
||||||
|
float realShift = -500000.5;
|
||||||
|
|
||||||
|
float normRealWeights = norm(realWeights);
|
||||||
|
realWeights /= normRealWeights;
|
||||||
|
realShift /= normRealWeights;
|
||||||
|
|
||||||
|
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
|
||||||
|
svmsgd->setOptimalParameters();
|
||||||
|
svmsgd->train( trainData );
|
||||||
|
|
||||||
|
Mat foundWeights = svmsgd->getWeights();
|
||||||
|
float foundShift = svmsgd->getShift();
|
||||||
|
|
||||||
|
float normFoundWeights = norm(foundWeights);
|
||||||
|
foundWeights /= normFoundWeights;
|
||||||
|
foundShift /= normFoundWeights;
|
||||||
|
CV_Assert((norm(foundWeights - realWeights) < 0.001) && (abs((foundShift - realShift) / realShift) < 0.05));
|
||||||
|
}
|
||||||
|
|
||||||
|
@ -48,8 +48,8 @@ bool doTrain( const Mat samples, const Mat responses, Mat &weights, float &shift
|
|||||||
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
|
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
|
||||||
svmsgd->setOptimalParameters();
|
svmsgd->setOptimalParameters();
|
||||||
|
|
||||||
cv::Ptr<TrainData> train_data = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses);
|
cv::Ptr<TrainData> trainData = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses);
|
||||||
svmsgd->train( train_data );
|
svmsgd->train( trainData );
|
||||||
|
|
||||||
if (svmsgd->isTrained())
|
if (svmsgd->isTrained())
|
||||||
{
|
{
|
||||||
|
Loading…
x
Reference in New Issue
Block a user