add OpticalFlowDual_TVL1_OCL function
This commit is contained in:
		| @@ -407,6 +407,9 @@ namespace cv | ||||
|         //! computes element-wise product of the two arrays (c = a * b) | ||||
|         // supports all types except CV_8SC1,CV_8SC2,CV8SC3 and CV_8SC4 | ||||
|         CV_EXPORTS void multiply(const oclMat &a, const oclMat &b, oclMat &c, double scale = 1); | ||||
|         //! multiplies matrix to a number (dst = scalar * src) | ||||
|         // supports CV_32FC1 only | ||||
|         CV_EXPORTS void multiply(double scalar, const oclMat &src, oclMat &dst); | ||||
|         //! computes element-wise quotient of the two arrays (c = a / b) | ||||
|         // supports all types except CV_8SC1,CV_8SC2,CV8SC3 and CV_8SC4 | ||||
|         CV_EXPORTS void divide(const oclMat &a, const oclMat &b, oclMat &c, double scale = 1); | ||||
| @@ -1372,6 +1375,7 @@ namespace cv | ||||
|         private: | ||||
|             oclMat minSSD, leBuf, riBuf; | ||||
|         }; | ||||
|  | ||||
|         class CV_EXPORTS StereoBeliefPropagation | ||||
|         { | ||||
|         public: | ||||
| @@ -1402,6 +1406,7 @@ namespace cv | ||||
|             std::vector<oclMat> datas; | ||||
|             oclMat out; | ||||
|         }; | ||||
|  | ||||
|         class CV_EXPORTS StereoConstantSpaceBP | ||||
|         { | ||||
|         public: | ||||
| @@ -1440,6 +1445,94 @@ namespace cv | ||||
|             oclMat temp; | ||||
|             oclMat out; | ||||
|         }; | ||||
|  | ||||
|         // Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method | ||||
|         // | ||||
|         // see reference: | ||||
|         //   [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow". | ||||
|         //   [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation". | ||||
|         class CV_EXPORTS OpticalFlowDual_TVL1_OCL | ||||
|         { | ||||
|         public: | ||||
|             OpticalFlowDual_TVL1_OCL(); | ||||
|  | ||||
|             void operator ()(const oclMat& I0, const oclMat& I1, oclMat& flowx, oclMat& flowy); | ||||
|  | ||||
|             void collectGarbage(); | ||||
|  | ||||
|             /** | ||||
|             * Time step of the numerical scheme. | ||||
|             */ | ||||
|             double tau; | ||||
|  | ||||
|             /** | ||||
|             * Weight parameter for the data term, attachment parameter. | ||||
|             * This is the most relevant parameter, which determines the smoothness of the output. | ||||
|             * The smaller this parameter is, the smoother the solutions we obtain. | ||||
|             * It depends on the range of motions of the images, so its value should be adapted to each image sequence. | ||||
|             */ | ||||
|             double lambda; | ||||
|  | ||||
|             /** | ||||
|             * Weight parameter for (u - v)^2, tightness parameter. | ||||
|             * It serves as a link between the attachment and the regularization terms. | ||||
|             * In theory, it should have a small value in order to maintain both parts in correspondence. | ||||
|             * The method is stable for a large range of values of this parameter. | ||||
|             */ | ||||
|             double theta; | ||||
|  | ||||
|             /** | ||||
|             * Number of scales used to create the pyramid of images. | ||||
|             */ | ||||
|             int nscales; | ||||
|  | ||||
|             /** | ||||
|             * Number of warpings per scale. | ||||
|             * Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale. | ||||
|             * This is a parameter that assures the stability of the method. | ||||
|             * It also affects the running time, so it is a compromise between speed and accuracy. | ||||
|             */ | ||||
|             int warps; | ||||
|  | ||||
|             /** | ||||
|             * Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time. | ||||
|             * A small value will yield more accurate solutions at the expense of a slower convergence. | ||||
|             */ | ||||
|             double epsilon; | ||||
|  | ||||
|             /** | ||||
|             * Stopping criterion iterations number used in the numerical scheme. | ||||
|             */ | ||||
|             int iterations; | ||||
|  | ||||
|             bool useInitialFlow; | ||||
|  | ||||
|         private: | ||||
|             void procOneScale(const oclMat& I0, const oclMat& I1, oclMat& u1, oclMat& u2); | ||||
|  | ||||
|             std::vector<oclMat> I0s; | ||||
|             std::vector<oclMat> I1s; | ||||
|             std::vector<oclMat> u1s; | ||||
|             std::vector<oclMat> u2s; | ||||
|  | ||||
|             oclMat I1x_buf; | ||||
|             oclMat I1y_buf; | ||||
|  | ||||
|             oclMat I1w_buf; | ||||
|             oclMat I1wx_buf; | ||||
|             oclMat I1wy_buf; | ||||
|  | ||||
|             oclMat grad_buf; | ||||
|             oclMat rho_c_buf; | ||||
|  | ||||
|             oclMat p11_buf; | ||||
|             oclMat p12_buf; | ||||
|             oclMat p21_buf; | ||||
|             oclMat p22_buf; | ||||
|  | ||||
|             oclMat diff_buf; | ||||
|             oclMat norm_buf; | ||||
|         }; | ||||
|     } | ||||
| } | ||||
| #if defined _MSC_VER && _MSC_VER >= 1200 | ||||
|   | ||||
| @@ -22,6 +22,7 @@ | ||||
| //    Jiang Liyuan, jlyuan001.good@163.com | ||||
| //    Rock Li, Rock.Li@amd.com | ||||
| //    Zailong Wu, bullet@yeah.net | ||||
| //    Peng Xiao, pengxiao@outlook.com | ||||
| // | ||||
| // Redistribution and use in source and binary forms, with or without modification, | ||||
| // are permitted provided that the following conditions are met: | ||||
| @@ -286,6 +287,7 @@ void cv::ocl::multiply(const oclMat &src1, const oclMat &src2, oclMat &dst, doub | ||||
|     else | ||||
|         arithmetic_run<float>(src1, src2, dst, "arithm_mul", &arithm_mul, (void *)(&scalar)); | ||||
| } | ||||
|  | ||||
| void cv::ocl::divide(const oclMat &src1, const oclMat &src2, oclMat &dst, double scalar) | ||||
| { | ||||
|  | ||||
| @@ -468,6 +470,11 @@ void cv::ocl::subtract(const Scalar &src2, const oclMat &src1, oclMat &dst, cons | ||||
|     const char **kernelString = mask.data ? &arithm_add_scalar_mask : &arithm_add_scalar; | ||||
|     arithmetic_scalar( src1, src2, dst, mask, kernelName, kernelString, -1); | ||||
| } | ||||
| void cv::ocl::multiply(double scalar, const oclMat &src, oclMat &dst) | ||||
| { | ||||
|     string kernelName = "arithm_muls"; | ||||
