Revert "Revert "Merge pull request #836 from jet47:gpu-modules""

This commit is contained in:
Vladislav Vinogradov
2013-06-04 13:32:35 +04:00
parent 10340fe234
commit 3eeaa9189c
472 changed files with 29894 additions and 23019 deletions

View File

@@ -0,0 +1,36 @@
Camera Calibration and 3D Reconstruction
========================================
.. highlight:: cpp
gpu::solvePnPRansac
-------------------
Finds the object pose from 3D-2D point correspondences.
.. ocv:function:: void gpu::solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat, const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false, int num_iters=100, float max_dist=8.0, int min_inlier_count=100, vector<int>* inliers=NULL)
:param object: Single-row matrix of object points.
:param image: Single-row matrix of image points.
:param camera_mat: 3x3 matrix of intrinsic camera parameters.
:param dist_coef: Distortion coefficients. See :ocv:func:`undistortPoints` for details.
:param rvec: Output 3D rotation vector.
:param tvec: Output 3D translation vector.
:param use_extrinsic_guess: Flag to indicate that the function must use ``rvec`` and ``tvec`` as an initial transformation guess. It is not supported for now.
:param num_iters: Maximum number of RANSAC iterations.
:param max_dist: Euclidean distance threshold to detect whether point is inlier or not.
:param min_inlier_count: Flag to indicate that the function must stop if greater or equal number of inliers is achieved. It is not supported for now.
:param inliers: Output vector of inlier indices.
.. seealso:: :ocv:func:`solvePnPRansac`

View File

@@ -1,499 +0,0 @@
Camera Calibration and 3D Reconstruction
========================================
.. highlight:: cpp
gpu::StereoBM_GPU
-----------------
.. ocv:class:: gpu::StereoBM_GPU
Class computing stereo correspondence (disparity map) using the block matching algorithm. ::
class StereoBM_GPU
{
public:
enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 };
enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 };
StereoBM_GPU();
StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP,
int winSize = DEFAULT_WINSZ);
void operator() (const GpuMat& left, const GpuMat& right,
GpuMat& disparity, Stream& stream = Stream::Null());
static bool checkIfGpuCallReasonable();
int preset;
int ndisp;
int winSize;
float avergeTexThreshold;
...
};
The class also performs pre- and post-filtering steps: Sobel pre-filtering (if ``PREFILTER_XSOBEL`` flag is set) and low textureness filtering (if ``averageTexThreshols > 0`` ). If ``avergeTexThreshold = 0`` , low textureness filtering is disabled. Otherwise, the disparity is set to 0 in each point ``(x, y)`` , where for the left image
.. math::
\sum HorizontalGradiensInWindow(x, y, winSize) < (winSize \cdot winSize) \cdot avergeTexThreshold
This means that the input left image is low textured.
gpu::StereoBM_GPU::StereoBM_GPU
-----------------------------------
Enables :ocv:class:`gpu::StereoBM_GPU` constructors.
.. ocv:function:: gpu::StereoBM_GPU::StereoBM_GPU()
.. ocv:function:: gpu::StereoBM_GPU::StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ)
:param preset: Parameter presetting:
* **BASIC_PRESET** Basic mode without pre-processing.
* **PREFILTER_XSOBEL** Sobel pre-filtering mode.
:param ndisparities: Number of disparities. It must be a multiple of 8 and less or equal to 256.
:param winSize: Block size.
gpu::StereoBM_GPU::operator ()
----------------------------------
Enables the stereo correspondence operator that finds the disparity for the specified rectified stereo pair.
.. ocv:function:: void gpu::StereoBM_GPU::operator ()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null())
:param left: Left image. Only ``CV_8UC1`` type is supported.
:param right: Right image with the same size and the same type as the left one.
:param disparity: Output disparity map. It is a ``CV_8UC1`` image with the same size as the input images.
