add OpticalFlowDual_TVL1_OCL function
This commit is contained in:
475
modules/ocl/src/tvl1flow.cpp
Normal file
475
modules/ocl/src/tvl1flow.cpp
Normal file
@@ -0,0 +1,475 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
|
||||
#include "precomp.hpp"
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace ocl
|
||||
{
|
||||
///////////////////////////OpenCL kernel strings///////////////////////////
|
||||
extern const char* tvl1flow;
|
||||
}
|
||||
}
|
||||
|
||||
cv::ocl::OpticalFlowDual_TVL1_OCL::OpticalFlowDual_TVL1_OCL()
|
||||
{
|
||||
tau = 0.25;
|
||||
lambda = 0.15;
|
||||
theta = 0.3;
|
||||
nscales = 5;
|
||||
warps = 5;
|
||||
epsilon = 0.01;
|
||||
iterations = 300;
|
||||
useInitialFlow = false;
|
||||
}
|
||||
|
||||
void cv::ocl::OpticalFlowDual_TVL1_OCL::operator()(const oclMat& I0, const oclMat& I1, oclMat& flowx, oclMat& flowy)
|
||||
{
|
||||
CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 );
|
||||
CV_Assert( I0.size() == I1.size() );
|
||||
CV_Assert( I0.type() == I1.type() );
|
||||
CV_Assert( !useInitialFlow || (flowx.size() == I0.size() && flowx.type() == CV_32FC1 && flowy.size() == flowx.size() && flowy.type() == flowx.type()) );
|
||||
CV_Assert( nscales > 0 );
|
||||
|
||||
// allocate memory for the pyramid structure
|
||||
I0s.resize(nscales);
|
||||
I1s.resize(nscales);
|
||||
u1s.resize(nscales);
|
||||
u2s.resize(nscales);
|
||||
//I0s_step == I1s_step
|
||||
I0.convertTo(I0s[0], CV_32F, I0.depth() == CV_8U ? 1.0 : 255.0);
|
||||
I1.convertTo(I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0);
|
||||
|
||||
|
||||
if (!useInitialFlow)
|
||||
{
|
||||
flowx.create(I0.size(), CV_32FC1);
|
||||
flowy.create(I0.size(), CV_32FC1);
|
||||
}
|
||||
//u1s_step != u2s_step
|
||||
u1s[0] = flowx;
|
||||
u2s[0] = flowy;
|
||||
|
||||
I1x_buf.create(I0.size(), CV_32FC1);
|
||||
I1y_buf.create(I0.size(), CV_32FC1);
|
||||
|
||||
I1w_buf.create(I0.size(), CV_32FC1);
|
||||
I1wx_buf.create(I0.size(), CV_32FC1);
|
||||
I1wy_buf.create(I0.size(), CV_32FC1);
|
||||
|
||||
grad_buf.create(I0.size(), CV_32FC1);
|
||||
rho_c_buf.create(I0.size(), CV_32FC1);
|
||||
|
||||
p11_buf.create(I0.size(), CV_32FC1);
|
||||
p12_buf.create(I0.size(), CV_32FC1);
|
||||
p21_buf.create(I0.size(), CV_32FC1);
|
||||
p22_buf.create(I0.size(), CV_32FC1);
|
||||
|
||||
diff_buf.create(I0.size(), CV_32FC1);
|
||||
|
||||
// create the scales
|
||||
for (int s = 1; s < nscales; ++s)
|
||||
{
|
||||
ocl::pyrDown(I0s[s - 1], I0s[s]);
|
||||
ocl::pyrDown(I1s[s - 1], I1s[s]);
|
||||
|
||||
if (I0s[s].cols < 16 || I0s[s].rows < 16)
|
||||
{
|
||||
nscales = s;
|
||||
break;
|
||||
}
|
||||
|
||||
if (useInitialFlow)
|
||||
{
|
||||
ocl::pyrDown(u1s[s - 1], u1s[s]);
|
||||
ocl::pyrDown(u2s[s - 1], u2s[s]);
|
||||
|
||||
//ocl::multiply(u1s[s], Scalar::all(0.5), u1s[s]);
|
||||
multiply(0.5, u1s[s], u1s[s]);
|
||||
//ocl::multiply(u2s[s], Scalar::all(0.5), u2s[s]);
|
||||
multiply(0.5, u1s[s], u2s[s]);
|
||||
}
|
||||
}
|
||||
|
||||
// pyramidal structure for computing the optical flow
|
||||
for (int s = nscales - 1; s >= 0; --s)
|
||||
{
|
||||
// compute the optical flow at the current scale
|
||||
procOneScale(I0s[s], I1s[s], u1s[s], u2s[s]);
|
||||
|
||||
// if this was the last scale, finish now
|
||||
if (s == 0)
|
||||
break;
|
||||
|
||||
// otherwise, upsample the optical flow
|
||||
|
||||
// zoom the optical flow for the next finer scale
|
||||
ocl::resize(u1s[s], u1s[s - 1], I0s[s - 1].size());
|
||||
ocl::resize(u2s[s], u2s[s - 1], I0s[s - 1].size());
|
||||
|
||||
// scale the optical flow with the appropriate zoom factor
|
||||
multiply(2, u1s[s - 1], u1s[s - 1]);
|
||||
multiply(2, u2s[s - 1], u2s[s - 1]);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
namespace ocl_tvl1flow
|
||||
{
|
||||
void centeredGradient(const oclMat &src, oclMat &dx, oclMat &dy);
|
||||
|
||||
void warpBackward(const oclMat &I0, const oclMat &I1, oclMat &I1x, oclMat &I1y,
|
||||
