GPU version becomes algorithm
This commit is contained in:
60
modules/gpu/src/gpu_init.cpp
Normal file
60
modules/gpu/src/gpu_init.cpp
Normal file
@@ -0,0 +1,60 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <precomp.hpp>
|
||||
|
||||
namespace cv { namespace gpu
|
||||
{
|
||||
|
||||
CV_INIT_ALGORITHM(SCascade, "CascadeDetector.SCascade",
|
||||
obj.info()->addParam(obj, "minScale", obj.minScale);
|
||||
obj.info()->addParam(obj, "maxScale", obj.maxScale);
|
||||
obj.info()->addParam(obj, "scales", obj.scales);
|
||||
obj.info()->addParam(obj, "rejfactor", obj.rejfactor));
|
||||
|
||||
bool initModule_gpu(void)
|
||||
{
|
||||
Ptr<Algorithm> sc = createSCascade();
|
||||
return sc->info() != 0;
|
||||
}
|
||||
|
||||
} }
|
@@ -45,21 +45,18 @@
|
||||
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
cv::gpu::SoftCascade::SoftCascade() : filds(0) { throw_nogpu(); }
|
||||
cv::gpu::SoftCascade::SoftCascade( const string&, const float, const float) : filds(0) { throw_nogpu(); }
|
||||
cv::gpu::SoftCascade::~SoftCascade() { throw_nogpu(); }
|
||||
bool cv::gpu::SoftCascade::load( const string&, const float, const float) { throw_nogpu(); return false; }
|
||||
void cv::gpu::SoftCascade::detectMultiScale(const GpuMat&, const GpuMat&, GpuMat&, const int, int) const
|
||||
{
|
||||
throw_nogpu();
|
||||
}
|
||||
cv::gpu::SCascade::SCascade(const double, const double, const int, const int) { throw_nogpu(); }
|
||||
|
||||
void cv::gpu::SoftCascade::detectMultiScale(const GpuMat&, const GpuMat&, GpuMat&, int, GpuMat&, Stream) const
|
||||
{
|
||||
throw_nogpu();
|
||||
}
|
||||
cv::gpu::SCascade::~SCascade() { throw_nogpu(); }
|
||||
|
||||
cv::Size cv::gpu::SoftCascade::getRoiSize() const { throw_nogpu(); return cv::Size();}
|
||||
bool cv::gpu::SCascade::load(const FileNode&) { throw_nogpu(); return false;}
|
||||
|
||||
void cv::gpu::SCascade::detect(InputArray, InputArray, OutputArray, Stream&) const { throw_nogpu(); }
|
||||
void cv::gpu::SCascade::detect(InputArray, InputArray, OutputArray, const int, Stream&) const { throw_nogpu(); }
|
||||
|
||||
void cv::gpu::SCascade::genRoi(InputArray, OutputArray) const { throw_nogpu(); }
|
||||
|
||||
void cv::gpu::SCascade::read(const FileNode& fn) { Algorithm::read(fn); }
|
||||
|
||||
#else
|
||||
|
||||
@@ -92,7 +89,7 @@ namespace imgproc {
|
||||
|
||||
}}}
|
||||
|
||||
struct cv::gpu::SoftCascade::Filds
|
||||
struct cv::gpu::SCascade::Fields
|
||||
{
|
||||
struct CascadeIntrinsics
|
||||
{
|
||||
@@ -126,7 +123,7 @@ struct cv::gpu::SoftCascade::Filds
|
||||
}
|
||||
};
|
||||
|
||||
static Filds* parseCascade(const FileNode &root, const float mins, const float maxs)
|
||||
static Fields* parseCascade(const FileNode &root, const float mins, const float maxs)
|
||||
{
|
||||
static const char *const SC_STAGE_TYPE = "stageType";
|
||||
static const char *const SC_BOOST = "BOOST";
|
||||
@@ -312,13 +309,13 @@ struct cv::gpu::SoftCascade::Filds
|
||||
cv::Mat hlevels(1, vlevels.size() * sizeof(Level), CV_8UC1, (uchar*)&(vlevels[0]) );
|
||||
CV_Assert(!hlevels.empty());
|
||||
|
||||
Filds* filds = new Filds(mins, maxs, origWidth, origHeight, shrinkage, downscales,
|
||||