:param stream: Stream for the asynchronous version.
gpu::StereoBM_GPU::checkIfGpuCallReasonable
-----------------------------------------------
Uses a heuristic method to estimate whether the current GPU is faster than the CPU in this algorithm. It queries the currently active device.
.. ocv:function:: bool gpu::StereoBM_GPU::checkIfGpuCallReasonable()
gpu::StereoBeliefPropagation
----------------------------
.. ocv:class:: gpu::StereoBeliefPropagation
Class computing stereo correspondence using the belief propagation algorithm. ::
class StereoBeliefPropagation
{
public:
enum { DEFAULT_NDISP = 64 };
enum { DEFAULT_ITERS = 5 };
enum { DEFAULT_LEVELS = 5 };
static void estimateRecommendedParams(int width, int height,
int& ndisp, int& iters, int& levels);
explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP,
int iters = DEFAULT_ITERS,
int levels = DEFAULT_LEVELS,
int msg_type = CV_32F);
StereoBeliefPropagation(int ndisp, int iters, int levels,
float max_data_term, float data_weight,
float max_disc_term, float disc_single_jump,
int msg_type = CV_32F);
void operator()(const GpuMat& left, const GpuMat& right,
GpuMat& disparity, Stream& stream = Stream::Null());
void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null());
int ndisp;
int iters;
int levels;
float max_data_term;
float data_weight;
float max_disc_term;
float disc_single_jump;
int msg_type;
...
};
The class implements algorithm described in [Felzenszwalb2006]_ . It can compute own data cost (using a truncated linear model) or use a user-provided data cost.
.. note::
``StereoBeliefPropagation`` requires a lot of memory for message storage:
.. math::
width \_ step \cdot height \cdot ndisp \cdot 4 \cdot (1 + 0.25)
and for data cost storage:
.. math::
width\_step \cdot height \cdot ndisp \cdot (1 + 0.25 + 0.0625 + \dotsm + \frac{1}{4^{levels}})
``width_step`` is the number of bytes in a line including padding.
gpu::StereoBeliefPropagation::StereoBeliefPropagation
---------------------------------------------------------
Enables the :ocv:class:`gpu::StereoBeliefPropagation` constructors.
.. ocv:function:: gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp = DEFAULT_NDISP, int iters = DEFAULT_ITERS, int levels = DEFAULT_LEVELS, int msg_type = CV_32F)
.. ocv:function:: gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp, int iters, int levels, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int msg_type = CV_32F)
:param ndisp: Number of disparities.
:param iters: Number of BP iterations on each level.
:param levels: Number of levels.
:param max_data_term: Threshold for data cost truncation.
:param data_weight: Data weight.
:param max_disc_term: Threshold for discontinuity truncation.
:param disc_single_jump: Discontinuity single jump.
:param msg_type: Type for messages. ``CV_16SC1`` and ``CV_32FC1`` types are supported.
``StereoBeliefPropagation`` uses a truncated linear model for the data cost and discontinuity terms:
.. math::
DataCost = data \_ weight \cdot \min ( \lvert Img_Left(x,y)-Img_Right(x-d,y) \rvert , max \_ data \_ term)
.. math::
DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term)
For more details, see [Felzenszwalb2006]_.
By default, :ocv:class:`gpu::StereoBeliefPropagation` uses floating-point arithmetics and the ``CV_32FC1`` type for messages. But it can also use fixed-point arithmetics and the ``CV_16SC1`` message type for better performance. To avoid an overflow in this case, the parameters must satisfy the following requirement:
.. math::
10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX
gpu::StereoBeliefPropagation::estimateRecommendedParams
-----------------------------------------------------------
Uses a heuristic method to compute the recommended parameters ( ``ndisp``, ``iters`` and ``levels`` ) for the specified image size ( ``width`` and ``height`` ).
.. ocv:function:: void gpu::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels)
gpu::StereoBeliefPropagation::operator ()
---------------------------------------------
Enables the stereo correspondence operator that finds the disparity for the specified rectified stereo pair or data cost.