|     arithmetic_scalar_run( src, dst, kernelName, &arithm_mul, scalar); | ||||
| } | ||||
| void cv::ocl::divide(double scalar, const oclMat &src,  oclMat &dst) | ||||
| { | ||||
|     if(!src.clCxt->supportsFeature(Context::CL_DOUBLE)) | ||||
|   | ||||
							
								
								
									
										407
									
								
								modules/ocl/src/opencl/tvl1flow.cl
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										407
									
								
								modules/ocl/src/opencl/tvl1flow.cl
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,407 @@ | ||||
| /*M/////////////////////////////////////////////////////////////////////////////////////// | ||||
| // | ||||
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. | ||||
| // | ||||
| //  By downloading, copying, installing or using the software you agree to this license. | ||||
| //  If you do not agree to this license, do not download, install, | ||||
| //  copy or use the software. | ||||
| // | ||||
| // | ||||
| //                           License Agreement | ||||
| //                For Open Source Computer Vision Library | ||||
| // | ||||
| // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. | ||||
| // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. | ||||
| // Third party copyrights are property of their respective owners. | ||||
| // | ||||
| // @Authors | ||||
| //    Jin Ma jin@multicorewareinc.com | ||||
| // | ||||
| // Redistribution and use in source and binary forms, with or without modification, | ||||
| // are permitted provided that the following conditions are met: | ||||
| // | ||||
| //   * Redistribution's of source code must retain the above copyright notice, | ||||
| //     this list of conditions and the following disclaimer. | ||||
| // | ||||
| //   * Redistribution's in binary form must reproduce the above copyright notice, | ||||
| //     this list of conditions and the following disclaimer in the documentation | ||||
| //     and/or other oclMaterials provided with the distribution. | ||||
| // | ||||
| //   * The name of the copyright holders may not be used to endorse or promote products | ||||
| //     derived from this software without specific prior written permission. | ||||
| // | ||||
| // This software is provided by the copyright holders and contributors as is and | ||||
| // any express or implied warranties, including, but not limited to, the implied | ||||
| // warranties of merchantability and fitness for a particular purpose are disclaimed. | ||||
| // In no event shall the Intel Corporation or contributors be liable for any direct, | ||||
| // indirect, incidental, special, exemplary, or consequential damages | ||||
| // (including, but not limited to, procurement of substitute goods or services; | ||||
| // loss of use, data, or profits; or business interruption) however caused | ||||
| // and on any theory of liability, whether in contract, strict liability, | ||||
| // or tort (including negligence or otherwise) arising in any way out of | ||||
| // the use of this software, even if advised of the possibility of such damage. | ||||
| // | ||||
| //M*/ | ||||
|  | ||||
| __kernel void centeredGradientKernel(__global const float* src, int src_col, int src_row, int src_step,  | ||||
| __global float* dx, __global float* dy, int dx_step) | ||||
| { | ||||
|     int x = get_global_id(0); | ||||
|     int y = get_global_id(1); | ||||
|  | ||||
|     if((x < src_col)&&(y < src_row)) | ||||
|     { | ||||
| 		int src_x1 = (x + 1) < (src_col -1)? (x + 1) : (src_col - 1); | ||||
|      	int src_x2 = (x - 1) > 0 ? (x -1) : 0; | ||||
|          | ||||
|         //if(src[y * src_step + src_x1] == src[y * src_step+ src_x2]) | ||||
|         //{ | ||||
|         //    printf("y = %d\n", y); | ||||
|         //    printf("src_x1 = %d\n", src_x1); | ||||
|         //    printf("src_x2 = %d\n", src_x2); | ||||
|         //} | ||||
|         dx[y * dx_step+ x] = 0.5f * (src[y * src_step + src_x1] - src[y * src_step+ src_x2]); | ||||
|          | ||||
| 		int src_y1 = (y+1) < (src_row - 1) ? (y + 1) : (src_row - 1); | ||||
|         int src_y2 = (y - 1) > 0 ? (y - 1) : 0; | ||||
|         dy[y * dx_step+ x] = 0.5f * (src[src_y1 * src_step + x] - src[src_y2 * src_step+ x]); | ||||
|     } | ||||
|  | ||||
| } | ||||
|  | ||||
| float bicubicCoeff(float x_) | ||||
| { | ||||
|  | ||||
|     float x = fabs(x_); | ||||
|     if (x <= 1.0f) | ||||
|     { | ||||
|         return x * x * (1.5f * x - 2.5f) + 1.0f; | ||||
|     } | ||||
|     else if (x < 2.0f) | ||||
|     { | ||||
|         return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f; | ||||
|     } | ||||
|     else | ||||
|     { | ||||
|         return 0.0f; | ||||
|     } | ||||
|  | ||||
| } | ||||
|  | ||||
| __kernel void warpBackwardKernel(__global const float* I0, int I0_step, int I0_col, int I0_row, | ||||
| 	image2d_t tex_I1, image2d_t tex_I1x, image2d_t tex_I1y,   | ||||
|     __global const float* u1, int u1_step,  | ||||
|     __global const float* u2, | ||||
|     __global float* I1w, | ||||
| 	__global float* I1wx, /*int I1wx_step,*/ | ||||
| 	__global float* I1wy, /*int I1wy_step,*/ | ||||
| 	__global float* grad, /*int grad_step,*/ | ||||
| 	__global float* rho, | ||||
| 	int I1w_step, | ||||
| 	int u2_step, | ||||
| 	int u1_offset_x, | ||||
| 	int u1_offset_y, | ||||
| 	int u2_offset_x, | ||||
| 	int u2_offset_y) | ||||
| { | ||||
|     const int x = get_global_id(0); | ||||
|     const int y = get_global_id(1); | ||||
|  | ||||
|     if(x < I0_col&&y < I0_row) | ||||
|     { | ||||
|         //const float u1Val = u1(y, x); | ||||
|         const float u1Val = u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; | ||||
|         //const float u2Val = u2(y, x); | ||||
|         const float u2Val = u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; | ||||
|  | ||||
|         const float wx = x + u1Val; | ||||
|         const float wy = y + u2Val; | ||||
|  | ||||
|         const int xmin = ceil(wx - 2.0f); | ||||
|         const int xmax = floor(wx + 2.0f); | ||||
|  | ||||
|         const int ymin = ceil(wy - 2.0f); | ||||
|         const int ymax = floor(wy + 2.0f); | ||||
|  | ||||
|         float sum  = 0.0f; | ||||
|         float sumx = 0.0f; | ||||
|         float sumy = 0.0f; | ||||
|         float wsum = 0.0f; | ||||
|         sampler_t sampleri = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; | ||||
|  | ||||
|         for (int cy = ymin; cy <= ymax; ++cy) | ||||
|         { | ||||
|             for (int cx = xmin; cx <= xmax; ++cx) | ||||
