Refactored SVMSGD class
This commit is contained in:
@@ -1513,126 +1513,6 @@ CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, Out
|
||||
CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses,
|
||||
OutputArray samples, OutputArray responses);
|
||||
|
||||
/****************************************************************************************\
|
||||
* Stochastic Gradient Descent SVM Classifier *
|
||||
\****************************************************************************************/
|
||||
|
||||
/*!
|
||||
@brief Stochastic Gradient Descent SVM classifier
|
||||
|
||||
SVMSGD provides a fast and easy-to-use implementation of the SVM classifier using the Stochastic Gradient Descent approach, as presented in @cite bottou2010large.
|
||||
The gradient descent show amazing performance for large-scale problems, reducing the computing time. This allows a fast and reliable online update of the classifier for each new feature which
|
||||
is fundamental when dealing with variations of data over time (like weather and illumination changes in videosurveillance, for example).
|
||||
|
||||
First, create the SVMSGD object. To enable the online update, a value for updateFrequency should be defined.
|
||||
|
||||
Then the SVM model can be trained using the train features and the correspondent labels.
|
||||
|
||||
After that, the label of a new feature vector can be predicted using the predict function. If the updateFrequency was defined in the constructor, the predict function will update the weights automatically.
|
||||
|
||||
@code
|
||||
// Initialize object
|
||||
SVMSGD SvmSgd;
|
||||
|
||||
// Train the Stochastic Gradient Descent SVM
|
||||
SvmSgd.train(trainFeatures, labels);
|
||||
|
||||
// Predict label for the new feature vector (1xM)
|
||||
predictedLabel = SvmSgd.predict(newFeatureVector);
|
||||
@endcode
|
||||
|
||||
*/
|
||||
class CV_EXPORTS_W SVMSGD {
|
||||
|
||||
public:
|
||||
/** @brief SGDSVM constructor.
|
||||
|
||||
@param lambda regularization
|
||||
@param learnRate learning rate
|
||||
@param nIterations number of training iterations
|
||||
|
||||
*/
|
||||
SVMSGD(float lambda = 0.000001, float learnRate = 2, uint nIterations = 100000);
|
||||
|
||||
/** @brief SGDSVM constructor.
|
||||
|
||||
@param updateFrequency online update frequency
|
||||
@param learnRateDecay learn rate decay over time: learnRate = learnRate * learnDecay
|
||||
@param lambda regularization
|
||||
@param learnRate learning rate
|
||||
@param nIterations number of training iterations
|
||||
|
||||
*/
|
||||
SVMSGD(uint updateFrequency, float learnRateDecay = 1, float lambda = 0.000001, float learnRate = 2, uint nIterations = 100000);
|
||||
virtual ~SVMSGD();
|
||||
virtual SVMSGD* clone() const;
|
||||
|
||||
/** @brief Train the SGDSVM classifier.
|
||||
|
||||
The function trains the SGDSVM classifier using the train features and the correspondent labels (-1 or 1).
|
||||
|
||||
@param trainFeatures features used for training. Each row is a new sample.
|
||||
@param labels mat (size Nx1 with N = number of features) with the label of each training feature.
|
||||
|
||||
*/
|
||||
virtual void train(cv::Mat trainFeatures, cv::Mat labels);
|
||||
|
||||
/** @brief Predict the label of a new feature vector.
|
||||
|
||||
The function predicts and returns the label of a new feature vector, using the previously trained SVM model.
|
||||
|
||||
@param newFeature new feature vector used for prediction
|
||||
|
||||
*/
|
||||
virtual float predict(cv::Mat newFeature);
|
||||
|
||||
/** @brief Returns the weights of the trained model.
|
||||
|
||||
*/
|
||||
virtual std::vector<float> getWeights(){ return _weights; };
|
||||
|
||||
/** @brief Sets the weights of the trained model.
|
||||
|
||||
@param weights weights used to predict the label of a new feature vector.
