Merge remote-tracking branch 'upstream/master'
This commit is contained in:
commit
41b8ab086b
@ -147,6 +147,8 @@ __kernel void stereoBM(__global const uchar * leftptr, __global const uchar * ri
|
||||
__local int best_disp[2];
|
||||
__local int best_cost[2];
|
||||
best_cost[nthread] = MAX_VAL;
|
||||
best_disp[nthread] = MAX_VAL;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
short costbuf[wsz];
|
||||
int head = 0;
|
||||
@ -159,7 +161,7 @@ __kernel void stereoBM(__global const uchar * leftptr, __global const uchar * ri
|
||||
int costIdx = calcLocalIdx(lx, ly, d, sizeY);
|
||||
cost = costFunc + costIdx;
|
||||
|
||||
short tempcost = 0;
|
||||
int tempcost = 0;
|
||||
if(x < cols-wsz2-mindisp && y < rows-wsz2)
|
||||
{
|
||||
int shift = 1*nthread + cols*(1-nthread);
|
||||
@ -191,7 +193,7 @@ __kernel void stereoBM(__global const uchar * leftptr, __global const uchar * ri
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if(best_cost[1] == tempcost)
|
||||
best_disp[1] = ndisp - d - 1;
|
||||
atomic_min(best_disp + 1, ndisp - d - 1);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
int dispIdx = mad24(gy, disp_step, disp_offset + gx*(int)sizeof(short));
|
||||
@ -209,6 +211,7 @@ __kernel void stereoBM(__global const uchar * leftptr, __global const uchar * ri
|
||||
y = (ly < sizeY) ? gy + shiftY + ly : rows;
|
||||
|
||||
best_cost[nthread] = MAX_VAL;
|
||||
best_disp[nthread] = MAX_VAL;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
costIdx = calcLocalIdx(lx, ly, d, sizeY);
|
||||
@ -227,12 +230,11 @@ __kernel void stereoBM(__global const uchar * leftptr, __global const uchar * ri
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if(best_cost[nthread] == tempcost)
|
||||
best_disp[nthread] = ndisp - d - 1;
|
||||
atomic_min(best_disp + nthread, ndisp - d - 1);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
int dispIdx = mad24(gy+ly, disp_step, disp_offset + (gx+lx)*(int)sizeof(short));
|
||||
disp = (__global short *)(dispptr + dispIdx);
|
||||
|
||||
calcDisp(cost, disp, uniquenessRatio, mindisp, ndisp, 2*sizeY,
|
||||
best_disp + nthread, best_cost + nthread, d, x, y, cols, rows, wsz2);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
@ -414,24 +414,23 @@ const String& getBuildInformation()
|
||||
|
||||
String format( const char* fmt, ... )
|
||||
{
|
||||
char buf[1024];
|
||||
AutoBuffer<char, 1024> buf;
|
||||
|
||||
va_list va;
|
||||
va_start(va, fmt);
|
||||
int len = vsnprintf(buf, sizeof(buf), fmt, va);
|
||||
va_end(va);
|
||||
|
||||
if (len >= (int)sizeof(buf))
|
||||
for ( ; ; )
|
||||
{
|
||||
String s(len, '\0');
|
||||
va_list va;
|
||||
va_start(va, fmt);
|
||||
len = vsnprintf((char*)s.c_str(), len + 1, fmt, va);
|
||||
(void)len;
|
||||
int bsize = static_cast<int>(buf.size()),
|
||||
len = vsnprintf((char *)buf, bsize, fmt, va);
|
||||
va_end(va);
|
||||
return s;
|
||||
}
|
||||
|
||||
return String(buf, len);
|
||||
if (len < 0 || len >= bsize)
|
||||
{
|
||||
buf.resize(std::max(bsize << 1, len + 1));
|
||||
continue;
|
||||
}
|
||||
return String((char *)buf, len);
|
||||
}
|
||||
}
|
||||
|
||||
String tempfile( const char* suffix )
|
||||
|
@ -795,4 +795,176 @@ TEST(UMat, ReadBufferRect)
|
||||
EXPECT_MAT_NEAR(t, t2, 0);
|
||||
}
|
||||