|             { | ||||
|                 const float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy); | ||||
|  | ||||
|                 //sum  += w * tex2D(tex_I1 , cx, cy); | ||||
| 				int2 cood = (int2)(cx, cy); | ||||
|                 sum += w * read_imagef(tex_I1, sampleri, cood).x; | ||||
|                 //sumx += w * tex2D(tex_I1x, cx, cy); | ||||
|                 sumx += w * read_imagef(tex_I1x, sampleri, cood).x; | ||||
|                 //sumy += w * tex2D(tex_I1y, cx, cy); | ||||
|                 sumy += w * read_imagef(tex_I1y, sampleri, cood).x; | ||||
|  | ||||
|                 wsum += w; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         const float coeff = 1.0f / wsum; | ||||
|  | ||||
|         const float I1wVal  = sum  * coeff; | ||||
|         const float I1wxVal = sumx * coeff; | ||||
|         const float I1wyVal = sumy * coeff; | ||||
|  | ||||
|         I1w[y * I1w_step + x]  = I1wVal; | ||||
|         I1wx[y * I1w_step + x] = I1wxVal; | ||||
|         I1wy[y * I1w_step + x] = I1wyVal; | ||||
|  | ||||
|         const float Ix2 = I1wxVal * I1wxVal; | ||||
|         const float Iy2 = I1wyVal * I1wyVal; | ||||
|  | ||||
|         // store the |Grad(I1)|^2 | ||||
|         grad[y * I1w_step + x] = Ix2 + Iy2; | ||||
|  | ||||
|         // compute the constant part of the rho function | ||||
|         const float I0Val = I0[y * I0_step + x]; | ||||
|         rho[y * I1w_step + x] = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val; | ||||
|     } | ||||
|  | ||||
| } | ||||
|  | ||||
| float readImage(__global const float *image,  const int x,  const int y,  const int rows,  const int cols, const int elemCntPerRow) | ||||
| { | ||||
|     int i0 = clamp(x, 0, cols - 1); | ||||
|     int j0 = clamp(y, 0, rows - 1); | ||||
|     int i1 = clamp(x + 1, 0, cols - 1); | ||||
|     int j1 = clamp(y + 1, 0, rows - 1); | ||||
|  | ||||
|     return image[j0 * elemCntPerRow + i0]; | ||||
| } | ||||
|  | ||||
| __kernel void warpBackwardKernelNoImage2d(__global const float* I0, int I0_step, int I0_col, int I0_row, | ||||
| 	__global const float* tex_I1, __global const float* tex_I1x, __global const float* tex_I1y,   | ||||
|     __global const float* u1, int u1_step,  | ||||
|     __global const float* u2, | ||||
|     __global float* I1w, | ||||
| 	__global float* I1wx, /*int I1wx_step,*/ | ||||
| 	__global float* I1wy, /*int I1wy_step,*/ | ||||
| 	__global float* grad, /*int grad_step,*/ | ||||
| 	__global float* rho, | ||||
| 	int I1w_step, | ||||
| 	int u2_step, | ||||
| 	int I1_step, | ||||
| 	int I1x_step) | ||||
| { | ||||
|     const int x = get_global_id(0); | ||||
|     const int y = get_global_id(1); | ||||
|  | ||||
|     if(x < I0_col&&y < I0_row) | ||||
|     { | ||||
|         //const float u1Val = u1(y, x); | ||||
|         const float u1Val = u1[y * u1_step + x]; | ||||
|         //const float u2Val = u2(y, x); | ||||
|         const float u2Val = u2[y * u2_step + x]; | ||||
|  | ||||
|         const float wx = x + u1Val; | ||||
|         const float wy = y + u2Val; | ||||
|  | ||||
|         const int xmin = ceil(wx - 2.0f); | ||||
|         const int xmax = floor(wx + 2.0f); | ||||
|  | ||||
|         const int ymin = ceil(wy - 2.0f); | ||||
|         const int ymax = floor(wy + 2.0f); | ||||
|  | ||||
|         float sum  = 0.0f; | ||||
|         float sumx = 0.0f; | ||||
|         float sumy = 0.0f; | ||||
|         float wsum = 0.0f; | ||||
|  | ||||
|         for (int cy = ymin; cy <= ymax; ++cy) | ||||
|         { | ||||
|             for (int cx = xmin; cx <= xmax; ++cx) | ||||
|             { | ||||
|                 const float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy); | ||||
|  | ||||
| 				int2 cood = (int2)(cx, cy); | ||||
|                 sum += w * readImage(tex_I1, cood.x, cood.y, I0_col, I0_row, I1_step); | ||||
|                 sumx += w * readImage(tex_I1x, cood.x, cood.y, I0_col, I0_row, I1x_step); | ||||
|                 sumy += w * readImage(tex_I1y, cood.x, cood.y, I0_col, I0_row, I1x_step); | ||||
|                 wsum += w; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         const float coeff = 1.0f / wsum; | ||||
|  | ||||
|         const float I1wVal  = sum  * coeff; | ||||
|         const float I1wxVal = sumx * coeff; | ||||
|         const float I1wyVal = sumy * coeff; | ||||
|  | ||||
|         I1w[y * I1w_step + x]  = I1wVal; | ||||
|         I1wx[y * I1w_step + x] = I1wxVal; | ||||
|         I1wy[y * I1w_step + x] = I1wyVal; | ||||
|  | ||||
|         const float Ix2 = I1wxVal * I1wxVal; | ||||
|         const float Iy2 = I1wyVal * I1wyVal; | ||||
|  | ||||
|         // store the |Grad(I1)|^2 | ||||
|         grad[y * I1w_step + x] = Ix2 + Iy2; | ||||
|  | ||||
|         // compute the constant part of the rho function | ||||
|         const float I0Val = I0[y * I0_step + x]; | ||||
|         rho[y * I1w_step + x] = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val; | ||||
|     } | ||||
|  | ||||
| } | ||||
|  | ||||
|  | ||||
| __kernel void estimateDualVariablesKernel(__global const float* u1, int u1_col, int u1_row, int u1_step,  | ||||
|     __global const float* u2,  | ||||
|     __global float* p11, int p11_step,  | ||||
|     __global float* p12, | ||||
|     __global float* p21, | ||||
|     __global float* p22,  | ||||
|     const float taut, | ||||
| 	int u2_step, | ||||
| 	int u1_offset_x, | ||||
| 	int u1_offset_y, | ||||
| 	int u2_offset_x, | ||||
| 	int u2_offset_y) | ||||
| { | ||||
|  | ||||
|     //const int x = blockIdx.x * blockDim.x + threadIdx.x; | ||||
|     //const int y = blockIdx.y * blockDim.y + threadIdx.y; | ||||
|     const int x = get_global_id(0); | ||||
|     const int y = get_global_id(1); | ||||
|  | ||||
|     if(x < u1_col && y < u1_row) | ||||
|     { | ||||
| 		int src_x1 = (x + 1) < (u1_col - 1) ? (x + 1) : (u1_col - 1); | ||||
|         const float u1x = u1[(y + u1_offset_y) * u1_step + src_x1 + u1_offset_x] - u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; | ||||
|          | ||||
| 		int src_y1 = (y + 1) < (u1_row - 1) ? (y + 1) : (u1_row - 1); | ||||
|         const float u1y = u1[(src_y1 + u1_offset_y) * u1_step + x + u1_offset_x] - u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; | ||||
|  | ||||
| 		int src_x2 = (x + 1) < (u1_col - 1) ? (x + 1) : (u1_col - 1); | ||||
|         const float u2x = u2[(y + u2_offset_y) * u2_step + src_x2 + u2_offset_x] - u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; | ||||
|  | ||||
