added hipotesis filtration
This commit is contained in:
parent
a53f0f397e
commit
4128d5782f
@ -273,7 +273,7 @@ namespace cv { namespace gpu { namespace device
|
|||||||
{
|
{
|
||||||
namespace lbp
|
namespace lbp
|
||||||
{
|
{
|
||||||
classifyStump(const DevMem2Db mstages,
|
void classifyStump(const DevMem2Db mstages,
|
||||||
const int nstages,
|
const int nstages,
|
||||||
const DevMem2Di mnodes,
|
const DevMem2Di mnodes,
|
||||||
const DevMem2Df mleaves,
|
const DevMem2Df mleaves,
|
||||||
@ -289,16 +289,19 @@ namespace cv { namespace gpu { namespace device
|
|||||||
int subsetSize,
|
int subsetSize,
|
||||||
DevMem2D_<int4> objects,
|
DevMem2D_<int4> objects,
|
||||||
unsigned int* classified);
|
unsigned int* classified);
|
||||||
|
|
||||||
|
int connectedConmonents(DevMem2D_<int4> candidates, int groupThreshold, float grouping_eps, unsigned int* nclasses);
|
||||||
}
|
}
|
||||||
}}}
|
}}}
|
||||||
|
|
||||||
int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, GpuMat& scaledImageBuffer, GpuMat& objects,
|
int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, GpuMat& scaledImageBuffer, GpuMat& objects,
|
||||||
double scaleFactor, int minNeighbors, cv::Size maxObjectSize /*, Size minSize=Size()*/)
|
double scaleFactor, int groupThreshold, cv::Size maxObjectSize /*, Size minSize=Size()*/)
|
||||||
{
|
{
|
||||||
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U );
|
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U );
|
||||||
CV_Assert(!empty());
|
CV_Assert(!empty());
|
||||||
|
|
||||||
const int defaultObjSearchNum = 100;
|
const int defaultObjSearchNum = 100;
|
||||||
|
const float grouping_eps = 0.2;
|
||||||
|
|
||||||
if( !objects.empty() && objects.depth() == CV_32S)
|
if( !objects.empty() && objects.depth() == CV_32S)
|
||||||
objects.reshape(4, 1);
|
objects.reshape(4, 1);
|
||||||
@ -340,11 +343,14 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
|
|||||||
cv::gpu::device::lbp::classifyStump(stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat, leaves_mat, subsets_mat, features_mat,
|
cv::gpu::device::lbp::classifyStump(stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat, leaves_mat, subsets_mat, features_mat,
|
||||||
integral, processingRectSize.width, processingRectSize.height, windowSize.width, windowSize.height, scaleFactor, step, subsetSize, objects, dclassified);
|
integral, processingRectSize.width, processingRectSize.height, windowSize.width, windowSize.height, scaleFactor, step, subsetSize, objects, dclassified);
|
||||||
}
|
}
|
||||||
cudaMemcpy(classified, dclassified, sizeof(int), cudaMemcpyDeviceToHost);
|
|
||||||
std::cout << *classified << "Results: " << cv::Mat(objects).row(0).colRange(0, *classified) << std::endl;
|
|
||||||
// TODO: reject levels
|
|
||||||
|
|
||||||
return 0;
|
cudaMemcpy(classified, dclassified, sizeof(int), cudaMemcpyDeviceToHost);
|
||||||
|
GpuMat candidates(1, *classified, objects.type(), objects.ptr());
|
||||||
|
// std::cout << *classified << " Results: " << cv::Mat(candidates) << std::endl;
|
||||||
|
|
||||||
|
if (groupThreshold <= 0 || objects.empty())
|
||||||
|
return 0;
|
||||||
|
return cv::gpu::device::lbp::connectedConmonents(candidates, groupThreshold, grouping_eps, dclassified);
|
||||||
}
|
}
|
||||||
|
|
||||||
// ============ old fashioned haar cascade ==============================================//
|
// ============ old fashioned haar cascade ==============================================//
|
||||||
|
@ -41,6 +41,8 @@
|
|||||||
//M*/
|
//M*/
|
||||||
|
|
||||||
#include <opencv2/gpu/device/lbp.hpp>
|
#include <opencv2/gpu/device/lbp.hpp>
|
||||||
|
#include <opencv2/gpu/device/vec_traits.hpp>
|
||||||
|
#include <opencv2/gpu/device/saturate_cast.hpp>
|
||||||
|
|
||||||
namespace cv { namespace gpu { namespace device
|
namespace cv { namespace gpu { namespace device
|
||||||
{
|
{
|
||||||
@ -89,13 +91,83 @@ namespace cv { namespace gpu { namespace device
