diff --git a/.gitignore b/.gitignore index 0a19f3cee..caaebed0e 100644 --- a/.gitignore +++ b/.gitignore @@ -6,3 +6,4 @@ OpenCV4Tegra/ .sw[a-z] .*.swp tags +build/ diff --git a/modules/imgproc/doc/feature_detection.rst b/modules/imgproc/doc/feature_detection.rst index c88eaef65..700105ad1 100644 --- a/modules/imgproc/doc/feature_detection.rst +++ b/modules/imgproc/doc/feature_detection.rst @@ -85,7 +85,7 @@ The output of the function can be used for robust edge or corner detection. cornerHarris ------------ -Harris edge detector. +Harris corner detector. .. ocv:function:: void cornerHarris( InputArray src, OutputArray dst, int blockSize, int ksize, double k, int borderType=BORDER_DEFAULT ) @@ -105,7 +105,7 @@ Harris edge detector. :param borderType: Pixel extrapolation method. See :ocv:func:`borderInterpolate` . -The function runs the Harris edge detector on the image. Similarly to +The function runs the Harris corner detector on the image. Similarly to :ocv:func:`cornerMinEigenVal` and :ocv:func:`cornerEigenValsAndVecs` , for each pixel :math:`(x, y)` it calculates a diff --git a/modules/imgproc/include/opencv2/imgproc.hpp b/modules/imgproc/include/opencv2/imgproc.hpp index 5e2e95295..6cc09c2fc 100644 --- a/modules/imgproc/include/opencv2/imgproc.hpp +++ b/modules/imgproc/include/opencv2/imgproc.hpp @@ -863,7 +863,7 @@ public: * * 1 corresponds to 0.1 mean false alarms * This vector will be calculated _only_ when the objects type is REFINE_ADV */ - virtual void detect(const InputArray _image, OutputArray _lines, + virtual void detect(InputArray _image, OutputArray _lines, OutputArray width = noArray(), OutputArray prec = noArray(), OutputArray nfa = noArray()) = 0; @@ -874,7 +874,7 @@ public: * Should have the size of the image, where the lines were found * @param lines The lines that need to be drawn */ - virtual void drawSegments(InputOutputArray image, const InputArray lines) = 0; + virtual void drawSegments(InputOutputArray image, InputArray lines) = 0; /** * Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2. @@ -885,7 +885,7 @@ public: * @param lines2 The second lines that need to be drawn. Color - Red. * @return The number of mismatching pixels between lines1 and lines2. */ - virtual int compareSegments(const Size& size, const InputArray lines1, const InputArray lines2, Mat* image = 0) = 0; + virtual int compareSegments(const Size& size, InputArray lines1, InputArray lines2, Mat* image = 0) = 0; virtual ~LineSegmentDetector() {}; }; diff --git a/modules/imgproc/src/lsd.cpp b/modules/imgproc/src/lsd.cpp index b4f228a38..58d226f0c 100644 --- a/modules/imgproc/src/lsd.cpp +++ b/modules/imgproc/src/lsd.cpp @@ -205,7 +205,7 @@ public: * * 1 corresponds to 0.1 mean false alarms * This vector will be calculated _only_ when the objects type is REFINE_ADV */ - void detect(const InputArray _image, OutputArray _lines, + void detect(InputArray _image, OutputArray _lines, OutputArray width = noArray(), OutputArray prec = noArray(), OutputArray nfa = noArray()); @@ -216,7 +216,7 @@ public: * Should have the size of the image, where the lines were found * @param lines The lines that need to be drawn */ - void drawSegments(InputOutputArray image, const InputArray lines); + void drawSegments(InputOutputArray image, InputArray lines); /** * Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2. @@ -227,7 +227,7 @@ public: * @param lines2 The second lines that need to be drawn. Color - Red. * @return The number of mismatching pixels between lines1 and lines2. */ - int compareSegments(const Size& size, const InputArray lines1, const InputArray lines2, Mat* image = 0); + int compareSegments(const Size& size, InputArray lines1, InputArray lines2, Mat* image = 0); private: Mat image; diff --git a/modules/ocl/doc/object_detection.rst b/modules/ocl/doc/object_detection.rst index 17eb62d0e..ca0b6d121 100644 --- a/modules/ocl/doc/object_detection.rst +++ b/modules/ocl/doc/object_detection.rst @@ -12,23 +12,20 @@ Cascade classifier class used for object detection. Supports HAAR cascade classi class CV_EXPORTS OclCascadeClassifier : public CascadeClassifier { public: - OclCascadeClassifier() {}; - ~OclCascadeClassifier() {}; - CvSeq *oclHaarDetectObjects(oclMat &gimg, CvMemStorage *storage, - double scaleFactor,int minNeighbors, - int flags, CvSize minSize = cvSize(0, 0), - CvSize maxSize = cvSize(0, 0)); + void detectMultiScale(oclMat &image, CV_OUT std::vector& faces, + double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, + Size minSize = Size(), Size maxSize = Size()); }; ocl::OclCascadeClassifier::oclHaarDetectObjects ------------------------------------------------------ -Returns the detected objects by a list of rectangles +Detects objects of different sizes in the input image. -.. ocv:function:: CvSeq* ocl::OclCascadeClassifier::oclHaarDetectObjects(oclMat &gimg, CvMemStorage *storage, double scaleFactor,int minNeighbors, int flags, CvSize minSize = cvSize(0, 0), CvSize maxSize = cvSize(0, 0)) +.. ocv:function:: void ocl::OclCascadeClassifier::detectMultiScale(oclMat &image, std::vector& faces, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size()) :param image: Matrix of type CV_8U containing an image where objects should be detected. - :param imageobjectsBuff: Buffer to store detected objects (rectangles). If it is empty, it is allocated with the defaultsize. If not empty, the function searches not more than N objects, where N = sizeof(objectsBufers data)/sizeof(cv::Rect). + :param faces: Vector of rectangles where each rectangle contains the detected object. :param scaleFactor: Parameter specifying how much the image size is reduced at each image scale. @@ -36,7 +33,9 @@ Returns the detected objects by a list of rectangles :param minSize: Minimum possible object size. Objects smaller than that are ignored. -Detects objects of different sizes in the input image,only tested for face detection now. The function returns the number of detected objects. + :param maxSize: Maximum possible object size. Objects larger than that are ignored. + +The function provides a very similar interface with that in CascadeClassifier class, except using oclMat as input image. ocl::MatchTemplateBuf --------------------- diff --git a/modules/ocl/include/opencv2/ocl.hpp b/modules/ocl/include/opencv2/ocl.hpp index