| 		int src_y2 = (y + 1) <  (u1_row - 1) ? (y + 1) : (u1_row - 1); | ||||
|         const float u2y = u2[(src_y2 + u2_offset_y) * u2_step + x + u2_offset_x] - u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; | ||||
|  | ||||
|         const float g1 = hypot(u1x, u1y); | ||||
|         const float g2 = hypot(u2x, u2y); | ||||
|  | ||||
|         const float ng1 = 1.0f + taut * g1; | ||||
|         const float ng2 = 1.0f + taut * g2; | ||||
|  | ||||
|         p11[y * p11_step + x] = (p11[y * p11_step + x] + taut * u1x) / ng1; | ||||
|         p12[y * p11_step + x] = (p12[y * p11_step + x] + taut * u1y) / ng1; | ||||
|         p21[y * p11_step + x] = (p21[y * p11_step + x] + taut * u2x) / ng2; | ||||
|         p22[y * p11_step + x] = (p22[y * p11_step + x] + taut * u2y) / ng2; | ||||
|     } | ||||
|  | ||||
| } | ||||
|  | ||||
| float divergence(__global const float* v1, __global const float* v2, int y, int x, int v1_step, int v2_step) | ||||
| { | ||||
|  | ||||
|     if (x > 0 && y > 0) | ||||
|     { | ||||
|         const float v1x = v1[y * v1_step + x] - v1[y * v1_step + x - 1]; | ||||
|         const float v2y = v2[y * v2_step + x] - v2[(y - 1) * v2_step + x]; | ||||
|         return v1x + v2y; | ||||
|     } | ||||
|     else | ||||
|     { | ||||
|         if (y > 0) | ||||
|             return v1[y * v1_step + 0] + v2[y * v2_step + 0] - v2[(y - 1) * v2_step + 0]; | ||||
|         else | ||||
|         { | ||||
|             if (x > 0) | ||||
|                 return v1[0 * v1_step + x] - v1[0 * v1_step + x - 1] + v2[0 * v2_step + x]; | ||||
|             else | ||||
|                 return v1[0 * v1_step + 0] + v2[0 * v2_step + 0]; | ||||
|         } | ||||
|     } | ||||
|  | ||||
| } | ||||
|  | ||||
| __kernel void estimateUKernel(__global const float* I1wx, int I1wx_col, int I1wx_row, int I1wx_step, | ||||
|     __global const float* I1wy, /*int I1wy_step,*/ | ||||
|     __global const float* grad, /*int grad_step,*/  | ||||
|     __global const float* rho_c, /*int rho_c_step,*/ | ||||
|     __global const float* p11, /*int p11_step,*/ | ||||
|     __global const float* p12, /*int p12_step,*/ | ||||
|     __global const float* p21, /*int p21_step,*/ | ||||
|     __global const float* p22, /*int p22_step,*/ | ||||
|     __global float* u1, int u1_step,  | ||||
|     __global float* u2,  | ||||
|     __global float* error, const float l_t, const float theta, int u2_step, | ||||
| 	int u1_offset_x, | ||||
| 	int u1_offset_y, | ||||
| 	int u2_offset_x, | ||||
| 	int u2_offset_y) | ||||
| { | ||||
|  | ||||
|     //const int x = blockIdx.x * blockDim.x + threadIdx.x; | ||||
|     //const int y = blockIdx.y * blockDim.y + threadIdx.y; | ||||
|  | ||||
|     int x = get_global_id(0); | ||||
|     int y = get_global_id(1); | ||||
|  | ||||
|  | ||||
|     if(x < I1wx_col && y < I1wx_row) | ||||
|     { | ||||
|         const float I1wxVal = I1wx[y * I1wx_step + x]; | ||||
|         const float I1wyVal = I1wy[y * I1wx_step + x]; | ||||
|         const float gradVal = grad[y * I1wx_step + x]; | ||||
|         const float u1OldVal = u1[(y + u1_offset_y) * u1_step + x + u1_offset_x]; | ||||
|         const float u2OldVal = u2[(y + u2_offset_y) * u2_step + x + u2_offset_x]; | ||||
|  | ||||
|         const float rho = rho_c[y * I1wx_step + x] + (I1wxVal * u1OldVal + I1wyVal * u2OldVal); | ||||
|  | ||||
|         // estimate the values of the variable (v1, v2) (thresholding operator TH) | ||||
|  | ||||
|         float d1 = 0.0f; | ||||
|         float d2 = 0.0f; | ||||
|  | ||||
|         if (rho < -l_t * gradVal) | ||||
|         { | ||||
|             d1 = l_t * I1wxVal; | ||||
|             d2 = l_t * I1wyVal; | ||||
|         } | ||||
|         else if (rho > l_t * gradVal) | ||||
|         { | ||||
|             d1 = -l_t * I1wxVal; | ||||
|             d2 = -l_t * I1wyVal; | ||||
|         } | ||||
|         else if (gradVal > 1.192092896e-07f) | ||||
|         { | ||||
|             const float fi = -rho / gradVal; | ||||
|             d1 = fi * I1wxVal; | ||||
|             d2 = fi * I1wyVal; | ||||
|         } | ||||
|  | ||||
|         const float v1 = u1OldVal + d1; | ||||
|         const float v2 = u2OldVal + d2; | ||||
|  | ||||
|         // compute the divergence of the dual variable (p1, p2) | ||||
|  | ||||
|         const float div_p1 = divergence(p11, p12, y, x, I1wx_step, I1wx_step); | ||||
|         const float div_p2 = divergence(p21, p22, y, x, I1wx_step, I1wx_step); | ||||
|  | ||||
|         // estimate the values of the optical flow (u1, u2) | ||||
|  | ||||
|         const float u1NewVal = v1 + theta * div_p1; | ||||
|         const float u2NewVal = v2 + theta * div_p2; | ||||
|  | ||||
|         u1[(y + u1_offset_y) * u1_step + x + u1_offset_x] = u1NewVal; | ||||
|         u2[(y + u2_offset_y) * u2_step + x + u2_offset_x] = u2NewVal; | ||||
|  | ||||
|         const float n1 = (u1OldVal - u1NewVal) * (u1OldVal - u1NewVal); | ||||
|         const float n2 = (u2OldVal - u2NewVal) * (u2OldVal - u2NewVal); | ||||
|         error[y * I1wx_step + x] = n1 + n2; | ||||
|     } | ||||
|  | ||||
| } | ||||
							
								
								
									
										475
									
								
								modules/ocl/src/tvl1flow.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										475
									
								
								modules/ocl/src/tvl1flow.cpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,475 @@ | ||||
| /*M/////////////////////////////////////////////////////////////////////////////////////// | ||||
| // | ||||
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. | ||||
| // | ||||
| //  By downloading, copying, installing or using the software you agree to this license. | ||||
| //  If you do not agree to this license, do not download, install, | ||||
| //  copy or use the software. | ||||
| // | ||||
| // | ||||
| //                           License Agreement | ||||
| //                For Open Source Computer Vision Library | ||||
| // | ||||
| // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. | ||||
| // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. | ||||
| // Third party copyrights are property of their respective owners. | ||||
| // | ||||
| // @Authors | ||||
| //		Jin Ma, jin@multicorewareinc.com | ||||
| // Redistribution and use in source and binary forms, with or without modification, | ||||
| // are permitted provided that the following conditions are met: | ||||
| // | ||||
| //   * Redistribution's of source code must retain the above copyright notice, | ||||
| //     this list of conditions and the following disclaimer. | ||||