Fields* fields = new Fields(mins, maxs, origWidth, origHeight, shrinkage, downscales,
|
||||
hoctaves, hstages, hnodes, hleaves, hlevels);
|
||||
|
||||
return filds;
|
||||
return fields;
|
||||
}
|
||||
|
||||
Filds( const float mins, const float maxs, const int ow, const int oh, const int shr, const int ds,
|
||||
Fields( const float mins, const float maxs, const int ow, const int oh, const int shr, const int ds,
|
||||
cv::Mat hoctaves, cv::Mat hstages, cv::Mat hnodes, cv::Mat hleaves, cv::Mat hlevels)
|
||||
: minScale(mins), maxScale(maxs), origObjWidth(ow), origObjHeight(oh), shrinkage(shr), downscales(ds)
|
||||
{
|
||||
@@ -332,7 +329,7 @@ struct cv::gpu::SoftCascade::Filds
|
||||
hogluv.create((FRAME_HEIGHT / shr) * HOG_LUV_BINS + 1, FRAME_WIDTH / shr + 1, CV_32SC1);
|
||||
hogluv.setTo(cv::Scalar::all(0));
|
||||
|
||||
detCounter.create(1,1, CV_32SC1);
|
||||
detCounter.create(sizeof(Detection) / sizeof(int),1, CV_32SC1);
|
||||
|
||||
octaves.upload(hoctaves);
|
||||
stages.upload(hstages);
|
||||
@@ -344,20 +341,21 @@ struct cv::gpu::SoftCascade::Filds
|
||||
|
||||
}
|
||||
|
||||
void detect(int scale, const cv::gpu::GpuMat& roi, cv::gpu::GpuMat& objects, cudaStream_t stream) const
|
||||
void detect(int scale, const cv::gpu::GpuMat& roi, const cv::gpu::GpuMat& count, cv::gpu::GpuMat& objects, cudaStream_t stream) const
|
||||
{
|
||||
cudaMemset(detCounter.data, 0, detCounter.step * detCounter.rows * sizeof(int));
|
||||
invoker(roi, hogluv, objects, detCounter, downscales, scale);
|
||||
cudaMemset(count.data, 0, sizeof(Detection));
|
||||
cudaSafeCall( cudaGetLastError());
|
||||
invoker(roi, hogluv, objects, count, downscales, scale);
|
||||
}
|
||||
|
||||
void preprocess(const cv::gpu::GpuMat& colored)
|
||||
{
|
||||
cudaMemset(plane.data, 0, plane.step * plane.rows);
|
||||
|
||||
static const int fw = Filds::FRAME_WIDTH;
|
||||
static const int fh = Filds::FRAME_HEIGHT;
|
||||
static const int fw = Fields::FRAME_WIDTH;
|
||||
static const int fh = Fields::FRAME_HEIGHT;
|
||||
|
||||
GpuMat gray(plane, cv::Rect(0, fh * Filds::HOG_LUV_BINS, fw, fh));
|
||||
GpuMat gray(plane, cv::Rect(0, fh * Fields::HOG_LUV_BINS, fw, fh));
|
||||
cv::gpu::cvtColor(colored, gray, CV_BGR2GRAY);
|
||||
createHogBins(gray);
|
||||
|
||||
@@ -390,8 +388,8 @@ private:
|
||||
|
||||
void createHogBins(const cv::gpu::GpuMat& gray)
|
||||
{
|
||||
static const int fw = Filds::FRAME_WIDTH;
|
||||
static const int fh = Filds::FRAME_HEIGHT;
|
||||
static const int fw = Fields::FRAME_WIDTH;
|
||||
static const int fh = Fields::FRAME_HEIGHT;
|
||||
|
||||
GpuMat dfdx(fplane, cv::Rect(0, 0, fw, fh));
|
||||
GpuMat dfdy(fplane, cv::Rect(0, fh, fw, fh));
|
||||
@@ -413,21 +411,21 @@ private:
|
||||
cv::gpu::multiply(ang, cv::Scalar::all(1.f / 60.f), nang);
|
||||
|
||||
//create uchar magnitude
|
||||
GpuMat cmag(plane, cv::Rect(0, fh * Filds::HOG_BINS, fw, fh));
|
||||
GpuMat cmag(plane, cv::Rect(0, fh * Fields::HOG_BINS, fw, fh));
|
||||
nmag.convertTo(cmag, CV_8UC1);
|
||||
|
||||
device::icf::fillBins(plane, nang, fw, fh, Filds::HOG_BINS);
|
||||
device::icf::fillBins(plane, nang, fw, fh, Fields::HOG_BINS);
|
||||
}
|
||||
|
||||