|
|||||||
objects(0, res) = rect;
|
objects(0, res) = rect;
|
||||||
}
|
}
|
||||||
|
|
||||||
classifyStump(const DevMem2Db mstages, const int nstages, const DevMem2Di mnodes, const DevMem2Df mleaves, const DevMem2Di msubsets, const DevMem2Db mfeatures,
|
template<typename Pr>
|
||||||
|
__global__ void disjoin(int4* candidates, unsigned int n, int groupThreshold, float grouping_eps, unsigned int* nclasses)
|
||||||
|
{
|
||||||
|
using cv::gpu::device::VecTraits;
|
||||||
|
unsigned int tid = threadIdx.x;
|
||||||
|
extern __shared__ int sbuff[];
|
||||||
|
|
||||||
|
int* labels = sbuff;
|
||||||
|
int* rrects = (int*)(sbuff + n);
|
||||||
|
|
||||||
|
Pr predicate(grouping_eps);
|
||||||
|
partition(candidates, n, labels, predicate);
|
||||||
|
|
||||||
|
rrects[tid * 4 + 0] = 0;
|
||||||
|
rrects[tid * 4 + 1] = 0;
|
||||||
|
rrects[tid * 4 + 2] = 0;
|
||||||
|
rrects[tid * 4 + 3] = 0;
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
int cls = labels[tid];
|
||||||
|
atomicAdd((int*)(rrects + cls * 4 + 0), candidates[tid].x);
|
||||||
|
atomicAdd((int*)(rrects + cls * 4 + 1), candidates[tid].y);
|
||||||
|
atomicAdd((int*)(rrects + cls * 4 + 2), candidates[tid].z);
|
||||||
|
atomicAdd((int*)(rrects + cls * 4 + 3), candidates[tid].w);
|
||||||
|
labels[tid] = 0;
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
atomicInc((unsigned int*)labels + cls, n);
|
||||||
|
labels[n - 1] = 0;
|
||||||
|
|
||||||
|
int active = labels[tid];
|
||||||
|
if (active)
|
||||||
|
{
|
||||||
|
int* r1 = rrects + tid * 4;
|
||||||
|
float s = 1.f / active;
|
||||||
|
r1[0] = saturate_cast<int>(r1[0] * s);
|
||||||
|
r1[1] = saturate_cast<int>(r1[1] * s);
|
||||||
|
r1[2] = saturate_cast<int>(r1[2] * s);
|
||||||
|
r1[3] = saturate_cast<int>(r1[3] * s);
|
||||||
|
|
||||||
|
int n1 = active;
|
||||||
|
__syncthreads();
|
||||||
|
unsigned int j = 0;
|
||||||
|
if( active > groupThreshold )
|
||||||
|
{
|
||||||
|
for (j = 0; j < n; j++)
|
||||||
|
{
|
||||||
|
int n2 = labels[j];
|
||||||
|
if(!n2 || j == tid || n2 <= groupThreshold )
|
||||||
|
continue;
|
||||||
|
|
||||||
|
int* r2 = rrects + j * 4;
|
||||||
|
|
||||||
|
int dx = saturate_cast<int>( r2[2] * grouping_eps );
|
||||||
|
int dy = saturate_cast<int>( r2[3] * grouping_eps );
|
||||||
|
|
||||||
|
if( tid != j && r1[0] >= r2[0] - dx && r1[1] >= r2[1] - dy &&
|
||||||
|
r1[0] + r1[2] <= r2[0] + r2[2] + dx && r1[1] + r1[3] <= r2[1] + r2[3] + dy &&
|
||||||
|
(n2 > max(3, n1) || n1 < 3) )
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
if( j == n)
|
||||||
|
{
|
||||||
|
// printf("founded gpu %d %d %d %d \n", r1[0], r1[1], r1[2], r1[3]);
|
||||||
|
candidates[atomicInc((unsigned int*)labels + n -1, n)] = VecTraits<int4>::make(r1[0], r1[1], r1[2], r1[3]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void classifyStump(const DevMem2Db mstages, const int nstages, const DevMem2Di mnodes, const DevMem2Df mleaves, const DevMem2Di msubsets, const DevMem2Db mfeatures,
|
||||||
const DevMem2Di integral, const int workWidth, const int workHeight, const int clWidth, const int clHeight, float scale, int step, int subsetSize,
|
const DevMem2Di integral, const int workWidth, const int workHeight, const int clWidth, const int clHeight, float scale, int step, int subsetSize,
|
||||||
DevMem2D_<int4> objects, unsigned int* classified)
|
DevMem2D_<int4> objects, unsigned int* classified)
|
||||||
{
|
{
|
||||||
int blocks = ceilf(workHeight / (float)step);
|
int blocks = ceilf(workHeight / (float)step);
|
||||||
int threads = ceilf(workWidth / (float)step);
|
int threads = ceilf(workWidth / (float)step);
|
||||||
// printf("blocks %d, threads %d\n", blocks, threads);
|
|
||||||
|
|
||||||
Stage* stages = (Stage*)(mstages.ptr());
|
Stage* stages = (Stage*)(mstages.ptr());
|
||||||
ClNode* nodes = (ClNode*)(mnodes.ptr());
|
ClNode* nodes = (ClNode*)(mnodes.ptr());
|
||||||
@ -106,5 +178,13 @@ namespace cv { namespace gpu { namespace device