| // | ||||
| //   * Redistribution's in binary form must reproduce the above copyright notice, | ||||
| //     this list of conditions and the following disclaimer in the documentation | ||||
| //     and/or other oclMaterials provided with the distribution. | ||||
| // | ||||
| //   * The name of the copyright holders may not be used to endorse or promote products | ||||
| //     derived from this software without specific prior written permission. | ||||
| // | ||||
| // This software is provided by the copyright holders and contributors "as is" and | ||||
| // any express or implied warranties, including, but not limited to, the implied | ||||
| // warranties of merchantability and fitness for a particular purpose are disclaimed. | ||||
| // In no event shall the Intel Corporation or contributors be liable for any direct, | ||||
| // indirect, incidental, special, exemplary, or consequential damages | ||||
| // (including, but not limited to, procurement of substitute goods or services; | ||||
| // loss of use, data, or profits; or business interruption) however caused | ||||
| // and on any theory of liability, whether in contract, strict liability, | ||||
| // or tort (including negligence or otherwise) arising in any way out of | ||||
| // the use of this software, even if advised of the possibility of such damage. | ||||
| // | ||||
| //M*/ | ||||
|  | ||||
|  | ||||
| #include "precomp.hpp" | ||||
| using namespace std; | ||||
| using namespace cv; | ||||
| using namespace cv::ocl; | ||||
|  | ||||
| namespace cv | ||||
| { | ||||
|     namespace ocl | ||||
|     { | ||||
|         ///////////////////////////OpenCL kernel strings/////////////////////////// | ||||
|         extern const char* tvl1flow; | ||||
|     } | ||||
| } | ||||
|  | ||||
| cv::ocl::OpticalFlowDual_TVL1_OCL::OpticalFlowDual_TVL1_OCL() | ||||
| { | ||||
|     tau            = 0.25; | ||||
|     lambda         = 0.15; | ||||
|     theta          = 0.3; | ||||
|     nscales        = 5; | ||||
|     warps          = 5; | ||||
|     epsilon        = 0.01; | ||||
|     iterations     = 300; | ||||
|     useInitialFlow = false; | ||||
| } | ||||
|  | ||||
| void cv::ocl::OpticalFlowDual_TVL1_OCL::operator()(const oclMat& I0, const oclMat& I1, oclMat& flowx, oclMat& flowy) | ||||
| { | ||||
|     CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 ); | ||||
|     CV_Assert( I0.size() == I1.size() ); | ||||
|     CV_Assert( I0.type() == I1.type() ); | ||||
|     CV_Assert( !useInitialFlow || (flowx.size() == I0.size() && flowx.type() == CV_32FC1 && flowy.size() == flowx.size() && flowy.type() == flowx.type()) ); | ||||
|     CV_Assert( nscales > 0 ); | ||||
|  | ||||
|     // allocate memory for the pyramid structure | ||||
|     I0s.resize(nscales); | ||||
|     I1s.resize(nscales); | ||||
|     u1s.resize(nscales); | ||||
|     u2s.resize(nscales); | ||||
|     //I0s_step == I1s_step | ||||
|     I0.convertTo(I0s[0], CV_32F, I0.depth() == CV_8U ? 1.0 : 255.0); | ||||
|     I1.convertTo(I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0); | ||||
|  | ||||
|  | ||||
|     if (!useInitialFlow) | ||||
|     { | ||||
|         flowx.create(I0.size(), CV_32FC1); | ||||
|         flowy.create(I0.size(), CV_32FC1); | ||||
|     } | ||||
|     //u1s_step != u2s_step | ||||
|     u1s[0] = flowx; | ||||
|     u2s[0] = flowy; | ||||
|  | ||||
|     I1x_buf.create(I0.size(), CV_32FC1); | ||||
|     I1y_buf.create(I0.size(), CV_32FC1); | ||||
|  | ||||
|     I1w_buf.create(I0.size(), CV_32FC1); | ||||
|     I1wx_buf.create(I0.size(), CV_32FC1); | ||||
|     I1wy_buf.create(I0.size(), CV_32FC1); | ||||
|  | ||||
|     grad_buf.create(I0.size(), CV_32FC1); | ||||
|     rho_c_buf.create(I0.size(), CV_32FC1); | ||||
|  | ||||
|     p11_buf.create(I0.size(), CV_32FC1); | ||||
|     p12_buf.create(I0.size(), CV_32FC1); | ||||
|     p21_buf.create(I0.size(), CV_32FC1); | ||||
|     p22_buf.create(I0.size(), CV_32FC1); | ||||
|  | ||||
|     diff_buf.create(I0.size(), CV_32FC1); | ||||
|  | ||||
|     // create the scales | ||||
|     for (int s = 1; s < nscales; ++s) | ||||
|     { | ||||
|         ocl::pyrDown(I0s[s - 1], I0s[s]); | ||||
|         ocl::pyrDown(I1s[s - 1], I1s[s]); | ||||
|  | ||||
|         if (I0s[s].cols < 16 || I0s[s].rows < 16) | ||||
|         { | ||||
|             nscales = s; | ||||
|             break; | ||||
|         } | ||||
|  | ||||
|         if (useInitialFlow) | ||||
|         { | ||||
|             ocl::pyrDown(u1s[s - 1], u1s[s]); | ||||
|             ocl::pyrDown(u2s[s - 1], u2s[s]); | ||||
|  | ||||
|             //ocl::multiply(u1s[s], Scalar::all(0.5), u1s[s]); | ||||
|             multiply(0.5, u1s[s], u1s[s]); | ||||
|             //ocl::multiply(u2s[s], Scalar::all(0.5), u2s[s]); | ||||
|             multiply(0.5, u1s[s], u2s[s]); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     // pyramidal structure for computing the optical flow | ||||
|     for (int s = nscales - 1; s >= 0; --s) | ||||
|     { | ||||
|         // compute the optical flow at the current scale | ||||
|         procOneScale(I0s[s], I1s[s], u1s[s], u2s[s]); | ||||
|  | ||||
|         // if this was the last scale, finish now | ||||
|         if (s == 0) | ||||
|             break; | ||||
|  | ||||
|         // otherwise, upsample the optical flow | ||||
|  | ||||
|         // zoom the optical flow for the next finer scale | ||||
|         ocl::resize(u1s[s], u1s[s - 1], I0s[s - 1].size()); | ||||
|         ocl::resize(u2s[s], u2s[s - 1], I0s[s - 1].size()); | ||||
|  | ||||
|         // scale the optical flow with the appropriate zoom factor | ||||
|         multiply(2, u1s[s - 1], u1s[s - 1]); | ||||
|         multiply(2, u2s[s - 1], u2s[s - 1]); | ||||
|  | ||||
|     } | ||||
|  | ||||
| } | ||||
|  | ||||
| namespace ocl_tvl1flow | ||||
| { | ||||
|     void centeredGradient(const oclMat &src, oclMat &dx, oclMat &dy); | ||||
|  | ||||
|     void warpBackward(const oclMat &I0, const oclMat &I1, oclMat &I1x, oclMat &I1y,  | ||||
|         oclMat &u1, oclMat &u2, oclMat &I1w, oclMat &I1wx, oclMat &I1wy,  | ||||
|         oclMat &grad, oclMat &rho); | ||||
|  | ||||
|     void estimateU(oclMat &I1wx, oclMat &I1wy, oclMat &grad,  | ||||
|         oclMat &rho_c, oclMat &p11, oclMat &p12,  | ||||
|         oclMat &p21, oclMat &p22, oclMat &u1,  | ||||
|         oclMat &u2, oclMat &error, float l_t, float theta); | ||||
|  | ||||
|     void estimateDualVariables(oclMat &u1, oclMat &u2,  | ||||