a8ebcba12..b1ed4546a 100644 --- a/modules/ocl/include/opencv2/ocl.hpp +++ b/modules/ocl/include/opencv2/ocl.hpp @@ -869,59 +869,13 @@ namespace cv //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////CascadeClassifier////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// - -#if 0 class CV_EXPORTS OclCascadeClassifier : public cv::CascadeClassifier { public: - OclCascadeClassifier() {}; - ~OclCascadeClassifier() {}; - - CvSeq* oclHaarDetectObjects(oclMat &gimg, CvMemStorage *storage, double scaleFactor, - int minNeighbors, int flags, CvSize minSize = cvSize(0, 0), CvSize maxSize = cvSize(0, 0)); - }; -#endif - -#if 0 - class CV_EXPORTS OclCascadeClassifierBuf : public cv::CascadeClassifier - { - public: - OclCascadeClassifierBuf() : - m_flags(0), initialized(false), m_scaleFactor(0), buffers(NULL) {} - - ~OclCascadeClassifierBuf() { release(); } - void detectMultiScale(oclMat &image, CV_OUT std::vector& faces, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size()); - void release(); - - private: - void Init(const int rows, const int cols, double scaleFactor, int flags, - const int outputsz, const size_t localThreads[], - Size minSize, Size maxSize); - void CreateBaseBufs(const int datasize, const int totalclassifier, const int flags, const int outputsz); - void CreateFactorRelatedBufs(const int rows, const int cols, const int flags, - const double scaleFactor, const size_t localThreads[], - Size minSize, Size maxSize); - void GenResult(CV_OUT std::vector& faces, const std::vector &rectList, const std::vector &rweights); - - int m_rows; - int m_cols; - int m_flags; - int m_loopcount; - int m_nodenum; - bool findBiggestObject; - bool initialized; - double m_scaleFactor; - Size m_minSize; - Size m_maxSize; - std::vector sizev; - std::vector scalev; - oclMat gimg1, gsum, gsqsum; - void * buffers; }; -#endif /////////////////////////////// Pyramid ///////////////////////////////////// CV_EXPORTS void pyrDown(const oclMat &src, oclMat &dst); diff --git a/modules/ocl/perf/perf_haar.cpp b/modules/ocl/perf/perf_haar.cpp index 372949521..38e9d5e96 100644 --- a/modules/ocl/perf/perf_haar.cpp +++ b/modules/ocl/perf/perf_haar.cpp @@ -44,47 +44,8 @@ // //M*/ #include "precomp.hpp" - -#if 0 - ///////////// Haar //////////////////////// -namespace cv -{ -namespace ocl -{ -struct getRect -{ - Rect operator()(const CvAvgComp &e) const - { - return e.rect; - } -}; - -class CascadeClassifier_GPU : public OclCascadeClassifier -{ -public: - void detectMultiScale(oclMat &image, - CV_OUT std::vector& faces, - double scaleFactor = 1.1, - int minNeighbors = 3, int flags = 0, - Size minSize = Size(), - Size maxSize = Size()) - { - (void)maxSize; - MemStorage storage(cvCreateMemStorage(0)); - //CvMat img=image; - CvSeq *objs = oclHaarDetectObjects(image, storage, scaleFactor, minNeighbors, flags, minSize); - vector vecAvgComp; - Seq(objs).copyTo(vecAvgComp); - faces.resize(vecAvgComp.size()); - std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect()); - } - -}; - -} -} PERFTEST(Haar) { Mat img = imread(abspath("basketball1.png"), IMREAD_GRAYSCALE); @@ -106,12 +67,12 @@ PERFTEST(Haar) SUBTEST << img.cols << "x" << img.rows << "; scale image"; CPU_ON; faceCascadeCPU.detectMultiScale(img, faces, - 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30)); + 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30)); CPU_OFF; vector oclfaces; - ocl::CascadeClassifier_GPU faceCascade; + ocl::OclCascadeClassifier faceCascade; if (!faceCascade.load(abspath("haarcascade_frontalface_alt.xml"))) { @@ -122,7 +83,7 @@ PERFTEST(Haar) WARMUP_ON; faceCascade.detectMultiScale(d_img, oclfaces, - 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30)); + 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30)); WARMUP_OFF; if(faces.size() == oclfaces.size()) @@ -134,14 +95,12 @@ PERFTEST(Haar) GPU_ON; faceCascade.detectMultiScale(d_img, oclfaces, - 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30)); + 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30)); GPU_OFF; GPU_FULL_ON; d_img.upload(img); faceCascade.detectMultiScale(d_img, oclfaces, - 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30)); + 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30)); GPU_FULL_OFF; -} - -#endif +} \ No newline at end of file diff --git a/modules/ocl/src/haar.cpp b/modules/ocl/src/haar.cpp index 6f028317d..a8118dba6 100644 --- a/modules/ocl/src/haar.cpp +++ b/modules/ocl/src/haar.cpp @@ -20,7 +20,6 @@ // Jia Haipeng, jiahaipeng95@gmail.com // Wu Xinglong, wxl370@126.com // Wang Yao, bitwangyaoyao@gmail.com -// Sen Liu, swjtuls1987@126.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: @@ -54,8 +53,6 @@ using namespace cv; using namespace cv::ocl; -#if 0 - namespace cv { namespace ocl @@ -68,9 +65,9 @@ extern const char *haarobjectdetect_scaled2; } /* these settings affect the quality of detection: change with care */ -#define CV_ADJUST_FEATURES 1 -#define CV_ADJUST_WEIGHTS 0 - +#define CV_ADJUST_FEATURES 1 +#define CV_ADJUST_WEIGHTS 0 +#define CV_HAAR_FEATURE_MAX 3 typedef int sumtype; typedef double sqsumtype; @@ -679,14 +676,15 @@ static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade) } /* j */ } } - -CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemStorage *storage, double scaleFactor, - int minNeighbors, int flags, CvSize minSize, CvSize maxSize) +void OclCascadeClassifier::detectMultiScale(oclMat &gimg, CV_OUT std::vector& faces, + double scaleFactor, int minNeighbors, int flags, + Size minSize, Size maxSize) +//CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemStorage *storage, double scaleFactor, +// int minNeighbors, int flags, CvSize minSize, CvSize maxSize) { CvHaarClassifierCascade *cascade = oldCascade; const double GROUP_EPS = 0.2; - CvSeq *result_seq = 0; cv::ConcurrentRectVector allCandidates; std::vector rectList; @@ -714,8 +712,8 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS if( !CV_IS_HAAR_CLASSIFIER(cascade) ) CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" ); - if( !storage ) - CV_Error( CV_StsNullPtr, "Null storage pointer" ); + //if( !storage ) + // CV_Error( CV_StsNullPtr, "Null storage pointer" ); if( CV_MAT_DEPTH(gimg.type()) != CV_8U ) CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" ); @@ -729,7 +727,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS if( !cascade->hid_cascade ) gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier); - result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage ); + //result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage ); if( CV_MAT_CN(gimg.type()) > 1 ) { @@ -1028,7 +1026,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&pbuffer )); args.push_back ( std::make_pair(sizeof(cl_mem) , (void *)&correctionbuffer )); args.push_back ( std::make_pair(sizeof(cl_int) , (void *)&nodenum )); - + const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options); candidate = (int *)clEnqueueMapBuffer(qu, candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, &status); @@ -1062,623 +1060,22 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS else rweights.resize(rectList.size(), 0); + faces.clear(); if( findBiggestObject && rectList.size() ) { - CvAvgComp result_comp = {{0, 0, 0, 0}, 0}; - + Rect result_comp(0, 0, 0, 0); for( size_t i = 0; i < rectList.size(); i++ ) { cv::Rect r = rectList[i]; - if( r.area() > cv::Rect(result_comp.rect).area() ) + if( r.area() > result_comp.area() ) { - result_comp.rect = r; - result_comp.neighbors = rweights[i]; + result_comp = r; } } - cvSeqPush( result_seq, &result_comp ); + faces.push_back(result_comp); } else { - for( size_t i = 0; i < rectList.size(); i++ ) - { - CvAvgComp c; - c.rect = rectList[i]; - c.neighbors = rweights[i]; - cvSeqPush( result_seq, &c ); - } - } - - return result_seq; -} - -struct OclBuffers -{ - cl_mem stagebuffer; - cl_mem nodebuffer; - cl_mem candidatebuffer; - cl_mem scaleinfobuffer; - cl_mem pbuffer; - cl_mem correctionbuffer; - cl_mem newnodebuffer; -}; - -struct getRect -{ - Rect operator()(const CvAvgComp &e) const - { - return e.rect; - } -}; - -void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std::vector& faces, - double scaleFactor, int minNeighbors, int flags, - Size minSize, Size maxSize) -{ - int blocksize = 8; - int grp_per_CU = 12; - size_t localThreads[3] = { blocksize, blocksize, 1 }; - size_t globalThreads[3] = { grp_per_CU * cv::ocl::Context::getContext()->computeUnits() *localThreads[0], - localThreads[1], - 1 }; - int outputsz = 256 * globalThreads[0] / localThreads[0]; - - Init(gimg.rows, gimg.cols, scaleFactor, flags, outputsz, localThreads, minSize, maxSize); - - const double GROUP_EPS = 0.2; - - cv::ConcurrentRectVector allCandidates; - std::vector rectList; - std::vector rweights; - - CvHaarClassifierCascade *cascade = oldCascade; - GpuHidHaarClassifierCascade *gcascade; - GpuHidHaarStageClassifier *stage; - - if( CV_MAT_DEPTH(gimg.type()) != CV_8U ) - CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" ); - - if( CV_MAT_CN(gimg.type()) > 1 ) - { - oclMat gtemp; - cvtColor( gimg, gtemp, CV_BGR2GRAY ); - gimg = gtemp; - } - - int *candidate; - cl_command_queue qu = reinterpret_cast(Context::getContext()->oclCommandQueue()); - if( (flags & CV_HAAR_SCALE_IMAGE) ) - { - int indexy = 0; - CvSize sz; - - cv::Rect roi, roi2; - cv::Mat imgroi, imgroisq; - cv::ocl::oclMat resizeroi, gimgroi, gimgroisq; - - for( int i = 0; i < m_loopcount; i++ ) - { - sz = sizev[i]; - roi = Rect(0, indexy, sz.width, sz.height); - roi2 = Rect(0, 0, sz.width - 1, sz.height - 1); - resizeroi = gimg1(roi2); - gimgroi = gsum(roi); - gimgroisq = gsqsum(roi); - - cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR); - cv::ocl::integral(resizeroi, gimgroi, gimgroisq); - indexy += sz.height; - } - - gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade); - stage = (GpuHidHaarStageClassifier *)(gcascade + 1); - - int startstage = 0; - int endstage = gcascade->count; - int startnode = 0; - int pixelstep = gsum.step / 4; - int splitstage = 3; - int splitnode = stage[0].count + stage[1].count + stage[2].count; - cl_int4 p, pq; - p.s[0] = gcascade->p0; - p.s[1] = gcascade->p1; - p.s[2] = gcascade->p2; - p.s[3] = gcascade->p3; - pq.s[0] = gcascade->pq0; - pq.s[1] = gcascade->pq1; - pq.s[2] = gcascade->pq2; - pq.s[3] = gcascade->pq3; - float correction = gcascade->inv_window_area; - - vector > args; - args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer )); - args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer )); - args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer )); - args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data )); - args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data )); - args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&pixelstep )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitnode )); - args.push_back ( make_pair(sizeof(cl_int4) , (void *)&p )); - args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq )); - args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction )); - - const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; - - openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options); - - candidate = (int *)malloc(4 * sizeof(int) * outputsz); - memset(candidate, 0, 4 * sizeof(int) * outputsz); - - openCLReadBuffer( gsum.clCxt, ((OclBuffers *)buffers)->candidatebuffer, candidate, 4 * sizeof(int)*outputsz ); - - for(int i = 0; i < outputsz; i++) - { - if(candidate[4 * i + 2] != 0) - { - allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], - candidate[4 * i + 2], candidate[4 * i + 3])); - } - } - free((void *)candidate); - candidate = NULL; - } - else - { - cv::ocl::integral(gimg, gsum, gsqsum); - - gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; - - int step = gsum.step / 4; - int startnode = 0; - int splitstage = 3; - - int startstage = 0; - int endstage = gcascade->count; - - vector > args; - args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer )); - args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer )); - args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer )); - args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data )); - args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data )); - args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.rows )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.cols )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&step )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode )); - args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->pbuffer )); - args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->correctionbuffer )); - args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_nodenum )); - - const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0"; - openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options); - - candidate = (int *)clEnqueueMapBuffer(qu, ((OclBuffers *)buffers)->candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, NULL); - - for(int i = 0; i < outputsz; i++) - { - if(candidate[4 * i + 2] != 0) - allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], - candidate[4 * i + 2], candidate[4 * i + 3])); - } - clEnqueueUnmapMemObject(qu, ((OclBuffers *)buffers)->candidatebuffer, candidate, 0, 0, 0); - } - rectList.resize(allCandidates.size()); - if(!allCandidates.empty()) - std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin()); - - if( minNeighbors != 0 || findBiggestObject ) - groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS); - else - rweights.resize(rectList.size(), 0); - - GenResult(faces, rectList, rweights); -} - -void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols, - double scaleFactor, int flags, - const int outputsz, const size_t localThreads[], - CvSize minSize, CvSize maxSize) -{ - if(initialized) - { - return; // we only allow one time initialization - } - CvHaarClassifierCascade *cascade = oldCascade; - - if( !CV_IS_HAAR_CLASSIFIER(cascade) ) - CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" ); - - if( scaleFactor <= 1 ) - CV_Error( CV_StsOutOfRange, "scale factor must be > 1" ); - - if( cols < minSize.width || rows < minSize.height ) - CV_Error(CV_StsError, "Image too small"); - - int datasize=0; - int totalclassifier=0; - - if( !cascade->hid_cascade ) - { - gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier); - } - - if( maxSize.height == 0 || maxSize.width == 0 ) - { - maxSize.height = rows; - maxSize.width = cols; - } - - findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0; - if( findBiggestObject ) - flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING); - - CreateBaseBufs(datasize, totalclassifier, flags, outputsz); - CreateFactorRelatedBufs(rows, cols, flags, scaleFactor, localThreads, minSize, maxSize); - - m_scaleFactor = scaleFactor; - m_rows = rows; - m_cols = cols; - m_flags = flags; - m_minSize = minSize; - m_maxSize = maxSize; - - // initialize nodes - GpuHidHaarClassifierCascade *gcascade; - GpuHidHaarStageClassifier *stage; - GpuHidHaarClassifier *classifier; - GpuHidHaarTreeNode *node; - cl_command_queue qu = reinterpret_cast(Context::getContext()->oclCommandQueue()); - if( (flags & CV_HAAR_SCALE_IMAGE) ) - { - gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade); - stage = (GpuHidHaarStageClassifier *)(gcascade + 1); - classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); - node = (GpuHidHaarTreeNode *)(classifier->node); - - gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 ); - - openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, - sizeof(GpuHidHaarStageClassifier) * gcascade->count, - stage, 0, NULL, NULL)); - - openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, - m_nodenum * sizeof(GpuHidHaarTreeNode), - node, 0, NULL, NULL)); - } - else - { - gpuSetHaarClassifierCascade(cascade); - - gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; - stage = (GpuHidHaarStageClassifier *)(gcascade + 1); - classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); - node = (GpuHidHaarTreeNode *)(classifier->node); - - openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0, - m_nodenum * sizeof(GpuHidHaarTreeNode), - node, 0, NULL, NULL)); - - cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * m_loopcount); - float *correction = (float *)malloc(sizeof(float) * m_loopcount); - double factor; - for(int i = 0; i < m_loopcount; i++) - { - factor = scalev[i]; - int equRect_x = (int)(factor * gcascade->p0 + 0.5); - int equRect_y = (int)(factor * gcascade->p1 + 0.5); - int equRect_w = (int)(factor * gcascade->p3 + 0.5); - int equRect_h = (int)(factor * gcascade->p2 + 0.5); - p[i].s[0] = equRect_x; - p[i].s[1] = equRect_y; - p[i].s[2] = equRect_x + equRect_w; - p[i].s[3] = equRect_y + equRect_h; - correction[i] = 1. / (equRect_w * equRect_h); - int startnodenum = m_nodenum * i; - float factor2 = (float)factor; - - vector > args1; - args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer )); - args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer )); - args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 )); - args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] )); - args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum )); - - size_t globalThreads2[3] = {m_nodenum, 1, 1}; - - openCLExecuteKernel(Context::getContext(), &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); - } - openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); - openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->pbuffer, 1, 0, sizeof(cl_int4)*m_loopcount, p, 0, NULL, NULL)); - openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->correctionbuffer, 1, 0, sizeof(cl_float)*m_loopcount, correction, 0, NULL, NULL)); - - free(p); - free(correction); - } - initialized = true; -} - -void cv::ocl::OclCascadeClassifierBuf::CreateBaseBufs(const int datasize, const int totalclassifier, - const int flags, const int outputsz) -{ - if (!initialized) - { - buffers = malloc(sizeof(OclBuffers)); - - size_t tempSize = - sizeof(GpuHidHaarStageClassifier) * ((GpuHidHaarClassifierCascade *)oldCascade->hid_cascade)->count; - m_nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - tempSize - sizeof(GpuHidHaarClassifier) * totalclassifier) - / sizeof(GpuHidHaarTreeNode); - - ((OclBuffers *)buffers)->stagebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, tempSize); - ((OclBuffers *)buffers)->nodebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, m_nodenum * sizeof(GpuHidHaarTreeNode)); - } - - if (initialized - && ((m_flags & CV_HAAR_SCALE_IMAGE) ^ (flags & CV_HAAR_SCALE_IMAGE))) - { - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer)); - } - - if (flags & CV_HAAR_SCALE_IMAGE) - { - ((OclBuffers *)buffers)->candidatebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), - CL_MEM_WRITE_ONLY, - 4 * sizeof(int) * outputsz); - } - else - { - ((OclBuffers *)buffers)->candidatebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), - CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, - 4 * sizeof(int) * outputsz); + faces = rectList; } } - -void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs( - const int rows, const int cols, const int flags, - const double scaleFactor, const size_t localThreads[], - CvSize minSize, CvSize maxSize) -{ - if (initialized) - { - if ((m_flags & CV_HAAR_SCALE_IMAGE) && !