.. ocv:function:: void gpu::StereoBeliefPropagation::operator ()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null())
.. ocv:function:: void gpu::StereoBeliefPropagation::operator ()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null())
:param left: Left image. ``CV_8UC1`` , ``CV_8UC3`` and ``CV_8UC4`` types are supported.
:param right: Right image with the same size and the same type as the left one.
:param data: User-specified data cost, a matrix of ``msg_type`` type and ``Size(<image columns>*ndisp, <image rows>)`` size.
:param disparity: Output disparity map. If ``disparity`` is empty, the output type is ``CV_16SC1`` . Otherwise, the type is retained.
:param stream: Stream for the asynchronous version.
gpu::StereoConstantSpaceBP
--------------------------
.. ocv:class:: gpu::StereoConstantSpaceBP
Class computing stereo correspondence using the constant space belief propagation algorithm. ::
class StereoConstantSpaceBP
{
public:
enum { DEFAULT_NDISP = 128 };
enum { DEFAULT_ITERS = 8 };
enum { DEFAULT_LEVELS = 4 };
enum { DEFAULT_NR_PLANE = 4 };
static void estimateRecommendedParams(int width, int height,
int& ndisp, int& iters, int& levels, int& nr_plane);
explicit StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP,
int iters = DEFAULT_ITERS,
int levels = DEFAULT_LEVELS,
int nr_plane = DEFAULT_NR_PLANE,
int msg_type = CV_32F);
StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane,
float max_data_term, float data_weight,
float max_disc_term, float disc_single_jump,
int min_disp_th = 0,
int msg_type = CV_32F);
void operator()(const GpuMat& left, const GpuMat& right,
GpuMat& disparity, Stream& stream = Stream::Null());
int ndisp;
int iters;
int levels;
int nr_plane;
float max_data_term;
float data_weight;
float max_disc_term;
float disc_single_jump;
int min_disp_th;
int msg_type;
bool use_local_init_data_cost;
...
};
The class implements algorithm described in [Yang2010]_. ``StereoConstantSpaceBP`` supports both local minimum and global minimum data cost initialization algorithms. For more details, see the paper mentioned above. By default, a local algorithm is used. To enable a global algorithm, set ``use_local_init_data_cost`` to ``false`` .
gpu::StereoConstantSpaceBP::StereoConstantSpaceBP
-----------------------------------------------------
Enables the :ocv:class:`gpu::StereoConstantSpaceBP` constructors.
.. ocv:function:: gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP, int iters = DEFAULT_ITERS, int levels = DEFAULT_LEVELS, int nr_plane = DEFAULT_NR_PLANE, int msg_type = CV_32F)
.. ocv:function:: gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int min_disp_th = 0, int msg_type = CV_32F)
:param ndisp: Number of disparities.
:param iters: Number of BP iterations on each level.
:param levels: Number of levels.
:param nr_plane: Number of disparity levels on the first level.
:param max_data_term: Truncation of data cost.
:param data_weight: Data weight.
:param max_disc_term: Truncation of discontinuity.
:param disc_single_jump: Discontinuity single jump.
:param min_disp_th: Minimal disparity threshold.
:param msg_type: Type for messages. ``CV_16SC1`` and ``CV_32FC1`` types are supported.
``StereoConstantSpaceBP`` uses a truncated linear model for the data cost and discontinuity terms:
.. math::
DataCost = data \_ weight \cdot \min ( \lvert I_2-I_1 \rvert , max \_ data \_ term)
.. math::
DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term)
For more details, see [Yang2010]_.
By default, ``StereoConstantSpaceBP`` uses floating-point arithmetics and the ``CV_32FC1`` type for messages. But it can also use fixed-point arithmetics and the ``CV_16SC1`` message type for better performance. To avoid an overflow in this case, the parameters must satisfy the following requirement:
.. math::
10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX
gpu::StereoConstantSpaceBP::estimateRecommendedParams
---------------------------------------------------------
Uses a heuristic method to compute parameters (ndisp, iters, levelsand nrplane) for the specified image size (widthand height).