|         oclMat &p11, oclMat &p12, oclMat &p21, oclMat &p22, float taut); | ||||
| } | ||||
|  | ||||
| void cv::ocl::OpticalFlowDual_TVL1_OCL::procOneScale(const oclMat &I0, const oclMat &I1, oclMat &u1, oclMat &u2) | ||||
| { | ||||
|     using namespace ocl_tvl1flow; | ||||
|  | ||||
|     const double scaledEpsilon = epsilon * epsilon * I0.size().area(); | ||||
|  | ||||
|     CV_DbgAssert( I1.size() == I0.size() ); | ||||
|     CV_DbgAssert( I1.type() == I0.type() ); | ||||
|     CV_DbgAssert( u1.empty() || u1.size() == I0.size() ); | ||||
|     CV_DbgAssert( u2.size() == u1.size() ); | ||||
|  | ||||
|     if (u1.empty()) | ||||
|     { | ||||
|         u1.create(I0.size(), CV_32FC1); | ||||
|         u1.setTo(Scalar::all(0)); | ||||
|  | ||||
|         u2.create(I0.size(), CV_32FC1); | ||||
|         u2.setTo(Scalar::all(0)); | ||||
|     } | ||||
|  | ||||
|     oclMat I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows)); | ||||
|     oclMat I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows)); | ||||
|  | ||||
|     centeredGradient(I1, I1x, I1y); | ||||
|  | ||||
|     oclMat I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows)); | ||||
|     oclMat I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows)); | ||||
|     oclMat I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows)); | ||||
|  | ||||
|     oclMat grad = grad_buf(Rect(0, 0, I0.cols, I0.rows)); | ||||
|     oclMat rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows)); | ||||
|  | ||||
|     oclMat p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows)); | ||||
|     oclMat p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows)); | ||||
|     oclMat p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows)); | ||||
|     oclMat p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows)); | ||||
|     p11.setTo(Scalar::all(0)); | ||||
|     p12.setTo(Scalar::all(0)); | ||||
|     p21.setTo(Scalar::all(0)); | ||||
|     p22.setTo(Scalar::all(0)); | ||||
|  | ||||
|     oclMat diff = diff_buf(Rect(0, 0, I0.cols, I0.rows)); | ||||
|  | ||||
|     const float l_t = static_cast<float>(lambda * theta); | ||||
|     const float taut = static_cast<float>(tau / theta); | ||||
|  | ||||
|     for (int warpings = 0; warpings < warps; ++warpings) | ||||
|     { | ||||
|         warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c); | ||||
|  | ||||
|         double error = numeric_limits<double>::max(); | ||||
|         for (int n = 0; error > scaledEpsilon && n < iterations; ++n) | ||||
|         { | ||||
|             estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22,  | ||||
|                 u1, u2, diff, l_t, static_cast<float>(theta)); | ||||
|  | ||||
|             error = ocl::sum(diff)[0]; | ||||
|  | ||||
|             estimateDualVariables(u1, u2, p11, p12, p21, p22, taut); | ||||
|  | ||||
|         } | ||||
|     } | ||||
|  | ||||
| } | ||||
|  | ||||
| void cv::ocl::OpticalFlowDual_TVL1_OCL::collectGarbage() | ||||
| { | ||||
|     I0s.clear(); | ||||
|     I1s.clear(); | ||||
|     u1s.clear(); | ||||
|     u2s.clear(); | ||||
|  | ||||
|     I1x_buf.release(); | ||||
|     I1y_buf.release(); | ||||
|  | ||||
|     I1w_buf.release(); | ||||
|     I1wx_buf.release(); | ||||
|     I1wy_buf.release(); | ||||
|  | ||||
|     grad_buf.release(); | ||||
|     rho_c_buf.release(); | ||||
|  | ||||
|     p11_buf.release(); | ||||
|     p12_buf.release(); | ||||
|     p21_buf.release(); | ||||
|     p22_buf.release(); | ||||
|  | ||||
|     diff_buf.release(); | ||||
|     norm_buf.release(); | ||||
| } | ||||
|  | ||||
| void ocl_tvl1flow::centeredGradient(const oclMat &src, oclMat &dx, oclMat &dy) | ||||
| { | ||||
|     Context  *clCxt = src.clCxt; | ||||
|     size_t localThreads[3] = {32, 8, 1}; | ||||
|     size_t globalThreads[3] = {src.cols, src.rows, 1}; | ||||
|  | ||||
|     int srcElementSize = src.elemSize(); | ||||
|     int src_step = src.step/srcElementSize; | ||||
|  | ||||
|     int dElememntSize = dx.elemSize(); | ||||
|     int dx_step = dx.step/dElememntSize; | ||||
|  | ||||
|     string kernelName = "centeredGradientKernel"; | ||||
|     vector< pair<size_t, const void *> > args; | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&src.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&src.cols)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&src.rows)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&src_step)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&dx.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&dy.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&dx_step)); | ||||
|     openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThreads, localThreads, args, -1, -1); | ||||
|  | ||||
| } | ||||
|  | ||||
| void ocl_tvl1flow::estimateDualVariables(oclMat &u1, oclMat &u2, oclMat &p11, oclMat &p12, oclMat &p21, oclMat &p22, float taut) | ||||
| { | ||||
|     Context *clCxt = u1.clCxt; | ||||
|  | ||||
|     size_t localThread[] = {32, 8, 1}; | ||||
|     size_t globalThread[] =  | ||||
|     { | ||||
|         u1.cols,  | ||||
|         u1.rows, | ||||
|         1 | ||||
|     }; | ||||
|  | ||||
|     int u1_element_size = u1.elemSize(); | ||||
|     int u1_step = u1.step/u1_element_size; | ||||
|  | ||||
|     int u2_element_size = u2.elemSize(); | ||||
|     int u2_step = u2.step/u2_element_size; | ||||
|  | ||||
|     int p11_element_size = p11.elemSize(); | ||||
|     int p11_step = p11.step/p11_element_size; | ||||
|  | ||||
|     int u1_offset_y = u1.offset/u1.step; | ||||
|     int u1_offset_x = u1.offset%u1.step; | ||||
|     u1_offset_x = u1_offset_x/u1.elemSize(); | ||||
|  | ||||
|     int u2_offset_y = u2.offset/u2.step; | ||||
|     int u2_offset_x = u2.offset%u2.step; | ||||
|     u2_offset_x = u2_offset_x/u2.elemSize(); | ||||
|  | ||||
|     string kernelName = "estimateDualVariablesKernel"; | ||||
|     vector< pair<size_t, const void *> > args; | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&u1.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u1.cols)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u1.rows)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u1_step)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&u2.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&p11.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&p11_step)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&p12.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&p21.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&p22.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_float), (void*)&taut)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u2_step)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_x)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_y)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_x)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_y)); | ||||