void createLuvBins(const cv::gpu::GpuMat& colored)
|
||||
{
|
||||
static const int fw = Filds::FRAME_WIDTH;
|
||||
static const int fh = Filds::FRAME_HEIGHT;
|
||||
static const int fw = Fields::FRAME_WIDTH;
|
||||
static const int fh = Fields::FRAME_HEIGHT;
|
||||
|
||||
cv::gpu::cvtColor(colored, luv, CV_BGR2Luv);
|
||||
|
||||
std::vector<GpuMat> splited;
|
||||
for(int i = 0; i < Filds::LUV_BINS; ++i)
|
||||
for(int i = 0; i < Fields::LUV_BINS; ++i)
|
||||
{
|
||||
splited.push_back(GpuMat(plane, cv::Rect(0, fh * (7 + i), fw, fh)));
|
||||
}
|
||||
@@ -437,10 +435,10 @@ private:
|
||||
|
||||
void integrate()
|
||||
{
|
||||
int fw = Filds::FRAME_WIDTH;
|
||||
int fh = Filds::FRAME_HEIGHT;
|
||||
int fw = Fields::FRAME_WIDTH;
|
||||
int fh = Fields::FRAME_HEIGHT;
|
||||
|
||||
GpuMat channels(plane, cv::Rect(0, 0, fw, fh * Filds::HOG_LUV_BINS));
|
||||
GpuMat channels(plane, cv::Rect(0, 0, fw, fh * Fields::HOG_LUV_BINS));
|
||||
cv::gpu::resize(channels, shrunk, cv::Size(), 0.25, 0.25, CV_INTER_AREA);
|
||||
device::imgproc::shfl_integral_gpu_buffered(shrunk, integralBuffer, hogluv, 12, 0);
|
||||
}
|
||||
@@ -500,45 +498,33 @@ public:
|
||||
};
|
||||
};
|
||||
|
||||
cv::gpu::SoftCascade::SoftCascade() : filds(0) {}
|
||||
cv::gpu::SCascade::SCascade(const double mins, const double maxs, const int sc, const int rjf)
|
||||
: fields(0), minScale(mins), maxScale(maxs), scales(sc), rejfactor(rjf) {}
|
||||
|
||||
cv::gpu::SoftCascade::SoftCascade( const string& filename, const float minScale, const float maxScale) : filds(0)
|
||||
cv::gpu::SCascade::~SCascade() { delete fields; }
|
||||
|
||||
bool cv::gpu::SCascade::load(const FileNode& fn)
|
||||
{
|
||||
load(filename, minScale, maxScale);
|
||||
if (fields) delete fields;
|
||||
fields = Fields::parseCascade(fn, minScale, maxScale);
|
||||
return fields != 0;
|
||||
}
|
||||
|
||||
cv::gpu::SoftCascade::~SoftCascade()
|
||||
{
|
||||
delete filds;
|
||||
}
|
||||
|
||||
bool cv::gpu::SoftCascade::load( const string& filename, const float minScale, const float maxScale)
|
||||
{
|
||||
if (filds) delete filds;
|
||||
|
||||
cv::FileStorage fs(filename, FileStorage::READ);
|
||||
if (!fs.isOpened()) return false;
|
||||
|
||||
filds = Filds::parseCascade(fs.getFirstTopLevelNode(), minScale, maxScale);
|
||||
return filds != 0;
|
||||
}
|
||||
|
||||
void cv::gpu::SoftCascade::detectMultiScale(const GpuMat& colored, const GpuMat& rois,
|
||||
GpuMat& objects, const int /*rejectfactor*/, int specificScale) const
|
||||
void cv::gpu::SCascade::detect(InputArray image, InputArray _rois, OutputArray _objects, Stream& s) const
|
||||
{
|
||||
const GpuMat colored = image.getGpuMat();
|
||||
// only color images are supperted
|
||||
CV_Assert(colored.type() == CV_8UC3 || colored.type() == CV_32SC1);
|
||||
|
||||
// we guess user knows about shrincage
|
||||
CV_Assert((rois.size().width == getRoiSize().height) && (rois.type() == CV_8UC1));
|
||||
// CV_Assert((rois.size().width == getRoiSize().height) && (rois.type() == CV_8UC1));
|
||||
|
||||
|
||||
Filds& flds = *filds;
|
||||
Fields& flds = *fields;
|
||||
|
||||
if (colored.type() == CV_8UC3)
|
||||
{
|
||||