(flags & CV_HAAR_SCALE_IMAGE)) - { - gimg1.release(); - gsum.release(); - gsqsum.release(); - } - else if (!(m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE)) - { - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); - } - else if ((m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE)) - { - if (fabs(m_scaleFactor - scaleFactor) < 1e-6 - && (rows == m_rows && cols == m_cols) - && (minSize.width == m_minSize.width) - && (minSize.height == m_minSize.height) - && (maxSize.width == m_maxSize.width) - && (maxSize.height == m_maxSize.height)) - { - return; - } - } - else - { - if (fabs(m_scaleFactor - scaleFactor) < 1e-6 - && (rows == m_rows && cols == m_cols) - && (minSize.width == m_minSize.width) - && (minSize.height == m_minSize.height) - && (maxSize.width == m_maxSize.width) - && (maxSize.height == m_maxSize.height)) - { - return; - } - else - { - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); - } - } - } - - int loopcount; - int indexy = 0; - int totalheight = 0; - double factor; - Rect roi; - CvSize sz; - CvSize winSize0 = oldCascade->orig_window_size; - detect_piramid_info *scaleinfo; - cl_command_queue qu = reinterpret_cast(Context::getContext()->oclCommandQueue()); - if (flags & CV_HAAR_SCALE_IMAGE) - { - for(factor = 1.f;; factor *= scaleFactor) - { - CvSize winSize = { cvRound(winSize0.width * factor), cvRound(winSize0.height * factor) }; - sz.width = cvRound( cols / factor ) + 1; - sz.height = cvRound( rows / factor ) + 1; - CvSize sz1 = { sz.width - winSize0.width - 1, sz.height - winSize0.height - 1 }; - - if( sz1.width <= 0 || sz1.height <= 0 ) - break; - if( winSize.width > maxSize.width || winSize.height > maxSize.height ) - break; - if( winSize.width < minSize.width || winSize.height < minSize.height ) - continue; - - totalheight += sz.height; - sizev.push_back(sz); - scalev.push_back(static_cast(factor)); - } - - loopcount = sizev.size(); - gimg1.create(rows, cols, CV_8UC1); - gsum.create(totalheight + 4, cols + 1, CV_32SC1); - gsqsum.create(totalheight + 4, cols + 1, CV_32FC1); - - scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); - for( int i = 0; i < loopcount; i++ ) - { - sz = sizev[i]; - roi = Rect(0, indexy, sz.width, sz.height); - int width = sz.width - 1 - oldCascade->orig_window_size.width; - int height = sz.height - 1 - oldCascade->orig_window_size.height; - int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; - int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; - - ((detect_piramid_info *)scaleinfo)[i].width_height = (width << 16) | height; - ((detect_piramid_info *)scaleinfo)[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; - ((detect_piramid_info *)scaleinfo)[i].imgoff = gsum(roi).offset >> 2; - ((detect_piramid_info *)scaleinfo)[i].factor = scalev[i]; - - indexy += sz.height; - } - } - else - { - for(factor = 1; - cvRound(factor * winSize0.width) < cols - 10 && cvRound(factor * winSize0.height) < rows - 10; - factor *= scaleFactor) - { - CvSize winSize = { cvRound( winSize0.width * factor ), cvRound( winSize0.height * factor ) }; - if( winSize.width < minSize.width || winSize.height < minSize.height ) - { - continue; - } - sizev.push_back(winSize); - scalev.push_back(factor); - } - - loopcount = scalev.size(); - if(loopcount == 0) - { - loopcount = 1; - sizev.push_back(minSize); - scalev.push_back( min(cvRound(minSize.width / winSize0.width), cvRound(minSize.height / winSize0.height)) ); - } - - ((OclBuffers *)buffers)->pbuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, - sizeof(cl_int4) * loopcount); - ((OclBuffers *)buffers)->correctionbuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, - sizeof(cl_float) * loopcount); - ((OclBuffers *)buffers)->newnodebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_WRITE, - loopcount * m_nodenum * sizeof(GpuHidHaarTreeNode)); - - scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); - for( int i = 0; i < loopcount; i++ ) - { - sz = sizev[i]; - factor = scalev[i]; - int ystep = cvRound(std::max(2., factor)); - int width = (cols - 1 - sz.width + ystep - 1) / ystep; - int height = (rows - 1 - sz.height + ystep - 1) / ystep; - int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; - int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; - - ((detect_piramid_info *)scaleinfo)[i].width_height = (width << 16) | height; - ((detect_piramid_info *)scaleinfo)[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; - ((detect_piramid_info *)scaleinfo)[i].imgoff = 0; - ((detect_piramid_info *)scaleinfo)[i].factor = factor; - } - } - - if (loopcount != m_loopcount) - { - if (initialized) - { - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer)); - } - ((OclBuffers *)buffers)->scaleinfobuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount); - } - - openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->scaleinfobuffer, 1, 0, - sizeof(detect_piramid_info)*loopcount, - scaleinfo, 0, NULL, NULL)); - free(scaleinfo); - - m_loopcount = loopcount; -} - -void cv::ocl::OclCascadeClassifierBuf::GenResult(CV_OUT std::vector& faces, - const std::vector &rectList, - const std::vector &rweights) -{ - MemStorage tempStorage(cvCreateMemStorage(0)); - CvSeq *result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), tempStorage ); - - if( findBiggestObject && rectList.size() ) - { - CvAvgComp result_comp = {CvRect(), 0}; - - for( size_t i = 0; i < rectList.size(); i++ ) - { - cv::Rect r = rectList[i]; - if( r.area() > cv::Rect(result_comp.rect).area() ) - { - result_comp.rect = r; - result_comp.neighbors = rweights[i]; - } - } - cvSeqPush( result_seq, &result_comp ); - } - else - { - for( size_t i = 0; i < rectList.size(); i++ ) - { - CvAvgComp c; - c.rect = rectList[i]; - c.neighbors = rweights[i]; - cvSeqPush( result_seq, &c ); - } - } - - vector vecAvgComp; - Seq(result_seq).copyTo(vecAvgComp); - faces.resize(vecAvgComp.size()); - std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect()); -} - -void cv::ocl::OclCascadeClassifierBuf::release() -{ - if(initialized) - { - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->stagebuffer)); - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer)); - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->nodebuffer)); - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer)); - - if( (m_flags & CV_HAAR_SCALE_IMAGE) ) - { - cvFree(&oldCascade->hid_cascade); - } - else - { - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer)); - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer)); - openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer)); - } - - free(buffers); - buffers = NULL; - initialized = false; - } -} - -#ifndef _MAX_PATH -#define _MAX_PATH 1024 -#endif - -#endif diff --git a/modules/ocl/src/precomp.hpp b/modules/ocl/src/precomp.hpp index 3b75f303d..270442889 100644 --- a/modules/ocl/src/precomp.hpp +++ b/modules/ocl/src/precomp.hpp @@ -64,7 +64,7 @@ #undef OPENCV_NOSTL #include "opencv2/imgproc.hpp" -#include "opencv2/objdetect.hpp" +#include "opencv2/objdetect/objdetect_c.h" #include "opencv2/ocl.hpp" #include "opencv2/core/utility.hpp" diff --git a/modules/ocl/test/test_objdetect.cpp b/modules/ocl/test/test_objdetect.cpp index a7fab09b7..d9c9a84e1 100644 --- a/modules/ocl/test/test_objdetect.cpp +++ b/modules/ocl/test/test_objdetect.cpp @@ -44,9 +44,7 @@ //M*/ #include "precomp.hpp" - #include "opencv2/objdetect.hpp" -#include "opencv2/objdetect/objdetect_c.h" using namespace std; using namespace cv; @@ -185,18 +183,11 @@ INSTANTIATE_TEST_CASE_P(OCL_ObjDetect, HOG, testing::Combine( testing::Values(Size(64, 128), Size(48, 96)), testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)))); -#if 0 + ///////////////////////////// Haar ////////////////////////////// IMPLEMENT_PARAM_CLASS(CascadeName, std::string); CascadeName cascade_frontalface_alt(std::string("haarcascade_frontalface_alt.xml")); CascadeName cascade_frontalface_alt2(std::string("haarcascade_frontalface_alt2.xml")); -struct getRect -{ - Rect operator ()(const CvAvgComp &e) const - { - return e.rect; - } -}; PARAM_TEST_CASE(Haar, int, CascadeName) { @@ -224,49 +215,18 @@ PARAM_TEST_CASE(Haar, int, CascadeName) TEST_P(Haar, FaceDetect) { - MemStorage storage(cvCreateMemStorage(0)); - CvSeq *_objects; - _objects = cascade.oclHaarDetectObjects(d_img, storage, 1.1, 3, - flags, Size(30, 30), Size(0, 0)); - vector vecAvgComp; - Seq(_objects).copyTo(vecAvgComp); - oclfaces.resize(vecAvgComp.size()); - std::transform(vecAvgComp.begin(), vecAvgComp.end(), oclfaces.begin(), getRect()); + cascade.detectMultiScale(d_img, oclfaces, 1.1, 3, + flags, Size(30, 30)); - cpucascade.detectMultiScale(img, faces, 1.1, 3, - flags, - Size(30, 30), Size(0, 0)); - - EXPECT_LT(checkRectSimilarity(img.size(), faces, oclfaces), 1.0); -} - -TEST_P(Haar, FaceDetectUseBuf) -{ - ocl::OclCascadeClassifierBuf cascadebuf; - if(!cascadebuf.load(cascadeName)) - { - std::cout << "ERROR: Could not load classifier cascade for FaceDetectUseBuf!" << std::endl; - return; - } - cascadebuf.detectMultiScale(d_img, oclfaces, 1.1, 3, - flags, - Size(30, 30), Size(0, 0)); - cpucascade.detectMultiScale(img, faces, 1.1, 3, - flags, - Size(30, 30), Size(0, 0)); - - // intentionally run ocl facedetect again and check if it still works after the first run - cascadebuf.detectMultiScale(d_img, oclfaces, 1.1, 3, - flags, - Size(30, 30)); - cascadebuf.release(); + cpucascade.detectMultiScale(img, faces, 1.1, 3, + flags, Size(30, 30)); EXPECT_LT(checkRectSimilarity(img.size(), faces, oclfaces), 1.0); } INSTANTIATE_TEST_CASE_P(OCL_ObjDetect, Haar, - Combine(Values(CV_HAAR_SCALE_IMAGE, 0), - Values(cascade_frontalface_alt/*, cascade_frontalface_alt2*/))); -#endif + Combine(Values((int)CASCADE_SCALE_IMAGE, 0), + Values(cascade_frontalface_alt, cascade_frontalface_alt2))); + #endif //HAVE_OPENCL diff --git a/modules/optim/CMakeLists.txt b/modules/optim/CMakeLists.txt new file mode 100644 index 000000000..c36c24d9d --- /dev/null +++ b/modules/optim/CMakeLists.txt @@ -0,0 +1,2 @@ +set(the_description "Generic optimization") +ocv_define_module(optim opencv_core) diff --git a/modules/optim/doc/linear_programming.rst b/modules/optim/doc/linear_programming.rst new file mode 100644 index 000000000..946df9e95 --- /dev/null +++ b/modules/optim/doc/linear_programming.rst @@ -0,0 +1,48 @@ +Linear Programming +================== + +.. highlight:: cpp + +optim::solveLP +-------------------- +Solve given (non-integer) linear programming problem using the Simplex Algorithm (Simplex Method). +What we mean here by "linear programming problem" (or LP problem, for short) can be +formulated as: + +.. math:: + \mbox{Maximize } c\cdot x\\ + \mbox{Subject to:}\\ + Ax\leq b\\ + x\geq 0 + +Where :math:`c` is fixed *1*-by-*n* row-vector, :math:`A` is fixed *m*-by-*n* matrix, :math:`b` is fixed *m*-by-*1* column vector and +:math:`x` is an arbitrary *n*-by-*1* column vector, which satisfies the constraints. + +Simplex algorithm is one of many algorithms that are designed to handle this sort of problems efficiently. Although it is not optimal in theoretical +sense (there exist algorithms that can solve any problem written as above in polynomial type, while simplex method degenerates to exponential time +for some special cases), it is well-studied, easy to implement and is shown to work well for real-life purposes. + +The particular implementation is taken almost verbatim from **Introduction to Algorithms, third edition** +by T. H. Cormen, C. E. Leiserson, R. L. Rivest and Clifford Stein. In particular, the Bland's rule +(`http://en.wikipedia.org/wiki/Bland%27s\_rule `_) is used to prevent cycling. + +.. ocv:function:: int optim::solveLP(const Mat& Func, const Mat& Constr, Mat& z) + + :param Func: This row-vector corresponds to :math:`c` in the LP problem formulation (see above). It should contain 32- or 64-bit floating point numbers. As a convenience, column-vector may be also submitted, in the latter case it is understood to correspond to :math:`c^T`. + + :param Constr: *m*-by-*n\+1* matrix, whose rightmost column corresponds to :math:`b` in formulation above and the remaining to :math:`A`. It should containt 32- or 64-bit floating point numbers. + + :param z: The solution will be returned here as a column-vector - it corresponds to :math:`c` in the formulation above. It will contain 64-bit floating