|
||||
|
||||
*/
|
||||
virtual void setWeights(std::vector<float> weights){ _weights = weights; };
|
||||
|
||||
private:
|
||||
void updateWeights();
|
||||
void generateRandomIndex();
|
||||
float calcInnerProduct(float *rowDataPointer);
|
||||
void updateWeights(float innerProduct, float *rowDataPointer, int label);
|
||||
|
||||
// Vector with SVM weights
|
||||
std::vector<float> _weights;
|
||||
|
||||
// Random index generation
|
||||
long long int _randomNumber;
|
||||
unsigned int _randomIndex;
|
||||
|
||||
// Number of features and samples
|
||||
unsigned int _nFeatures;
|
||||
unsigned int _nTrainSamples;
|
||||
|
||||
// Parameters for learning
|
||||
float _lambda; //regularization
|
||||
float _learnRate; //learning rate
|
||||
unsigned int _nIterations; //number of training iterations
|
||||
|
||||
// Vars to control the features slider matrix
|
||||
bool _onlineUpdate;
|
||||
bool _initPredict;
|
||||
uint _slidingWindowSize;
|
||||
uint _predictSlidingWindowSize;
|
||||
float* _labelSlider;
|
||||
float _learnRateDecay;
|
||||
|
||||
// Mat with features slider and correspondent counter
|
||||
unsigned int _sliderCounter;
|
||||
cv::Mat _featuresSlider;
|
||||
|
||||
};
|
||||
|
||||
//! @} ml
|
||||
|
||||
|
134
modules/ml/include/opencv2/ml/svmsgd.hpp
Normal file
134
modules/ml/include/opencv2/ml/svmsgd.hpp
Normal file
@@ -0,0 +1,134 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Copyright (C) 2014, Itseez Inc, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_ML_SVMSGD_HPP__
|
||||
#define __OPENCV_ML_SVMSGD_HPP__
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
#include "opencv2/ml.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace ml
|
||||
{
|
||||
|
||||
|
||||
/****************************************************************************************\
|
||||
* Stochastic Gradient Descent SVM Classifier *
|
||||
\****************************************************************************************/
|
||||
|
||||
/*!
|
||||
@brief Stochastic Gradient Descent SVM classifier
|
||||
|
||||
SVMSGD provides a fast and easy-to-use implementation of the SVM classifier using the Stochastic Gradient Descent approach, as presented in @cite bottou2010large.
|
||||
The gradient descent show amazing performance for large-scale problems, reducing the computing time. This allows a fast and reliable online update of the classifier for each new feature which
|
||||
is fundamental when dealing with variations of data over time (like weather and illumination changes in videosurveillance, for example).
|
||||
|
||||
First, create the SVMSGD object. To enable the online update, a value for updateFrequency should be defined.
|
||||
|
||||
Then the SVM model can be trained using the train features and the correspondent labels.
|
||||
|
||||
After that, the label of a new feature vector can be predicted using the predict function. If the updateFrequency was defined in the constructor, the predict function will update the weights automatically.
|
||||
|
||||
@code
|
||||
// Initialize object
|
||||
SVMSGD SvmSgd;
|
||||
|
||||
// Train the Stochastic Gradient Descent SVM
|
||||
SvmSgd.train(trainFeatures, labels);
|
||||
|
||||
// Predict label for the new feature vector (1xM)
|
||||
predictedLabel = SvmSgd.predict(newFeatureVector);
|
||||
@endcode
|
||||
|
||||
*/
|
||||
|
||||
class CV_EXPORTS_W SVMSGD : public cv::ml::StatModel
|
||||
{
|
||||
public:
|
||||
|
||||
enum SvmsgdType
|
||||
{
|
||||
ILLEGAL_VALUE,
|
||||
SGD, //Stochastic Gradient Descent
|
||||
ASGD //Average Stochastic Gradient Descent
|
||||
};
|
||||
|
||||
/**
|
||||
* @return the weights of the trained model.
|
||||
*/
|
||||
CV_WRAP virtual Mat getWeights() = 0;
|
||||
|
||||
CV_WRAP virtual float getShift() = 0;
|
||||
|
||||
CV_WRAP static Ptr<SVMSGD> create();
|
||||
|
||||
CV_WRAP virtual void setOptimalParameters(int type = ASGD) = 0;
|
||||
|
||||
CV_WRAP virtual int getType() const = 0;
|
||||
|
||||
CV_WRAP virtual void setType(int type) = 0;
|
||||
|
||||
CV_WRAP virtual float getLambda() const = 0;
|
||||
|
||||
CV_WRAP virtual void setLambda(float lambda) = 0;
|
||||
|
||||
CV_WRAP virtual float getGamma0() const = 0;
|
||||
|
||||
CV_WRAP virtual void setGamma0(float gamma0) = 0;
|
||||
|
||||
CV_WRAP virtual float getC() const = 0;
|
||||
|
||||
CV_WRAP virtual void setC(float c) = 0;
|
||||
|
||||
CV_WRAP virtual cv::TermCriteria getTermCriteria() const = 0;
|
||||
|
||||
CV_WRAP virtual void setTermCriteria(const cv::TermCriteria &val) = 0;
|
||||
};
|
||||
|
||||
} //ml
|
||||
} //cv
|
||||
|
||||
#endif // __clpusplus
|
||||
#endif // __OPENCV_ML_SVMSGD_HPP
|
Reference in New Issue
Block a user