phaseCorrelate documentation patch by Will Lucas #2017
This commit is contained in:
@@ -161,11 +161,10 @@ Return value: detected phase shift (sub-pixel) between the two arrays.
|
|||||||
|
|
||||||
The function performs the following equations
|
The function performs the following equations
|
||||||
|
|
||||||
*
|
* First it applies a Hanning window (see http://en.wikipedia.org/wiki/Hann\_function) to each image to remove possible edge effects. This window is cached until the array size changes to speed up processing time.
|
||||||
First it applies a Hanning window (see http://en.wikipedia.org/wiki/Hann\_function) to each image to remove possible edge effects. This window is cached until the array size changes to speed up processing time.
|
|
||||||
|
* Next it computes the forward DFTs of each source array:
|
||||||
|
|
||||||
*
|
|
||||||
Next it computes the forward DFTs of each source array:
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}
|
\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}
|
||||||
@@ -173,22 +172,23 @@ The function performs the following equations
|
|||||||
where
|
where
|
||||||
:math:`\mathcal{F}` is the forward DFT.
|
:math:`\mathcal{F}` is the forward DFT.
|
||||||
|
|
||||||
*
|
* It then computes the cross-power spectrum of each frequency domain array:
|
||||||
It then computes the cross-power spectrum of each frequency domain array:
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}
|
R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}
|
||||||
|
|
||||||
*
|
* Next the cross-correlation is converted back into the time domain via the inverse DFT:
|
||||||
Next the cross-correlation is converted back into the time domain via the inverse DFT:
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
r = \mathcal{F}^{-1}\{R\}
|
r = \mathcal{F}^{-1}\{R\}
|
||||||
*
|
|
||||||
Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to achieve sub-pixel accuracy.
|
* Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to achieve sub-pixel accuracy.
|
||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
(\Delta x, \Delta y) = \texttt{weighted_centroid}\{\arg \max_{(x, y)}\{r\}\}
|
(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}
|
||||||
|
|
||||||
.. seealso::
|
.. seealso::
|
||||||
:ocv:func:`dft`,
|
:ocv:func:`dft`,
|
||||||
|
|||||||
Reference in New Issue
Block a user