.. ocv:function:: void gpu::StereoConstantSpaceBP::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane)
gpu::StereoConstantSpaceBP::operator ()
-------------------------------------------
Enables the stereo correspondence operator that finds the disparity for the specified rectified stereo pair.
.. ocv:function:: void gpu::StereoConstantSpaceBP::operator ()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null())
:param left: Left image. ``CV_8UC1`` , ``CV_8UC3`` and ``CV_8UC4`` types are supported.
:param right: Right image with the same size and the same type as the left one.
:param disparity: Output disparity map. If ``disparity`` is empty, the output type is ``CV_16SC1`` . Otherwise, the output type is ``disparity.type()`` .
:param stream: Stream for the asynchronous version.
gpu::DisparityBilateralFilter
-----------------------------
.. ocv:class:: gpu::DisparityBilateralFilter
Class refining a disparity map using joint bilateral filtering. ::
class CV_EXPORTS DisparityBilateralFilter
{
public:
enum { DEFAULT_NDISP = 64 };
enum { DEFAULT_RADIUS = 3 };
enum { DEFAULT_ITERS = 1 };
explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP,
int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS);
DisparityBilateralFilter(int ndisp, int radius, int iters,
float edge_threshold, float max_disc_threshold,
float sigma_range);
void operator()(const GpuMat& disparity, const GpuMat& image,
GpuMat& dst, Stream& stream = Stream::Null());
...
};
The class implements [Yang2010]_ algorithm.
gpu::DisparityBilateralFilter::DisparityBilateralFilter
-----------------------------------------------------------
Enables the :ocv:class:`gpu::DisparityBilateralFilter` constructors.
.. ocv:function:: gpu::DisparityBilateralFilter::DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS)
.. ocv:function:: gpu::DisparityBilateralFilter::DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range)
:param ndisp: Number of disparities.
:param radius: Filter radius.
:param iters: Number of iterations.
:param edge_threshold: Threshold for edges.
:param max_disc_threshold: Constant to reject outliers.
:param sigma_range: Filter range.
gpu::DisparityBilateralFilter::operator ()
----------------------------------------------
Refines a disparity map using joint bilateral filtering.
.. ocv:function:: void gpu::DisparityBilateralFilter::operator ()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream = Stream::Null())
:param disparity: Input disparity map. ``CV_8UC1`` and ``CV_16SC1`` types are supported.
:param image: Input image. ``CV_8UC1`` and ``CV_8UC3`` types are supported.
:param dst: Destination disparity map. It has the same size and type as ``disparity`` .
:param stream: Stream for the asynchronous version.
gpu::drawColorDisp
----------------------
Colors a disparity image.
.. ocv:function:: void gpu::drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp, Stream& stream = Stream::Null())
:param src_disp: Source disparity image. ``CV_8UC1`` and ``CV_16SC1`` types are supported.
:param dst_disp: Output disparity image. It has the same size as ``src_disp`` . The type is ``CV_8UC4`` in ``BGRA`` format (alpha = 255).
:param ndisp: Number of disparities.
:param stream: Stream for the asynchronous version.
This function draws a colored disparity map by converting disparity values from ``[0..ndisp)`` interval first to ``HSV`` color space (where different disparity values correspond to different hues) and then converting the pixels to ``RGB`` for visualization.
gpu::reprojectImageTo3D
---------------------------
Reprojects a disparity image to 3D space.
.. ocv:function:: void gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, int dst_cn = 4, Stream& stream = Stream::Null())
:param disp: Input disparity image. ``CV_8U`` and ``CV_16S`` types are supported.
:param xyzw: Output 3- or 4-channel floating-point image of the same size as ``disp`` . Each element of ``xyzw(x,y)`` contains 3D coordinates ``(x,y,z)`` or ``(x,y,z,1)`` of the point ``(x,y)`` , computed from the disparity map.