oclMat &u1, oclMat &u2, oclMat &I1w, oclMat &I1wx, oclMat &I1wy,
|
||||
oclMat &grad, oclMat &rho);
|
||||
|
||||
void estimateU(oclMat &I1wx, oclMat &I1wy, oclMat &grad,
|
||||
oclMat &rho_c, oclMat &p11, oclMat &p12,
|
||||
oclMat &p21, oclMat &p22, oclMat &u1,
|
||||
oclMat &u2, oclMat &error, float l_t, float theta);
|
||||
|
||||
void estimateDualVariables(oclMat &u1, oclMat &u2,
|
||||
oclMat &p11, oclMat &p12, oclMat &p21, oclMat &p22, float taut);
|
||||
}
|
||||
|
||||
void cv::ocl::OpticalFlowDual_TVL1_OCL::procOneScale(const oclMat &I0, const oclMat &I1, oclMat &u1, oclMat &u2)
|
||||
{
|
||||
using namespace ocl_tvl1flow;
|
||||
|
||||
const double scaledEpsilon = epsilon * epsilon * I0.size().area();
|
||||
|
||||
CV_DbgAssert( I1.size() == I0.size() );
|
||||
CV_DbgAssert( I1.type() == I0.type() );
|
||||
CV_DbgAssert( u1.empty() || u1.size() == I0.size() );
|
||||
CV_DbgAssert( u2.size() == u1.size() );
|
||||
|
||||
if (u1.empty())
|
||||
{
|
||||
u1.create(I0.size(), CV_32FC1);
|
||||
u1.setTo(Scalar::all(0));
|
||||
|
||||
u2.create(I0.size(), CV_32FC1);
|
||||
u2.setTo(Scalar::all(0));
|
||||
}
|
||||
|
||||
oclMat I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
oclMat I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
|
||||
centeredGradient(I1, I1x, I1y);
|
||||
|
||||
oclMat I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
oclMat I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
oclMat I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
|
||||
oclMat grad = grad_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
oclMat rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
|
||||
oclMat p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
oclMat p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
oclMat p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
oclMat p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
p11.setTo(Scalar::all(0));
|
||||
p12.setTo(Scalar::all(0));
|
||||
p21.setTo(Scalar::all(0));
|
||||
p22.setTo(Scalar::all(0));
|
||||
|
||||
oclMat diff = diff_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
|
||||
const float l_t = static_cast<float>(lambda * theta);
|
||||
const float taut = static_cast<float>(tau / theta);
|
||||
|
||||
for (int warpings = 0; warpings < warps; ++warpings)
|
||||
{
|
||||
warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c);
|
||||
|
||||
double error = numeric_limits<double>::max();
|
||||
for (int n = 0; error > scaledEpsilon && n < iterations; ++n)
|
||||
{
|
||||
estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22,
|
||||
u1, u2, diff, l_t, static_cast<float>(theta));
|
||||
|
||||
error = ocl::sum(diff)[0];
|
||||
|
||||
estimateDualVariables(u1, u2, p11, p12, p21, p22, taut);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void cv::ocl::OpticalFlowDual_TVL1_OCL::collectGarbage()
|
||||
{
|
||||
I0s.clear();
|
||||
I1s.clear();
|
||||
u1s.clear();
|
||||
u2s.clear();
|
||||
|
||||
I1x_buf.release();
|
||||
I1y_buf.release();
|
||||
|
||||
I1w_buf.release();
|
||||
I1wx_buf.release();
|
||||
I1wy_buf.release();
|
||||
|
||||
grad_buf.release();
|
||||
rho_c_buf.release();
|
||||
|
||||
p11_buf.release();
|
||||
p12_buf.release();
|
||||
p21_buf.release();
|
||||
p22_buf.release();
|
||||
|
||||
diff_buf.release();
|
||||
norm_buf.release();
|
||||
}
|
||||
|
||||
void ocl_tvl1flow::centeredGradient(const oclMat &src, oclMat &dx, oclMat &dy)
|
||||
{
|
||||
Context *clCxt = src.clCxt;
|
||||
size_t localThreads[3] = {32, 8, 1};
|
||||
size_t globalThreads[3] = {src.cols, src.rows, 1};
|
||||
|
||||
int srcElementSize = src.elemSize();
|
||||
int src_step = src.step/srcElementSize;
|
||||
|
||||
int dElememntSize = dx.elemSize();
|
||||
int dx_step = dx.step/dElememntSize;
|
||||
|
||||
string kernelName = "centeredGradientKernel";
|
||||
vector< pair<size_t, const void *> > args;