|
|||||||
lbp_classify_stump<<<blocks, threads>>>(stages, nstages, nodes, leaves, subsets, features, integral,
|
lbp_classify_stump<<<blocks, threads>>>(stages, nstages, nodes, leaves, subsets, features, integral,
|
||||||
workWidth, workHeight, clWidth, clHeight, scale, step, subsetSize, objects, classified);
|
workWidth, workHeight, clWidth, clHeight, scale, step, subsetSize, objects, classified);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int connectedConmonents(DevMem2D_<int4> candidates, int groupThreshold, float grouping_eps, unsigned int* nclasses)
|
||||||
|
{
|
||||||
|
int threads = candidates.cols;
|
||||||
|
int smem_amount = threads * sizeof(int) + threads * sizeof(int4);
|
||||||
|
disjoin<InSameComponint><<<1, threads, smem_amount>>>((int4*)candidates.ptr(), candidates.cols, groupThreshold, grouping_eps, nclasses);
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}}}
|
}}}
|
@ -62,6 +62,50 @@ namespace lbp{
|
|||||||
int featureIdx;
|
int featureIdx;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
struct InSameComponint
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
__device__ __forceinline__ InSameComponint(float _eps) : eps(_eps * 0.5) {}
|
||||||
|
__device__ __forceinline__ InSameComponint(const InSameComponint& other) : eps(other.eps) {}
|
||||||
|
|
||||||
|
__device__ __forceinline__ bool operator()(const int4& r1, const int4& r2) const
|
||||||
|
{
|
||||||
|
double delta = eps * (min(r1.z, r2.z) + min(r1.w, r2.w));
|
||||||
|
|
||||||
|
return abs(r1.x - r2.x) <= delta && abs(r1.y - r2.y) <= delta
|
||||||
|
&& abs(r1.x + r1.z - r2.x - r2.z) <= delta && abs(r1.y + r1.w - r2.y - r2.w) <= delta;
|
||||||
|
}
|
||||||
|
float eps;
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Pr>
|
||||||
|
__device__ __forceinline__ void partition(int4* vec, unsigned int n, int* labels, Pr predicate)
|
||||||
|
{
|
||||||
|
unsigned tid = threadIdx.x;
|
||||||
|
labels[tid] = tid;
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
for (unsigned int id = 0; id < n; id++)
|
||||||
|
{
|
||||||
|
if (tid != id && predicate(vec[tid], vec[id]))
|
||||||
|
{
|
||||||
|
int p = labels[tid];
|
||||||
|
int q = labels[id];
|
||||||
|
|
||||||
|
if (p < q)
|
||||||
|
{
|
||||||
|
atomicMin(labels + id, p);
|
||||||
|
}
|
||||||
|
else if (p > q)
|
||||||
|
{
|
||||||
|
atomicMin(labels + tid, q);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
// printf("tid %d label %d\n", tid, labels[tid]);
|
||||||
|
}
|
||||||
|
|
||||||
struct LBP
|
struct LBP
|
||||||
{
|
{
|
||||||
__device__ __forceinline__ LBP(const LBP& other) {(void)other;}
|
__device__ __forceinline__ LBP(const LBP& other) {(void)other;}
|
||||||
@ -72,7 +116,6 @@ namespace lbp{
|
|||||||
{
|
{
|
||||||
int x_off = 2 * feature.z;
|
int x_off = 2 * feature.z;
|
||||||
int y_off = 2 * feature.w;
|
int y_off = 2 * feature.w;
|
||||||
// printf("feature: %d %d %d %d\n", (int)feature.x, (int)feature.y, (int)feature.z, (int)feature.w);
|
|
||||||
feature.z += feature.x;
|
feature.z += feature.x;
|
||||||
feature.w += feature.y;
|
feature.w += feature.y;
|
||||||
|
|
||||||
@ -107,7 +150,7 @@ namespace lbp{
|
|||||||
anchors[14] = integral(y + y_off + feature.w, x + x_off + feature.x);
|
anchors[14] = integral(y + y_off + feature.w, x + x_off + feature.x);
|
||||||
anchors[15] = integral(y + y_off + feature.w, x + x_off + feature.z);
|
anchors[15] = integral(y + y_off + feature.w, x + x_off + feature.z);
|
||||||
|
|
||||||
// calculate feature
|
// calculate responce
|
||||||
int sum = anchors[5] - anchors[6] - anchors[9] + anchors[10];
|
int sum = anchors[5] - anchors[6] - anchors[9] + anchors[10];
|
||||||
|
|
||||||
int response = (( (anchors[ 0] - anchors[ 1] - anchors[ 4] + anchors[ 5]) >= sum )? 128 : 0)
|
int response = (( (anchors[ 0] - anchors[ 1] - anchors[ 4] + anchors[ 5]) >= sum )? 128 : 0)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user