|
||||
// Use iGPU or OPENCV_OPENCL_DEVICE=:CPU: to catch problem
|
||||
TEST(UMat, DISABLED_synchronization_map_unmap)
|
||||
{
|
||||
class TestParallelLoopBody : public cv::ParallelLoopBody
|
||||
{
|
||||
UMat u_;
|
||||
public:
|
||||
TestParallelLoopBody(const UMat& u) : u_(u) { }
|
||||
void operator() (const cv::Range& range) const
|
||||
{
|
||||
printf("range: %d, %d -- begin\n", range.start, range.end);
|
||||
for (int i = 0; i < 10; i++)
|
||||
{
|
||||
printf("%d: %d map...\n", range.start, i);
|
||||
Mat m = u_.getMat(cv::ACCESS_READ);
|
||||
|
||||
printf("%d: %d unmap...\n", range.start, i);
|
||||
m.release();
|
||||
}
|
||||
printf("range: %d, %d -- end\n", range.start, range.end);
|
||||
}
|
||||
};
|
||||
try
|
||||
{
|
||||
UMat u(1000, 1000, CV_32FC1);
|
||||
parallel_for_(cv::Range(0, 2), TestParallelLoopBody(u));
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
FAIL() << "Exception: " << e.what();
|
||||
ADD_FAILURE();
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
FAIL() << "Exception!";
|
||||
}
|
||||
}
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
TEST(UMat, DISABLED_bug_with_unmap)
|
||||
{
|
||||
for (int i = 0; i < 20; i++)
|
||||
{
|
||||
try
|
||||
{
|
||||
Mat m = Mat(1000, 1000, CV_8UC1);
|
||||
UMat u = m.getUMat(ACCESS_READ);
|
||||
UMat dst;
|
||||
add(u, Scalar::all(0), dst); // start async operation
|
||||
u.release();
|
||||
m.release();
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
printf("i = %d... %s\n", i, e.what());
|
||||
ADD_FAILURE();
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
printf("i = %d...\n", i);
|
||||
ADD_FAILURE();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(UMat, DISABLED_bug_with_unmap_in_class)
|
||||
{
|
||||
class Logic
|
||||
{
|
||||
public:
|
||||
Logic() {}
|
||||
void processData(InputArray input)
|
||||
{
|
||||
Mat m = input.getMat();
|
||||
{
|
||||
Mat dst;
|
||||
m.convertTo(dst, CV_32FC1);
|
||||
// some additional CPU-based per-pixel processing into dst
|
||||
intermediateResult = dst.getUMat(ACCESS_READ);
|
||||
std::cout << "data processed..." << std::endl;
|
||||
} // problem is here: dst::~Mat()
|
||||
std::cout << "leave ProcessData()" << std::endl;
|
||||
}
|
||||
UMat getResult() const { return intermediateResult; }
|
||||
protected:
|
||||
UMat intermediateResult;
|
||||
};
|
||||
try
|
||||
{
|
||||
Mat m = Mat(1000, 1000, CV_8UC1);
|
||||
Logic l;
|
||||
l.processData(m);
|
||||
UMat result = l.getResult();
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
printf("exception... %s\n", e.what());
|
||||
ADD_FAILURE();
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
printf("exception... \n");
|
||||
ADD_FAILURE();
|
||||
}
|
||||
}
|
||||
|
||||
TEST(UMat, Test_same_behaviour_read_and_read)
|
||||
{
|
||||
bool exceptionDetected = false;
|
||||
try
|
||||
{
|
||||
UMat u(Size(10, 10), CV_8UC1);
|
||||
Mat m = u.getMat(ACCESS_READ);
|
||||
UMat dst;
|
||||
add(u, Scalar::all(1), dst);
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
exceptionDetected = true;
|
||||
}
|
||||
ASSERT_FALSE(exceptionDetected); // no data race, 2+ reads are valid
|
||||
}
|
||||
|
||||
// VP: this test (and probably others from same_behaviour series) is not valid in my opinion.