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&src.data));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&src.cols));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&src.rows));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&src_step));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&dx.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&dy.data));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&dx_step));
|
||||
openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThreads, localThreads, args, -1, -1);
|
||||
|
||||
}
|
||||
|
||||
void ocl_tvl1flow::estimateDualVariables(oclMat &u1, oclMat &u2, oclMat &p11, oclMat &p12, oclMat &p21, oclMat &p22, float taut)
|
||||
{
|
||||
Context *clCxt = u1.clCxt;
|
||||
|
||||
size_t localThread[] = {32, 8, 1};
|
||||
size_t globalThread[] =
|
||||
{
|
||||
u1.cols,
|
||||
u1.rows,
|
||||
1
|
||||
};
|
||||
|
||||
int u1_element_size = u1.elemSize();
|
||||
int u1_step = u1.step/u1_element_size;
|
||||
|
||||
int u2_element_size = u2.elemSize();
|
||||
int u2_step = u2.step/u2_element_size;
|
||||
|
||||
int p11_element_size = p11.elemSize();
|
||||
int p11_step = p11.step/p11_element_size;
|
||||
|
||||
int u1_offset_y = u1.offset/u1.step;
|
||||
int u1_offset_x = u1.offset%u1.step;
|
||||
u1_offset_x = u1_offset_x/u1.elemSize();
|
||||
|
||||
int u2_offset_y = u2.offset/u2.step;
|
||||
int u2_offset_x = u2.offset%u2.step;
|
||||
u2_offset_x = u2_offset_x/u2.elemSize();
|
||||
|
||||
string kernelName = "estimateDualVariablesKernel";
|
||||
vector< pair<size_t, const void *> > args;
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&u1.data));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u1.cols));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u1.rows));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_step));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&u2.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&p11.data));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&p11_step));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&p12.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&p21.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&p22.data));
|
||||
args.push_back( make_pair( sizeof(cl_float), (void*)&taut));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_step));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_x));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_y));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_x));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_y));
|
||||
|
||||
openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1);
|
||||
}
|
||||
|
||||
void ocl_tvl1flow::estimateU(oclMat &I1wx, oclMat &I1wy, oclMat &grad,
|
||||
oclMat &rho_c, oclMat &p11, oclMat &p12,
|
||||
oclMat &p21, oclMat &p22, oclMat &u1,
|
||||
oclMat &u2, oclMat &error, float l_t, float theta)
|
||||
{
|
||||
Context* clCxt = I1wx.clCxt;
|
||||
|
||||
size_t localThread[] = {32, 8, 1};
|
||||
size_t globalThread[] =
|
||||
{
|
||||
I1wx.cols,
|
||||
I1wx.rows,
|
||||
1
|
||||
};
|
||||
|
||||
int I1wx_element_size = I1wx.elemSize();
|
||||
int I1wx_step = I1wx.step/I1wx_element_size;
|
||||
|
||||
int u1_element_size = u1.elemSize();
|
||||
int u1_step = u1.step/u1_element_size;
|
||||
|
||||
int u2_element_size = u2.elemSize();
|
||||
int u2_step = u2.step/u2_element_size;
|
||||
|
||||
int u1_offset_y = u1.offset/u1.step;
|
||||
int u1_offset_x = u1.offset%u1.step;
|
||||
u1_offset_x = u1_offset_x/u1.elemSize();
|
||||
|
||||
int u2_offset_y = u2.offset/u2.step;
|
||||
int u2_offset_x = u2.offset%u2.step;
|
||||
u2_offset_x = u2_offset_x/u2.elemSize();
|
||||
|
||||
string kernelName = "estimateUKernel";
|
||||
vector< pair<size_t, const void *> > args;