|  | ||||
|     openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1); | ||||
| } | ||||
|  | ||||
| void ocl_tvl1flow::estimateU(oclMat &I1wx, oclMat &I1wy, oclMat &grad,  | ||||
|     oclMat &rho_c, oclMat &p11, oclMat &p12,  | ||||
|     oclMat &p21, oclMat &p22, oclMat &u1,  | ||||
|     oclMat &u2, oclMat &error, float l_t, float theta) | ||||
| { | ||||
|     Context* clCxt = I1wx.clCxt; | ||||
|  | ||||
|     size_t localThread[] = {32, 8, 1}; | ||||
|     size_t globalThread[] =  | ||||
|     { | ||||
|         I1wx.cols,  | ||||
|         I1wx.rows, | ||||
|         1 | ||||
|     }; | ||||
|  | ||||
|     int I1wx_element_size = I1wx.elemSize(); | ||||
|     int I1wx_step = I1wx.step/I1wx_element_size; | ||||
|  | ||||
|     int u1_element_size = u1.elemSize(); | ||||
|     int u1_step = u1.step/u1_element_size; | ||||
|  | ||||
|     int u2_element_size = u2.elemSize(); | ||||
|     int u2_step = u2.step/u2_element_size; | ||||
|  | ||||
|     int u1_offset_y = u1.offset/u1.step; | ||||
|     int u1_offset_x = u1.offset%u1.step; | ||||
|     u1_offset_x = u1_offset_x/u1.elemSize(); | ||||
|  | ||||
|     int u2_offset_y = u2.offset/u2.step; | ||||
|     int u2_offset_x = u2.offset%u2.step; | ||||
|     u2_offset_x = u2_offset_x/u2.elemSize(); | ||||
|  | ||||
|     string kernelName = "estimateUKernel"; | ||||
|     vector< pair<size_t, const void *> > args; | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&I1wx.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&I1wx.cols)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&I1wx.rows)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&I1wx_step)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&I1wy.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&grad.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&rho_c.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&p11.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&p12.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&p21.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&p22.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&u1.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u1_step)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&u2.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&error.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_float), (void*)&l_t)); | ||||
|     args.push_back( make_pair( sizeof(cl_float), (void*)&theta)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u2_step)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_x)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_y)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_x)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_y)); | ||||
|  | ||||
|     openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1); | ||||
| } | ||||
|  | ||||
| void ocl_tvl1flow::warpBackward(const oclMat &I0, const oclMat &I1, oclMat &I1x, oclMat &I1y, oclMat &u1, oclMat &u2, oclMat &I1w, oclMat &I1wx, oclMat &I1wy, oclMat &grad, oclMat &rho) | ||||
| { | ||||
|     Context* clCxt = I0.clCxt; | ||||
|     const bool isImgSupported = support_image2d(clCxt); | ||||
|      | ||||
|     CV_Assert(isImgSupported); | ||||
|  | ||||
|     int u1ElementSize = u1.elemSize(); | ||||
|     int u1Step = u1.step/u1ElementSize; | ||||
|  | ||||
|     int u2ElementSize = u2.elemSize(); | ||||
|     int u2Step = u2.step/u2ElementSize; | ||||
|  | ||||
|     int I0ElementSize = I0.elemSize(); | ||||
|     int I0Step = I0.step/I0ElementSize; | ||||
|  | ||||
|     int I1w_element_size = I1w.elemSize(); | ||||
|     int I1w_step = I1w.step/I1w_element_size; | ||||
|  | ||||
|     int u1_offset_y = u1.offset/u1.step; | ||||
|     int u1_offset_x = u1.offset%u1.step; | ||||
|     u1_offset_x = u1_offset_x/u1.elemSize(); | ||||
|  | ||||
|     int u2_offset_y = u2.offset/u2.step; | ||||
|     int u2_offset_x = u2.offset%u2.step; | ||||
|     u2_offset_x = u2_offset_x/u2.elemSize(); | ||||
|  | ||||
|     size_t localThread[] = {32, 8, 1}; | ||||
|     size_t globalThread[] =  | ||||
|     { | ||||
|         I0.cols,  | ||||
|         I0.rows, | ||||
|         1 | ||||
|     }; | ||||
|  | ||||
|     cl_mem I1_tex; | ||||
|     cl_mem I1x_tex; | ||||
|     cl_mem I1y_tex; | ||||
|     I1_tex = bindTexture(I1); | ||||
|     I1x_tex = bindTexture(I1x); | ||||
|     I1y_tex = bindTexture(I1y); | ||||
|  | ||||
|     string kernelName = "warpBackwardKernel"; | ||||
|     vector< pair<size_t, const void *> > args; | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&I0.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&I0Step)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&I0.cols)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&I0.rows)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&I1_tex)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&I1x_tex)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&I1y_tex)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&u1.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u1Step)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&u2.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&I1w.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&I1wx.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&I1wy.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&grad.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_mem), (void*)&rho.data)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&I1w_step)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u2Step)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_x)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_y)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_x)); | ||||
|     args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_y)); | ||||
|  | ||||
|     openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1); | ||||
| } | ||||
| @@ -1,4 +1,4 @@ | ||||
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | ||||
| ///////////////////////////////////////////////////////////////////////////////////////
 | ||||
| //
 | ||||
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | ||||
| //
 | ||||
| @@ -7,12 +7,16 @@ | ||||
| //  copy or use the software.