:param Q: :math:`4 \times 4` perspective transformation matrix that can be obtained via :ocv:func:`stereoRectify` .
:param dst_cn: The number of channels for output image. Can be 3 or 4.
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`reprojectImageTo3D`
gpu::solvePnPRansac
-------------------
Finds the object pose from 3D-2D point correspondences.
.. ocv:function:: void gpu::solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat, const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false, int num_iters=100, float max_dist=8.0, int min_inlier_count=100, vector<int>* inliers=NULL)
:param object: Single-row matrix of object points.
:param image: Single-row matrix of image points.
:param camera_mat: 3x3 matrix of intrinsic camera parameters.
:param dist_coef: Distortion coefficients. See :ocv:func:`undistortPoints` for details.
:param rvec: Output 3D rotation vector.
:param tvec: Output 3D translation vector.
:param use_extrinsic_guess: Flag to indicate that the function must use ``rvec`` and ``tvec`` as an initial transformation guess. It is not supported for now.
:param num_iters: Maximum number of RANSAC iterations.
:param max_dist: Euclidean distance threshold to detect whether point is inlier or not.
:param min_inlier_count: Flag to indicate that the function must stop if greater or equal number of inliers is achieved. It is not supported for now.
:param inliers: Output vector of inlier indices.
.. seealso:: :ocv:func:`solvePnPRansac`
.. [Felzenszwalb2006] Pedro F. Felzenszwalb algorithm [Pedro F. Felzenszwalb and Daniel P. Huttenlocher. *Efficient belief propagation for early vision*. International Journal of Computer Vision, 70(1), October 2006
.. [Yang2010] Q. Yang, L. Wang, and N. Ahuja. *A constant-space belief propagation algorithm for stereo matching*. In CVPR, 2010.

View File

@@ -1,539 +0,0 @@
Feature Detection and Description
=================================
.. highlight:: cpp
gpu::FAST_GPU
-------------
.. ocv:class:: gpu::FAST_GPU
Class used for corner detection using the FAST algorithm. ::
class FAST_GPU
{
public:
enum
{
LOCATION_ROW = 0,
RESPONSE_ROW,
ROWS_COUNT
};
// all features have same size
static const int FEATURE_SIZE = 7;
explicit FAST_GPU(int threshold, bool nonmaxSupression = true,
double keypointsRatio = 0.05);
void operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
void operator ()(const GpuMat& image, const GpuMat& mask,
std::vector<KeyPoint>& keypoints);
void downloadKeypoints(const GpuMat& d_keypoints,
std::vector<KeyPoint>& keypoints);
void convertKeypoints(const Mat& h_keypoints,
std::vector<KeyPoint>& keypoints);
void release();
bool nonmaxSupression;
int threshold;
double keypointsRatio;
int calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask);
int getKeyPoints(GpuMat& keypoints);
};
The class ``FAST_GPU`` implements FAST corner detection algorithm.
.. seealso:: :ocv:func:`FAST`
gpu::FAST_GPU::FAST_GPU
-------------------------------------
Constructor.
.. ocv:function:: gpu::FAST_GPU::FAST_GPU(int threshold, bool nonmaxSupression = true, double keypointsRatio = 0.05)
:param threshold: Threshold on difference between intensity of the central pixel and pixels on a circle around this pixel.
:param nonmaxSupression: If it is true, non-maximum suppression is applied to detected corners (keypoints).
:param keypointsRatio: Inner buffer size for keypoints store is determined as (keypointsRatio * image_width * image_height).
gpu::FAST_GPU::operator ()
-------------------------------------
Finds the keypoints using FAST detector.
.. ocv:function:: void gpu::FAST_GPU::operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints)
.. ocv:function:: void gpu::FAST_GPU::operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints)
:param image: Image where keypoints (corners) are detected. Only 8-bit grayscale images are supported.
