GPU version becomes algorithm

This commit is contained in:
marina.kolpakova
2012-11-10 00:49:51 +04:00
parent e6eb1b99e1
commit 40600fa504
5 changed files with 346 additions and 235 deletions

View File

@@ -25,8 +25,8 @@ void fixture##_##name::__cpu() { FAIL() << "No such CPU implementation analogy";
namespace {
struct DetectionLess
{
bool operator()(const cv::gpu::SoftCascade::Detection& a,
const cv::gpu::SoftCascade::Detection& b) const
bool operator()(const cv::gpu::SCascade::Detection& a,
const cv::gpu::SCascade::Detection& b) const
{
if (a.x != b.x) return a.x < b.x;
else if (a.y != b.y) return a.y < b.y;
@@ -51,7 +51,7 @@ namespace {
{
cv::Mat detections(objects);
typedef cv::gpu::SoftCascade::Detection Detection;
typedef cv::gpu::SCascade::Detection Detection;
Detection* begin = (Detection*)(detections.ptr<char>(0));
Detection* end = (Detection*)(detections.ptr<char>(0) + detections.cols);
std::sort(begin, end, DetectionLess());
@@ -62,52 +62,54 @@ namespace {
typedef std::tr1::tuple<std::string, std::string> fixture_t;
typedef perf::TestBaseWithParam<fixture_t> SoftCascadeTest;
typedef perf::TestBaseWithParam<fixture_t> SCascadeTest;
GPU_PERF_TEST_P(SoftCascadeTest, detect,
GPU_PERF_TEST_P(SCascadeTest, detect,
testing::Combine(
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png"))))
{ }
RUN_GPU(SoftCascadeTest, detect)
RUN_GPU(SCascadeTest, detect)
{
cv::Mat cpu = readImage (GET_PARAM(1));
ASSERT_FALSE(cpu.empty());
cv::gpu::GpuMat colored(cpu);
cv::gpu::SoftCascade cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0))));
cv::gpu::SCascade cascade;
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SoftCascade::Detection), CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois;
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(0)), cv::FileStorage::READ);
ASSERT_TRUE(fs.isOpened());
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SCascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1), trois;
rois.setTo(1);
cv::gpu::transpose(rois, trois);
cascade.genRoi(rois, trois);
cv::gpu::GpuMat curr = objectBoxes;
cascade.detectMultiScale(colored, trois, curr);
cascade.detect(colored, trois, objectBoxes);
TEST_CYCLE()
{
curr = objectBoxes;
cascade.detectMultiScale(colored, trois, curr);
cascade.detect(colored, trois, objectBoxes);
}
SANITY_CHECK(sortDetections(curr));
SANITY_CHECK(sortDetections(objectBoxes));
}
NO_CPU(SoftCascadeTest, detect)
NO_CPU(SCascadeTest, detect)
// RUN_CPU(SoftCascadeTest, detect)
// RUN_CPU(SCascadeTest, detect)
// {
// cv::Mat colored = readImage(GET_PARAM(1));
// ASSERT_FALSE(colored.empty());
// cv::SoftCascade cascade;
// cv::SCascade cascade;
// ASSERT_TRUE(cascade.load(getDataPath(GET_PARAM(0))));
// std::vector<cv::Rect> rois;
// typedef cv::SoftCascade::Detection Detection;
// typedef cv::SCascade::Detection Detection;
// std::vector<Detection>objects;
// cascade.detectMultiScale(colored, rois, objects);
@@ -124,42 +126,46 @@ static cv::Rect getFromTable(int idx)
{
static const cv::Rect rois[] =
{
cv::Rect( 65, 20, 35, 80),
cv::Rect( 95, 35, 45, 40),
cv::Rect( 45, 35, 45, 40),
cv::Rect( 25, 27, 50, 45),
cv::Rect(100, 50, 45, 40),
cv::Rect( 65 * 4, 20 * 4, 35 * 4, 80 * 4),
cv::Rect( 95 * 4, 35 * 4, 45 * 4, 40 * 4),
cv::Rect( 45 * 4, 35 * 4, 45 * 4, 40 * 4),
cv::Rect( 25 * 4, 27 * 4, 50 * 4, 45 * 4),
cv::Rect(100 * 4, 50 * 4, 45 * 4, 40 * 4),
cv::Rect( 60, 30, 45, 40),
cv::Rect( 40, 55, 50, 40),
cv::Rect( 48, 37, 72, 80),
cv::Rect( 48, 32, 85, 58),
cv::Rect( 48, 0, 32, 27)
cv::Rect( 60 * 4, 30 * 4, 45 * 4, 40 * 4),
cv::Rect( 40 * 4, 55 * 4, 50 * 4, 40 * 4),
cv::Rect( 48 * 4, 37 * 4, 72 * 4, 80 * 4),
cv::Rect( 48 * 4, 32 * 4, 85 * 4, 58 * 4),
cv::Rect( 48 * 4, 0 * 4, 32 * 4, 27 * 4)
};
return rois[idx];
}
typedef std::tr1::tuple<std::string, std::string, int> roi_fixture_t;
typedef perf::TestBaseWithParam<roi_fixture_t> SoftCascadeTestRoi;
typedef perf::TestBaseWithParam<roi_fixture_t> SCascadeTestRoi;
GPU_PERF_TEST_P(SoftCascadeTestRoi, detectInRoi,
GPU_PERF_TEST_P(SCascadeTestRoi, detectInRoi,
testing::Combine(
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")),
testing::Range(0, 5)))
{}
RUN_GPU(SoftCascadeTestRoi, detectInRoi)
RUN_GPU(SCascadeTestRoi, detectInRoi)
{
cv::Mat cpu = readImage (GET_PARAM(1));