|
||||
TEST(UMat, DISABLED_Test_same_behaviour_read_and_write)
|
||||
{
|
||||
bool exceptionDetected = false;
|
||||
try
|
||||
{
|
||||
UMat u(Size(10, 10), CV_8UC1);
|
||||
Mat m = u.getMat(ACCESS_READ);
|
||||
add(u, Scalar::all(1), u);
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
exceptionDetected = true;
|
||||
}
|
||||
ASSERT_TRUE(exceptionDetected); // data race
|
||||
}
|
||||
|
||||
TEST(UMat, DISABLED_Test_same_behaviour_write_and_read)
|
||||
{
|
||||
bool exceptionDetected = false;
|
||||
try
|
||||
{
|
||||
UMat u(Size(10, 10), CV_8UC1);
|
||||
Mat m = u.getMat(ACCESS_WRITE);
|
||||
UMat dst;
|
||||
add(u, Scalar::all(1), dst);
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
exceptionDetected = true;
|
||||
}
|
||||
ASSERT_TRUE(exceptionDetected); // data race
|
||||
}
|
||||
|
||||
TEST(UMat, DISABLED_Test_same_behaviour_write_and_write)
|
||||
{
|
||||
bool exceptionDetected = false;
|
||||
try
|
||||
{
|
||||
UMat u(Size(10, 10), CV_8UC1);
|
||||
Mat m = u.getMat(ACCESS_WRITE);
|
||||
add(u, Scalar::all(1), u);
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
exceptionDetected = true;
|
||||
}
|
||||
ASSERT_TRUE(exceptionDetected); // data race
|
||||
}
|
||||
|
@ -616,14 +616,14 @@ protected:
|
||||
};
|
||||
|
||||
|
||||
class CV_EXPORTS DenseFeatureDetector : public FeatureDetector
|
||||
class CV_EXPORTS_W DenseFeatureDetector : public FeatureDetector
|
||||
{
|
||||
public:
|
||||
explicit DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1,
|
||||
float featureScaleMul=0.1f,
|
||||
int initXyStep=6, int initImgBound=0,
|
||||
bool varyXyStepWithScale=true,
|
||||
bool varyImgBoundWithScale=false );
|
||||
CV_WRAP explicit DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1,
|
||||
float featureScaleMul=0.1f,
|
||||
int initXyStep=6, int initImgBound=0,
|
||||
bool varyXyStepWithScale=true,
|
||||
bool varyImgBoundWithScale=false );
|
||||
AlgorithmInfo* info() const;
|
||||
|
||||
protected:
|
||||
|
@ -215,12 +215,13 @@ enum { IMREAD_UNCHANGED = -1, // 8bit, color or not
|
||||
IMREAD_ANYCOLOR = 4 // ?, any color
|
||||
};
|
||||
|
||||
enum { IMWRITE_JPEG_QUALITY = 1,
|
||||
IMWRITE_PNG_COMPRESSION = 16,
|
||||
IMWRITE_PNG_STRATEGY = 17,
|
||||
IMWRITE_PNG_BILEVEL = 18,
|
||||
IMWRITE_PXM_BINARY = 32,
|
||||
IMWRITE_WEBP_QUALITY = 64
|
||||
enum { IMWRITE_JPEG_QUALITY = 1,
|
||||
IMWRITE_JPEG_PROGRESSIVE = 2,
|
||||
IMWRITE_PNG_COMPRESSION = 16,
|
||||
IMWRITE_PNG_STRATEGY = 17,
|
||||
IMWRITE_PNG_BILEVEL = 18,
|
||||
IMWRITE_PXM_BINARY = 32,
|
||||
IMWRITE_WEBP_QUALITY = 64
|
||||
};
|
||||
|
||||
enum { IMWRITE_PNG_STRATEGY_DEFAULT = 0,
|
||||
|
@ -220,6 +220,7 @@ CVAPI(CvMat*) cvLoadImageM( const char* filename, int iscolor CV_DEFAULT(CV_LOAD
|
||||
enum
|
||||
{
|
||||
CV_IMWRITE_JPEG_QUALITY =1,
|
||||
CV_IMWRITE_JPEG_PROGRESSIVE =2,
|
||||
CV_IMWRITE_PNG_COMPRESSION =16,
|
||||
CV_IMWRITE_PNG_STRATEGY =17,
|
||||
CV_IMWRITE_PNG_BILEVEL =18,
|
||||
|
@ -598,6 +598,7 @@ bool JpegEncoder::write( const Mat& img, const std::vector<int>& params )
|
||||
cinfo.in_color_space = channels > 1 ? JCS_RGB : JCS_GRAYSCALE;
|
||||
|
||||
int quality = 95;
|
||||
int progressive = 0;
|
||||