:param mask: Optional input mask that marks the regions where we should detect features.
:param keypoints: The output vector of keypoints. Can be stored both in CPU and GPU memory. For GPU memory:
* keypoints.ptr<Vec2s>(LOCATION_ROW)[i] will contain location of i'th point
* keypoints.ptr<float>(RESPONSE_ROW)[i] will contain response of i'th point (if non-maximum suppression is applied)
gpu::FAST_GPU::downloadKeypoints
-------------------------------------
Download keypoints from GPU to CPU memory.
.. ocv:function:: void gpu::FAST_GPU::downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints)
gpu::FAST_GPU::convertKeypoints
-------------------------------------
Converts keypoints from GPU representation to vector of ``KeyPoint``.
.. ocv:function:: void gpu::FAST_GPU::convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints)
gpu::FAST_GPU::release
-------------------------------------
Releases inner buffer memory.
.. ocv:function:: void gpu::FAST_GPU::release()
gpu::FAST_GPU::calcKeyPointsLocation
-------------------------------------
Find keypoints and compute it's response if ``nonmaxSupression`` is true.
.. ocv:function:: int gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask)
:param image: Image where keypoints (corners) are detected. Only 8-bit grayscale images are supported.
:param mask: Optional input mask that marks the regions where we should detect features.
The function returns count of detected keypoints.
gpu::FAST_GPU::getKeyPoints
-------------------------------------
Gets final array of keypoints.
.. ocv:function:: int gpu::FAST_GPU::getKeyPoints(GpuMat& keypoints)
:param keypoints: The output vector of keypoints.
The function performs non-max suppression if needed and returns final count of keypoints.
gpu::ORB_GPU
-------------
.. ocv:class:: gpu::ORB_GPU
Class for extracting ORB features and descriptors from an image. ::
class ORB_GPU
{
public:
enum
{
X_ROW = 0,
Y_ROW,
RESPONSE_ROW,
ANGLE_ROW,
OCTAVE_ROW,
SIZE_ROW,
ROWS_COUNT
};
enum
{
DEFAULT_FAST_THRESHOLD = 20
};
explicit ORB_GPU(int nFeatures = 500, float scaleFactor = 1.2f,
int nLevels = 8, int edgeThreshold = 31,
int firstLevel = 0, int WTA_K = 2,
int scoreType = 0, int patchSize = 31);
void operator()(const GpuMat& image, const GpuMat& mask,
std::vector<KeyPoint>& keypoints);
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
void operator()(const GpuMat& image, const GpuMat& mask,
std::vector<KeyPoint>& keypoints, GpuMat& descriptors);
void operator()(const GpuMat& image, const GpuMat& mask,
GpuMat& keypoints, GpuMat& descriptors);
void downloadKeyPoints(GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);
void convertKeyPoints(Mat& d_keypoints, std::vector<KeyPoint>& keypoints);
int descriptorSize() const;
void setParams(size_t n_features, const ORB::CommonParams& detector_params);
void setFastParams(int threshold, bool nonmaxSupression = true);
void release();
bool blurForDescriptor;
};
The class implements ORB feature detection and description algorithm.
gpu::ORB_GPU::ORB_GPU
-------------------------------------
Constructor.
.. ocv:function:: gpu::ORB_GPU::ORB_GPU(int nFeatures = 500, float scaleFactor = 1.2f, int nLevels = 8, int edgeThreshold = 31, int firstLevel = 0, int WTA_K = 2, int scoreType = 0, int patchSize = 31)
:param nFeatures: The number of desired features.
:param scaleFactor: Coefficient by which we divide the dimensions from one scale pyramid level to the next.
:param nLevels: The number of levels in the scale pyramid.
:param edgeThreshold: How far from the boundary the points should be.
:param firstLevel: The level at which the image is given. If 1, that means we will also look at the image `scaleFactor` times bigger.
gpu::ORB_GPU::operator()
-------------------------------------
Detects keypoints and computes descriptors for them.