 | ||||
| //
 | ||||
| //
 | ||||
| //                        Intel License Agreement
 | ||||
| //                           License Agreement
 | ||||
| //                For Open Source Computer Vision Library
 | ||||
| //
 | ||||
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | ||||
| // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
 | ||||
| // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
 | ||||
| // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
 | ||||
| // Third party copyrights are property of their respective owners.
 | ||||
| //
 | ||||
| // @Authors
 | ||||
| //
 | ||||
| //
 | ||||
| // Redistribution and use in source and binary forms, with or without modification,
 | ||||
| // are permitted provided that the following conditions are met:
 | ||||
| //
 | ||||
| @@ -21,9 +25,9 @@ | ||||
| //
 | ||||
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | ||||
| //     this list of conditions and the following disclaimer in the documentation
 | ||||
| //     and/or other materials provided with the distribution.
 | ||||
| //     and/or other oclMaterials provided with the distribution.
 | ||||
| //
 | ||||
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | ||||
| //   * The name of the copyright holders may not be used to endorse or promote products
 | ||||
| //     derived from this software without specific prior written permission.
 | ||||
| //
 | ||||
| // This software is provided by the copyright holders and contributors "as is" and
 | ||||
| @@ -51,6 +55,47 @@ using namespace testing; | ||||
| using namespace std; | ||||
| 
 | ||||
| extern string workdir; | ||||
| //////////////////////////////////////////////////////////////////////////
 | ||||
| PARAM_TEST_CASE(TVL1, bool) | ||||
| { | ||||
|     bool useRoi; | ||||
| 
 | ||||
|     virtual void SetUp() | ||||
|     { | ||||
|         useRoi = GET_PARAM(0); | ||||
|     } | ||||
| 
 | ||||
| }; | ||||
| 
 | ||||
| TEST_P(TVL1, Accuracy) | ||||
| { | ||||
|     cv::Mat frame0 = readImage(workdir + "../gpu/rubberwhale1.png", cv::IMREAD_GRAYSCALE); | ||||
|     ASSERT_FALSE(frame0.empty()); | ||||
| 
 | ||||
|     cv::Mat frame1 = readImage(workdir + "../gpu/rubberwhale2.png", cv::IMREAD_GRAYSCALE); | ||||
|     ASSERT_FALSE(frame1.empty()); | ||||
| 
 | ||||
|     cv::ocl::OpticalFlowDual_TVL1_OCL d_alg; | ||||
|     cv::RNG &rng = TS::ptr()->get_rng(); | ||||
|     cv::Mat flowx = randomMat(rng, frame0.size(), CV_32FC1, 0, 0, useRoi); | ||||
|     cv::Mat flowy = randomMat(rng, frame0.size(), CV_32FC1, 0, 0, useRoi); | ||||
|     cv::ocl::oclMat d_flowx(flowx), d_flowy(flowy); | ||||
|     d_alg(oclMat(frame0), oclMat(frame1), d_flowx, d_flowy); | ||||
| 
 | ||||
|     cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1(); | ||||
|     cv::Mat flow; | ||||
|     alg->calc(frame0, frame1, flow); | ||||
|     cv::Mat gold[2]; | ||||
|     cv::split(flow, gold); | ||||
| 
 | ||||
|     EXPECT_MAT_SIMILAR(gold[0], d_flowx, 3e-3); | ||||
|     EXPECT_MAT_SIMILAR(gold[1], d_flowy, 3e-3); | ||||
| } | ||||
| INSTANTIATE_TEST_CASE_P(OCL_Video, TVL1, Values(true, false)); | ||||
| 
 | ||||
| 
 | ||||
| /////////////////////////////////////////////////////////////////////////////////////////////////
 | ||||
| // PyrLKOpticalFlow
 | ||||
| 
 | ||||
| PARAM_TEST_CASE(Sparse, bool, bool) | ||||
| { | ||||
| @@ -60,7 +105,7 @@ PARAM_TEST_CASE(Sparse, bool, bool) | ||||
|     virtual void SetUp() | ||||
|     { | ||||
|         UseSmart = GET_PARAM(0); | ||||
|         useGray = GET_PARAM(0); | ||||
|         useGray = GET_PARAM(1); | ||||
|     } | ||||
| }; | ||||
| 
 | ||||
| @@ -147,9 +192,9 @@ TEST_P(Sparse, Mat) | ||||
| 
 | ||||
| } | ||||
| 
 | ||||
| INSTANTIATE_TEST_CASE_P(Video, Sparse, Combine( | ||||
|                             Values(false, true), | ||||
|                             Values(false))); | ||||
| INSTANTIATE_TEST_CASE_P(OCL_Video, Sparse, Combine( | ||||
|     Values(false, true), | ||||
|     Values(false, true))); | ||||
| 
 | ||||
| #endif // HAVE_OPENCL
 | ||||
| 
 | ||||
		Reference in New Issue
	
	Block a user
	 yao
					yao