// only this window size allowed
|
||||
CV_Assert(colored.cols == Filds::FRAME_WIDTH && colored.rows == Filds::FRAME_HEIGHT);
|
||||
CV_Assert(colored.cols == Fields::FRAME_WIDTH && colored.rows == Fields::FRAME_HEIGHT);
|
||||
flds.preprocess(colored);
|
||||
}
|
||||
else
|
||||
@@ -546,25 +532,60 @@ void cv::gpu::SoftCascade::detectMultiScale(const GpuMat& colored, const GpuMat&
|
||||
colored.copyTo(flds.hogluv);
|
||||
}
|
||||
|
||||
flds.detect(specificScale, rois, objects, 0);
|
||||
GpuMat rois = _rois.getGpuMat(), objects = _objects.getGpuMat();
|
||||
|
||||
cv::Mat out(flds.detCounter);
|
||||
int ndetections = *(out.ptr<int>(0));
|
||||
GpuMat tmp = GpuMat(objects, cv::Rect(0, 0, sizeof(Detection), 1));
|
||||
objects = GpuMat(objects, cv::Rect( sizeof(Detection), 0, objects.cols - sizeof(Detection), 1));
|
||||
cudaStream_t stream = StreamAccessor::getStream(s);
|
||||
|
||||
if (! ndetections)
|
||||
objects = GpuMat();
|
||||
flds.detect(-1, rois, tmp, objects, stream);
|
||||
}
|
||||
|
||||
void cv::gpu::SCascade::detect(InputArray image, InputArray _rois, OutputArray _objects, const int level, Stream& s) const
|
||||
{
|
||||
const GpuMat colored = image.getGpuMat();
|
||||
// only color images are supperted
|
||||
CV_Assert(colored.type() == CV_8UC3 || colored.type() == CV_32SC1);
|
||||
|
||||
// we guess user knows about shrincage
|
||||
// CV_Assert((rois.size().width == getRoiSize().height) && (rois.type() == CV_8UC1));
|
||||
|
||||
Fields& flds = *fields;
|
||||
|
||||
if (colored.type() == CV_8UC3)
|
||||
{
|
||||
// only this window size allowed
|
||||
CV_Assert(colored.cols == Fields::FRAME_WIDTH && colored.rows == Fields::FRAME_HEIGHT);
|
||||
flds.preprocess(colored);
|
||||
}
|
||||
else
|
||||
objects = GpuMat(objects, cv::Rect(0, 0, ndetections * sizeof(Detection), 1));
|
||||
{
|
||||
colored.copyTo(flds.hogluv);
|
||||
}
|
||||
|
||||
GpuMat rois = _rois.getGpuMat(), objects = _objects.getGpuMat();
|
||||
|
||||
GpuMat tmp = GpuMat(objects, cv::Rect(0, 0, sizeof(Detection), 1));
|
||||
objects = GpuMat(objects, cv::Rect( sizeof(Detection), 0, objects.cols - sizeof(Detection), 1));
|
||||
cudaStream_t stream = StreamAccessor::getStream(s);
|
||||
|
||||
flds.detect(level, rois, tmp, objects, stream);
|
||||
}
|
||||
|
||||
void cv::gpu::SoftCascade::detectMultiScale(const GpuMat&, const GpuMat&, GpuMat&, int, GpuMat&, Stream) const
|
||||
void cv::gpu::SCascade::genRoi(InputArray _roi, OutputArray _mask) const
|
||||
{
|
||||
// cudaStream_t stream = StreamAccessor::getStream(s);
|
||||
const GpuMat roi = _roi.getGpuMat();
|
||||
_mask.create( roi.cols / 4, roi.rows / 4, roi.type() );
|
||||
GpuMat mask = _mask.getGpuMat();
|
||||
cv::gpu::GpuMat tmp;
|
||||
|
||||
cv::gpu::resize(roi, tmp, cv::Size(), 0.25, 0.25, CV_INTER_AREA);
|
||||
cv::gpu::transpose(tmp, mask);
|
||||
}
|
||||
|
||||
cv::Size cv::gpu::SoftCascade::getRoiSize() const
|
||||
void cv::gpu::SCascade::read(const FileNode& fn)
|
||||
{
|
||||
return cv::Size(Filds::FRAME_WIDTH / (*filds).shrinkage, Filds::FRAME_HEIGHT / (*filds).shrinkage);
|
||||
Algorithm::read(fn);
|
||||
}
|
||||
|
||||
#endif
|
Reference in New Issue
Block a user