|
||||
for( size_t i = 0; i < params.size(); i += 2 )
|
||||
{
|
||||
@ -606,11 +607,18 @@ bool JpegEncoder::write( const Mat& img, const std::vector<int>& params )
|
||||
quality = params[i+1];
|
||||
quality = MIN(MAX(quality, 0), 100);
|
||||
}
|
||||
|
||||
if( params[i] == CV_IMWRITE_JPEG_PROGRESSIVE )
|
||||
{
|
||||
progressive = params[i+1];
|
||||
}
|
||||
}
|
||||
|
||||
jpeg_set_defaults( &cinfo );
|
||||
jpeg_set_quality( &cinfo, quality,
|
||||
TRUE /* limit to baseline-JPEG values */ );
|
||||
if( progressive )
|
||||
jpeg_simple_progression( &cinfo );
|
||||
jpeg_start_compress( &cinfo, TRUE );
|
||||
|
||||
if( channels > 1 )
|
||||
|
@ -386,6 +386,30 @@ TEST(Highgui_Jpeg, encode_empty)
|
||||
|
||||
ASSERT_THROW(cv::imencode(".jpg", img, jpegImg), cv::Exception);
|
||||
}
|
||||
|
||||
TEST(Highgui_Jpeg, encode_decode_progressive_jpeg)
|
||||
{
|
||||
cvtest::TS& ts = *cvtest::TS::ptr();
|
||||
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
|
||||
cv::Mat img = cv::imread(input);
|
||||
ASSERT_FALSE(img.empty());
|
||||
|
||||
std::vector<int> params;
|
||||
params.push_back(IMWRITE_JPEG_PROGRESSIVE);
|
||||
params.push_back(1);
|
||||
|
||||
string output_progressive = cv::tempfile(".jpg");
|
||||
EXPECT_NO_THROW(cv::imwrite(output_progressive, img, params));
|
||||
cv::Mat img_jpg_progressive = cv::imread(output_progressive);
|
||||
|
||||
string output_normal = cv::tempfile(".jpg");
|
||||
EXPECT_NO_THROW(cv::imwrite(output_normal, img));
|
||||
cv::Mat img_jpg_normal = cv::imread(output_normal);
|
||||
|
||||
EXPECT_EQ(0, cv::norm(img_jpg_progressive, img_jpg_normal, NORM_INF));
|
||||
|
||||
remove(output_progressive.c_str());
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -95,6 +95,34 @@ OCL_PERF_TEST_P(CalcHistFixture, CalcHist, OCL_TEST_SIZES)
|
||||
SANITY_CHECK(hist);
|
||||
}
|
||||
|
||||
///////////// calcHist ////////////////////////
|
||||
|
||||
typedef TestBaseWithParam<Size> CalcBackProjFixture;
|
||||
|
||||
OCL_PERF_TEST_P(CalcBackProjFixture, CalcBackProj, OCL_TEST_SIZES)
|
||||
{
|
||||
const Size srcSize = GetParam();
|
||||
|
||||
const std::vector<int> channels(1, 0);
|
||||
std::vector<float> ranges(2);
|
||||
std::vector<int> histSize(1, 256);
|
||||
ranges[0] = 0;
|
||||
ranges[1] = 256;
|
||||
|
||||
checkDeviceMaxMemoryAllocSize(srcSize, CV_8UC1);
|
||||
|
||||
UMat src(srcSize, CV_8UC1), hist(256, 1, CV_32FC1), dst(srcSize, CV_8UC1);
|
||||
declare.in(src, WARMUP_RNG).out(hist);
|
||||
|
||||
cv::calcHist(std::vector<UMat>(1, src), channels, noArray(), hist, histSize, ranges, false);
|
||||
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
OCL_TEST_CYCLE() cv::calcBackProject(std::vector<UMat>(1,src), channels, hist, dst, ranges, 1);
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
|
||||
/////////// CopyMakeBorder //////////////////////
|
||||
|
||||
CV_ENUM(Border, BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT, BORDER_WRAP, BORDER_REFLECT_101)
|
||||
|
@ -42,7 +42,6 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencl_kernels.hpp"
|
||||
#include <sstream>
|
||||
|
||||
/****************************************************************************************\