point numbers. + + :return: One of the return codes: + +:: + + //!the return codes for solveLP() function + enum + { + SOLVELP_UNBOUNDED = -2, //problem is unbounded (target function can achieve arbitrary high values) + SOLVELP_UNFEASIBLE = -1, //problem is unfeasible (there are no points that satisfy all the constraints imposed) + SOLVELP_SINGLE = 0, //there is only one maximum for target function + SOLVELP_MULTI = 1 //there are multiple maxima for target function - the arbitrary one is returned + }; diff --git a/modules/optim/doc/optim.rst b/modules/optim/doc/optim.rst new file mode 100644 index 000000000..bead2122a --- /dev/null +++ b/modules/optim/doc/optim.rst @@ -0,0 +1,10 @@ +************************************** +optim. Generic numerical optimization +************************************** + +.. highlight:: cpp + +.. toctree:: + :maxdepth: 2 + + linear_programming diff --git a/modules/optim/include/opencv2/optim.hpp b/modules/optim/include/opencv2/optim.hpp new file mode 100644 index 000000000..0bbedad38 --- /dev/null +++ b/modules/optim/include/opencv2/optim.hpp @@ -0,0 +1,62 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_OPTIM_HPP__ +#define __OPENCV_OPTIM_HPP__ + +#include "opencv2/core.hpp" + +namespace cv{namespace optim +{ +//!the return codes for solveLP() function +enum +{ + SOLVELP_UNBOUNDED = -2, //problem is unbounded (target function can achieve arbitrary high values) + SOLVELP_UNFEASIBLE = -1, //problem is unfeasible (there are no points that satisfy all the constraints imposed) + SOLVELP_SINGLE = 0, //there is only one maximum for target function + SOLVELP_MULTI = 1 //there are multiple maxima for target function - the arbitrary one is returned +}; + +CV_EXPORTS_W int solveLP(const Mat& Func, const Mat& Constr, Mat& z); +}}// cv + +#endif diff --git a/modules/optim/include/opencv2/optim/optim.hpp b/modules/optim/include/opencv2/optim/optim.hpp new file mode 100644 index 000000000..b5a9ebf79 --- /dev/null +++ b/modules/optim/include/opencv2/optim/optim.hpp @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/optim.hpp" diff --git a/modules/optim/src/lpsolver.cpp b/modules/optim/src/lpsolver.cpp new file mode 100644 index 000000000..72db13a0c --- /dev/null +++ b/modules/optim/src/lpsolver.cpp @@ -0,0 +1,322 @@ +#include "precomp.hpp" +#include +#include +#include + +namespace cv{namespace optim{ +using std::vector; + +#ifdef ALEX_DEBUG +#define dprintf(x) printf x +static void print_matrix(const Mat& x){ + print(x); + printf("\n"); +} +static void print_simplex_state(const Mat& c,const Mat& b,double v,const std::vector N,const std::vector B){ + printf("\tprint simplex state\n"); + + printf("v=%g\n",v); + + printf("here c goes\n"); + print_matrix(c); + + printf("non-basic: "); + print(Mat(N)); + printf("\n"); + + printf("here b goes\n"); + print_matrix(b); + printf("basic: "); + + print(Mat(B)); + printf("\n"); +} +#else +#define dprintf(x) +#define print_matrix(x) +#define print_simplex_state(c,b,v,N,B) +#endif + +/**Due to technical considerations, the format of input b and c is somewhat special: + *both b and c should be one column bigger than corresponding b and c of linear problem and the leftmost column will be used internally + by this procedure - it should not be cleaned before the call to procedure and may contain mess after + it also initializes N and B and does not make any assumptions about their init values + * @return SOLVELP_UNFEASIBLE if problem is unfeasible, 0 if feasible. +*/ +static int initialize_simplex(Mat_& c, Mat_& b,double& v,vector& N,vector& B,vector& indexToRow); +static inline void pivot(Mat_& c,Mat_& b,double& v,vector& N,vector& B,int leaving_index, + int entering_index,vector& indexToRow); +/**@return SOLVELP_UNBOUNDED means the problem is unbdd, SOLVELP_MULTI means multiple solutions, SOLVELP_SINGLE means one solution. + */ +static int inner_simplex(Mat_& c, Mat_& b,double& v,vector& N,vector& B,vector& indexToRow); +static void swap_columns(Mat_& A,int col1,int col2); +#define SWAP(type,a,b) {type tmp=(a);(a)=(b);(b)=tmp;} + +//return codes:-2 (no_sol - unbdd),-1(no_sol - unfsbl), 0(single_sol), 1(multiple_sol=>least_l2_norm) +int solveLP(const Mat& Func, const Mat& Constr, Mat& z){ + dprintf(("call to solveLP\n")); + + //sanity check (size, type, no. of channels) + CV_Assert(Func.type()==CV_64FC1 || Func.type()==CV_32FC1); + CV_Assert(Constr.type()==CV_64FC1 || Constr.type()==CV_32FC1); + CV_Assert((Func.rows==1 && (Constr.cols-Func.cols==1))|| + (Func.cols==1 && (Constr.cols-Func.rows==1))); + + //copy arguments for we will shall modify them + Mat_ bigC=Mat_(1,(Func.rows==1?Func.cols:Func.rows)+1), + bigB=Mat_(Constr.rows,Constr.cols+1); + if(Func.rows==1){ + Func.convertTo(bigC.colRange(1,bigC.cols),CV_64FC1); + }else{ + Mat FuncT=Func.t(); + FuncT.convertTo(bigC.colRange(1,bigC.cols),CV_64FC1); + } + Constr.convertTo(bigB.colRange(1,bigB.cols),CV_64FC1); + double v=0; + vector N,B; + vector indexToRow; + + if(initialize_simplex(bigC,bigB,v,N,B,indexToRow)==SOLVELP_UNFEASIBLE){ + return SOLVELP_UNFEASIBLE; + } + Mat_ c=bigC.colRange(1,bigC.cols), + b=bigB.colRange(1,bigB.cols); + + int res=0; + if((res=inner_simplex(c,b,v,N,B,indexToRow))==SOLVELP_UNBOUNDED){ + return SOLVELP_UNBOUNDED; + } + + //return the optimal solution + z.create(c.cols,1,CV_64FC1); + MatIterator_ it=z.begin(); + for(int i=1;i<=c.cols;i++,it++){ + if(indexToRow[i](indexToRow[i]-N.size(),b.cols-1); + } + } + + return res; +} + +static int initialize_simplex(Mat_& c, Mat_& b,double& v,vector& N,vector& B,vector& indexToRow){ + N.resize(c.cols); + N[0]=0; + for (std::vector::iterator it = N.begin()+1 ; it != N.end(); ++it){ + *it=it[-1]+1; + } + B.resize(b.rows); + B[0]=N.size(); + for (std::vector::iterator it = B.begin()+1 ; it != B.end(); ++it){ + *it=it[-1]+1; + } + indexToRow.resize(c.cols+b.rows); + indexToRow[0]=0; + for (std::vector::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){ + *it=it[-1]+1; + } + v=0; + + int k=0; + { + double min=DBL_MAX; + for(int i=0;i=0){ + N.erase(N.begin()); + for (std::vector::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){ + --(*it); + } + return 0; + } + + Mat_ old_c=c.clone(); + c=0; + c(0,0)=-1; + for(int i=0;i=N.size()){ + int iterator_offset=indexToRow[0]-N.size(); + if(b(iterator_offset,b.cols-1)>0){ + return SOLVELP_UNFEASIBLE; + } + pivot(c,b,v,N,B,iterator_offset,0,indexToRow); + } + + vector::iterator iterator; + { + int iterator_offset=indexToRow[0]; + iterator=N.begin()+iterator_offset; + std::iter_swap(iterator,N.begin()); + SWAP(int,indexToRow[*iterator],indexToRow[0]); + swap_columns(c,iterator_offset,0); + swap_columns(b,iterator_offset,0); + } + + dprintf(("after swaps\n")); + print_simplex_state(c,b,v,N,B); + + //start from 1, because we ignore x_0 + c=0; + v=0; + for(int I=1;I::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){ + --(*it); + } + return 0; +} + +static int inner_simplex(Mat_& c, Mat_& b,double& v,vector& N,vector& B,vector& indexToRow){ + int count=0; + for(;;){ + dprintf(("iteration #%d\n",count)); + count++; + + static MatIterator_ pos_ptr; + int e=-1,pos_ctr=0,min_var=INT_MAX; + bool all_nonzero=true; + for(pos_ptr=c.begin();pos_ptr!