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1wx.data));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&I1wx.cols));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&I1wx.rows));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&I1wx_step));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1wy.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&grad.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&rho_c.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&p11.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&p12.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&p21.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&p22.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&u1.data));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_step));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&u2.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&error.data));
|
||||
args.push_back( make_pair( sizeof(cl_float), (void*)&l_t));
|
||||
args.push_back( make_pair( sizeof(cl_float), (void*)&theta));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_step));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_x));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_y));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_x));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_y));
|
||||
|
||||
openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1);
|
||||
}
|
||||
|
||||
void ocl_tvl1flow::warpBackward(const oclMat &I0, const oclMat &I1, oclMat &I1x, oclMat &I1y, oclMat &u1, oclMat &u2, oclMat &I1w, oclMat &I1wx, oclMat &I1wy, oclMat &grad, oclMat &rho)
|
||||
{
|
||||
Context* clCxt = I0.clCxt;
|
||||
const bool isImgSupported = support_image2d(clCxt);
|
||||
|
||||
CV_Assert(isImgSupported);
|
||||
|
||||
int u1ElementSize = u1.elemSize();
|
||||
int u1Step = u1.step/u1ElementSize;
|
||||
|
||||
int u2ElementSize = u2.elemSize();
|
||||
int u2Step = u2.step/u2ElementSize;
|
||||
|
||||
int I0ElementSize = I0.elemSize();
|
||||
int I0Step = I0.step/I0ElementSize;
|
||||
|
||||
int I1w_element_size = I1w.elemSize();
|
||||
int I1w_step = I1w.step/I1w_element_size;
|
||||
|
||||
int u1_offset_y = u1.offset/u1.step;
|
||||
int u1_offset_x = u1.offset%u1.step;
|
||||
u1_offset_x = u1_offset_x/u1.elemSize();
|
||||
|
||||
int u2_offset_y = u2.offset/u2.step;
|
||||
int u2_offset_x = u2.offset%u2.step;
|
||||
u2_offset_x = u2_offset_x/u2.elemSize();
|
||||
|
||||
size_t localThread[] = {32, 8, 1};
|
||||
size_t globalThread[] =
|
||||
{
|
||||
I0.cols,
|
||||
I0.rows,
|
||||
1
|
||||
};
|
||||
|
||||
cl_mem I1_tex;
|
||||
cl_mem I1x_tex;
|
||||
cl_mem I1y_tex;
|
||||
I1_tex = bindTexture(I1);
|
||||
I1x_tex = bindTexture(I1x);
|
||||
I1y_tex = bindTexture(I1y);
|
||||
|
||||
string kernelName = "warpBackwardKernel";
|
||||
vector< pair<size_t, const void *> > args;
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&I0.data));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&I0Step));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&I0.cols));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&I0.rows));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1_tex));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1x_tex));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1y_tex));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&u1.data));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u1Step));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&u2.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1w.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1wx.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1wy.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&grad.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void*)&rho.data));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&I1w_step));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u2Step));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_x));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_y));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_x));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_y));
|
||||
|
||||
openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1);
|
||||
}
|
||||
Reference in New Issue
Block a user