|
||||
Base Image Filter
|
||||
@ -3197,6 +3196,8 @@ static bool ocl_filter2D( InputArray _src, OutputArray _dst, int ddepth,
|
||||
size_t tryWorkItems = maxWorkItemSizes[0];
|
||||
char cvt[2][40];
|
||||
|
||||
String kerStr = ocl::kernelToStr(kernelMatDataFloat, CV_32F);
|
||||
|
||||
for ( ; ; )
|
||||
{
|
||||
size_t BLOCK_SIZE = tryWorkItems;
|
||||
@ -3226,14 +3227,14 @@ static bool ocl_filter2D( InputArray _src, OutputArray _dst, int ddepth,
|
||||
|
||||
String opts = format("-D LOCAL_SIZE=%d -D BLOCK_SIZE_Y=%d -D cn=%d "
|
||||
"-D ANCHOR_X=%d -D ANCHOR_Y=%d -D KERNEL_SIZE_X=%d -D KERNEL_SIZE_Y=%d "
|
||||
"-D KERNEL_SIZE_Y2_ALIGNED=%d -D %s -D %s -D %s%s "
|
||||
"-D KERNEL_SIZE_Y2_ALIGNED=%d -D %s -D %s -D %s%s%s "
|
||||
"-D srcT=%s -D srcT1=%s -D dstT=%s -D dstT1=%s -D WT=%s -D WT1=%s "
|
||||
"-D convertToWT=%s -D convertToDstT=%s",
|
||||
(int)BLOCK_SIZE, (int)BLOCK_SIZE_Y, cn, anchor.x, anchor.y,
|
||||
ksize.width, ksize.height, kernel_size_y2_aligned, borderMap[borderType],
|
||||
extra_extrapolation ? "EXTRA_EXTRAPOLATION" : "NO_EXTRA_EXTRAPOLATION",
|
||||
isolated ? "BORDER_ISOLATED" : "NO_BORDER_ISOLATED",
|
||||
doubleSupport ? " -D DOUBLE_SUPPORT" : "",
|
||||
doubleSupport ? " -D DOUBLE_SUPPORT" : "", kerStr.c_str(),
|
||||
ocl::typeToStr(type), ocl::typeToStr(sdepth), ocl::typeToStr(dtype),
|
||||
ocl::typeToStr(ddepth), ocl::typeToStr(wtype), ocl::typeToStr(wdepth),
|
||||
ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]),
|
||||
@ -3255,7 +3256,7 @@ static bool ocl_filter2D( InputArray _src, OutputArray _dst, int ddepth,
|
||||
}
|
||||
|
||||
_dst.create(sz, dtype);
|
||||
UMat dst = _dst.getUMat(), kernalDataUMat(kernelMatDataFloat, true);
|
||||
UMat dst = _dst.getUMat();
|
||||
|
||||
int srcOffsetX = (int)((src.offset % src.step) / src.elemSize());
|
||||
int srcOffsetY = (int)(src.offset / src.step);
|
||||
@ -3263,8 +3264,7 @@ static bool ocl_filter2D( InputArray _src, OutputArray _dst, int ddepth,
|
||||
int srcEndY = (isolated ? (srcOffsetY + sz.height) : wholeSize.height);
|
||||
|
||||
k.args(ocl::KernelArg::PtrReadOnly(src), (int)src.step, srcOffsetX, srcOffsetY,
|
||||
srcEndX, srcEndY, ocl::KernelArg::WriteOnly(dst),
|
||||
ocl::KernelArg::PtrReadOnly(kernalDataUMat), (float)delta);
|
||||
srcEndX, srcEndY, ocl::KernelArg::WriteOnly(dst), (float)delta);
|
||||
|
||||
return k.run(2, globalsize, localsize, false);
|
||||
}
|
||||
|
@ -200,8 +200,11 @@ inline WT readSrcPixel(int2 pos, __global const uchar * srcptr, int src_step, co
|
||||
}
|
||||
}
|
||||
|
||||
#define DIG(a) a,
|
||||
__constant WT1 kernelData[] = { COEFF };
|
||||
|
||||
__kernel void filter2D(__global const uchar * srcptr, int src_step, int srcOffsetX, int srcOffsetY, int srcEndX, int srcEndY,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int rows, int cols, __constant WT1 * kernelData, float delta)
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int rows, int cols, float delta)
|
||||
{
|
||||
const struct RectCoords srcCoords = { srcOffsetX, srcOffsetY, srcEndX, srcEndY }; // for non-isolated border: offsetX, offsetY, wholeX, wholeY
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user