ASSERT_FALSE(cpu.empty());
cv::gpu::GpuMat colored(cpu);
cv::gpu::SoftCascade cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0))));
cv::gpu::SCascade cascade;
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(0)), cv::FileStorage::READ);
ASSERT_TRUE(fs.isOpened());
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(colored.size(), CV_8UC1);
rois.setTo(0);
int nroi = GET_PARAM(2);
@@ -172,40 +178,42 @@ RUN_GPU(SoftCascadeTestRoi, detectInRoi)
}
cv::gpu::GpuMat trois;
cv::gpu::transpose(rois, trois);
cascade.genRoi(rois, trois);
cv::gpu::GpuMat curr = objectBoxes;
cascade.detectMultiScale(colored, trois, curr);
cascade.detect(colored, trois, objectBoxes);
TEST_CYCLE()
{
curr = objectBoxes;
cascade.detectMultiScale(colored, trois, curr);
cascade.detect(colored, trois, objectBoxes);
}
SANITY_CHECK(sortDetections(curr));
SANITY_CHECK(sortDetections(objectBoxes));
}
NO_CPU(SoftCascadeTestRoi, detectInRoi)
NO_CPU(SCascadeTestRoi, detectInRoi)
GPU_PERF_TEST_P(SoftCascadeTestRoi, detectEachRoi,
GPU_PERF_TEST_P(SCascadeTestRoi, detectEachRoi,
testing::Combine(
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")),
testing::Range(0, 10)))
{}
RUN_GPU(SoftCascadeTestRoi, detectEachRoi)
RUN_GPU(SCascadeTestRoi, detectEachRoi)
{
cv::Mat cpu = readImage (GET_PARAM(1));
ASSERT_FALSE(cpu.empty());
cv::gpu::GpuMat colored(cpu);
cv::gpu::SoftCascade cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0))));
cv::gpu::SCascade cascade;
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(0)), cv::FileStorage::READ);
ASSERT_TRUE(fs.isOpened());
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(colored.size(), CV_8UC1);
rois.setTo(0);
int idx = GET_PARAM(2);
@@ -213,24 +221,22 @@ RUN_GPU(SoftCascadeTestRoi, detectEachRoi)
cv::gpu::GpuMat sub(rois, r);
sub.setTo(1);
cv::gpu::GpuMat curr = objectBoxes;
cv::gpu::GpuMat trois;
cv::gpu::transpose(rois, trois);
cascade.genRoi(rois, trois);
cascade.detectMultiScale(colored, trois, curr);
cascade.detect(colored, trois, objectBoxes);
TEST_CYCLE()
{
curr = objectBoxes;
cascade.detectMultiScale(colored, trois, curr);
cascade.detect(colored, trois, objectBoxes);
}
SANITY_CHECK(sortDetections(curr));
SANITY_CHECK(sortDetections(objectBoxes));
}
NO_CPU(SoftCascadeTestRoi, detectEachRoi)
NO_CPU(SCascadeTestRoi, detectEachRoi)
GPU_PERF_TEST_P(SoftCascadeTest, detectOnIntegral,
GPU_PERF_TEST_P(SCascadeTest, detectOnIntegral,
testing::Combine(
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
testing::Values(std::string("cv/cascadeandhog/integrals.xml"))))
@@ -243,37 +249,39 @@ GPU_PERF_TEST_P(SoftCascadeTest, detectOnIntegral,
return std::string(s);
}
RUN_GPU(SoftCascadeTest, detectOnIntegral)
RUN_GPU(SCascadeTest, detectOnIntegral)
{
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(1)), cv::FileStorage::READ);
ASSERT_TRUE(fs.isOpened());
cv::FileStorage fsi(perf::TestBase::getDataPath(GET_PARAM(1)), cv::FileStorage::READ);
ASSERT_TRUE(fsi.isOpened());
cv::gpu::GpuMat hogluv(121 * 10, 161, CV_32SC1);
for (int i = 0; i < 10; ++i)
{
cv::Mat channel;
fs[std::string("channel") + itoa(i)] >> channel;
fsi[std::string("channel") + itoa(i)] >> channel;
cv::gpu::GpuMat gchannel(hogluv, cv::Rect(0, 121 * i, 161, 121));
gchannel.upload(channel);
}
cv::gpu::SoftCascade cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0))));
cv::gpu::SCascade cascade;
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SoftCascade::Detection), CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois;
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(0)), cv::FileStorage::READ);
ASSERT_TRUE(fs.isOpened());
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SCascade::Detection), CV_8UC1), rois(cv::Size(640, 480), CV_8UC1), trois;
rois.setTo(1);
cv::gpu::transpose(rois, trois);
cascade.genRoi(rois, trois);
cv::gpu::GpuMat curr = objectBoxes;
cascade.detectMultiScale(hogluv, trois, curr);
cascade.detect(hogluv, trois, objectBoxes);
TEST_CYCLE()
{
curr = objectBoxes;
cascade.detectMultiScale(hogluv, trois, curr);
cascade.detect(hogluv, trois, objectBoxes);
}
SANITY_CHECK(sortDetections(curr));
SANITY_CHECK(sortDetections(objectBoxes));
}
NO_CPU(SoftCascadeTest, detectOnIntegral)
NO_CPU(SCascadeTest, detectOnIntegral)