=c.end();pos_ptr++,pos_ctr++){ + if(*pos_ptr==0){ + all_nonzero=false; + } + if(*pos_ptr>0){ + if(N[pos_ctr] min_row_ptr=b.begin(); + for(MatIterator_ it=b.begin();it!=b.end();it+=b.cols,row_it++){ + double myite=0; + //check constraints, select the tightest one, reinforcing Bland's rule + if((myite=it[e])>0){ + double val=it[b.cols-1]/myite; + if(val& c,Mat_& b,double& v,vector& N,vector& B, + int leaving_index,int entering_index,vector& indexToRow){ + double Coef=b(leaving_index,entering_index); + for(int i=0;i& A,int col1,int col2){ + for(int i=0;i + +TEST(Optim_LpSolver, regression_basic){ + cv::Mat A,B,z,etalon_z; + +#if 1 + //cormen's example #1 + A=(cv::Mat_(3,1)<<3,1,2); + B=(cv::Mat_(3,4)<<1,1,3,30,2,2,5,24,4,1,2,36); + std::cout<<"here A goes\n"<(3,1)<<8,4,0); + ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); +#endif + +#if 1 + //cormen's example #2 + A=(cv::Mat_(1,2)<<18,12.5); + B=(cv::Mat_(3,3)<<1,1,20,1,0,20,0,1,16); + std::cout<<"here A goes\n"<(2,1)<<20,0); + ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); +#endif + +#if 1 + //cormen's example #3 + A=(cv::Mat_(1,2)<<5,-3); + B=(cv::Mat_(2,3)<<1,-1,1,2,1,2); + std::cout<<"here A goes\n"<(2,1)<<1,0); + ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); +#endif +} + +TEST(Optim_LpSolver, regression_init_unfeasible){ + cv::Mat A,B,z,etalon_z; + +#if 1 + //cormen's example #4 - unfeasible + A=(cv::Mat_(1,3)<<-1,-1,-1); + B=(cv::Mat_(2,4)<<-2,-7.5,-3,-10000,-20,-5,-10,-30000); + std::cout<<"here A goes\n"<(3,1)<<1250,1000,0); + ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); +#endif +} + +TEST(Optim_LpSolver, regression_absolutely_unfeasible){ + cv::Mat A,B,z,etalon_z; + +#if 1 + //trivial absolutely unfeasible example + A=(cv::Mat_(1,1)<<1); + B=(cv::Mat_(2,2)<<1,-1); + std::cout<<"here A goes\n"<(2,1)<<1,1); + B=(cv::Mat_(1,3)<<1,1,1); + std::cout<<"here A goes\n"<(4,1)<<10,-57,-9,-24); + B=(cv::Mat_(3,5)<<0.5,-5.5,-2.5,9,0,0.5,-1.5,-0.5,1,0,1,0,0,0,1); + std::cout<<"here A goes\n"< -bool pyopencv_to(PyObject*, cv::flann::SearchParams &, const char *) -{ - CV_Assert(!"not implemented"); - return false; -} - template<> bool pyopencv_to(PyObject* obj, int& value, const char* name) { @@ -1055,6 +1048,12 @@ bool pyopencv_to(PyObject *o, cv::flann::IndexParams& p, const char *name) return ok; } +template<> +bool pyopencv_to(PyObject* obj, cv::flann::SearchParams & value, const char * name) +{ + return pyopencv_to(obj, value, name); +} + template bool pyopencv_to(PyObject *o, Ptr& p, const char *name) { diff --git a/samples/ocl/facedetect.cpp b/samples/ocl/facedetect.cpp index 34aeeeaf5..059134e16 100644 --- a/samples/ocl/facedetect.cpp +++ b/samples/ocl/facedetect.cpp @@ -8,9 +8,6 @@ #include #include -int main( int, const char** ) { return 0; } - -#if 0 using namespace std; using namespace cv; @@ -46,7 +43,7 @@ static double getTime() } void detect( Mat& img, vector& faces, - ocl::OclCascadeClassifierBuf& cascade, + ocl::OclCascadeClassifier& cascade, double scale, bool calTime); @@ -66,20 +63,19 @@ double checkRectSimilarity(Size sz, vector& cpu_rst, vector& gpu_rst int main( int argc, const char** argv ) { const char* keys = - "{ h | help | false | print help message }" - "{ i | input | | specify input image }" - "{ t | template | haarcascade_frontalface_alt.xml |" + "{ h help | false | print help message }" + "{ i input | | specify input image }" + "{ t template | haarcascade_frontalface_alt.xml |" " specify template file path }" - "{ c | scale | 1.0 | scale image }" - "{ s | use_cpu | false | use cpu or gpu to process the image }" - "{ o | output | facedetect_output.jpg |" + "{ c scale | 1.0 | scale image }" + "{ s use_cpu | false | use cpu or gpu to process the image }" + "{ o output | facedetect_output.jpg |" " specify output image save path(only works when input is images) }"; CommandLineParser cmd(argc, argv, keys); if (cmd.get("help")) { cout << "Avaible options:" << endl; - cmd.printParams(); return 0; } CvCapture* capture = 0; @@ -90,7 +86,7 @@ int main( int argc, const char** argv ) outputName = cmd.get("o"); string cascadeName = cmd.get("t"); double scale = cmd.get("c"); - ocl::OclCascadeClassifierBuf cascade; + ocl::OclCascadeClassifier cascade; CascadeClassifier cpu_cascade; if( !cascade.load( cascadeName ) || !cpu_cascade.load(cascadeName) ) @@ -211,7 +207,7 @@ _cleanup_: } void detect( Mat& img, vector& faces, - ocl::OclCascadeClassifierBuf& cascade, + ocl::OclCascadeClassifier& cascade, double scale, bool calTime) { ocl::oclMat image(img); @@ -223,7 +219,7 @@ void detect( Mat& img, vector& faces, cascade.detectMultiScale( smallImg, faces, 1.1, 3, 0 - |CV_HAAR_SCALE_IMAGE + |CASCADE_SCALE_IMAGE , Size(30,30), Size(0, 0) ); if(calTime) workEnd(); } @@ -234,11 +230,11 @@ void detectCPU( Mat& img, vector& faces, { if(calTime) workBegin(); Mat cpu_gray, cpu_smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 ); - cvtColor(img, cpu_gray, CV_BGR2GRAY); + cvtColor(img, cpu_gray, COLOR_BGR2GRAY); resize(cpu_gray, cpu_smallImg, cpu_smallImg.size(), 0, 0, INTER_LINEAR); equalizeHist(cpu_smallImg, cpu_smallImg); cascade.detectMultiScale(cpu_smallImg, faces, 1.1, - 3, 0 | CV_HAAR_SCALE_IMAGE, + 3, 0 | CASCADE_SCALE_IMAGE, Size(30, 30), Size(0, 0)); if(calTime) workEnd(); } @@ -311,5 +307,4 @@ double checkRectSimilarity(Size sz, vector& ob1, vector& ob2) final_test_result = -1; } return final_test_result; -} -#endif +} \ No newline at end of file