.. ocv:function:: void gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints)
.. ocv:function:: void gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints)
.. ocv:function:: void gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors)
.. ocv:function:: void gpu::ORB_GPU::operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors)
:param image: Input 8-bit grayscale image.
:param mask: Optional input mask that marks the regions where we should detect features.
:param keypoints: The input/output vector of keypoints. Can be stored both in CPU and GPU memory. For GPU memory:
* ``keypoints.ptr<float>(X_ROW)[i]`` contains x coordinate of the i'th feature.
* ``keypoints.ptr<float>(Y_ROW)[i]`` contains y coordinate of the i'th feature.
* ``keypoints.ptr<float>(RESPONSE_ROW)[i]`` contains the response of the i'th feature.
* ``keypoints.ptr<float>(ANGLE_ROW)[i]`` contains orientation of the i'th feature.
* ``keypoints.ptr<float>(OCTAVE_ROW)[i]`` contains the octave of the i'th feature.
* ``keypoints.ptr<float>(SIZE_ROW)[i]`` contains the size of the i'th feature.
:param descriptors: Computed descriptors. if ``blurForDescriptor`` is true, image will be blurred before descriptors calculation.
gpu::ORB_GPU::downloadKeyPoints
-------------------------------------
Download keypoints from GPU to CPU memory.
.. ocv:function:: static void gpu::ORB_GPU::downloadKeyPoints( const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints )
gpu::ORB_GPU::convertKeyPoints
-------------------------------------
Converts keypoints from GPU representation to vector of ``KeyPoint``.
.. ocv:function:: static void gpu::ORB_GPU::convertKeyPoints( const Mat& d_keypoints, std::vector<KeyPoint>& keypoints )
gpu::ORB_GPU::release
-------------------------------------
Releases inner buffer memory.
.. ocv:function:: void gpu::ORB_GPU::release()
gpu::BFMatcher_GPU
--------------------------
.. ocv:class:: gpu::BFMatcher_GPU
Brute-force descriptor matcher. For each descriptor in the first set, this matcher finds the closest descriptor in the second set by trying each one. This descriptor matcher supports masking permissible matches between descriptor sets. ::
class BFMatcher_GPU
{
public:
explicit BFMatcher_GPU(int norm = cv::NORM_L2);
// Add descriptors to train descriptor collection.
void add(const std::vector<GpuMat>& descCollection);
// Get train descriptors collection.
const std::vector<GpuMat>& getTrainDescriptors() const;
// Clear train descriptors collection.
void clear();
// Return true if there are no train descriptors in collection.
bool empty() const;
// Return true if the matcher supports mask in match methods.
bool isMaskSupported() const;
void matchSingle(const GpuMat& query, const GpuMat& train,
GpuMat& trainIdx, GpuMat& distance,
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
static void matchDownload(const GpuMat& trainIdx,
const GpuMat& distance, std::vector<DMatch>& matches);
static void matchConvert(const Mat& trainIdx,
const Mat& distance, std::vector<DMatch>& matches);
void match(const GpuMat& query, const GpuMat& train,
std::vector<DMatch>& matches, const GpuMat& mask = GpuMat());
void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection,
const vector<GpuMat>& masks = std::vector<GpuMat>());
void matchCollection(const GpuMat& query, const GpuMat& trainCollection,
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
const GpuMat& maskCollection, Stream& stream = Stream::Null());
static void matchDownload(const GpuMat& trainIdx, GpuMat& imgIdx,
const GpuMat& distance, std::vector<DMatch>& matches);
static void matchConvert(const Mat& trainIdx, const Mat& imgIdx,
const Mat& distance, std::vector<DMatch>& matches);
void match(const GpuMat& query, std::vector<DMatch>& matches,
const std::vector<GpuMat>& masks = std::vector<GpuMat>());
void knnMatchSingle(const GpuMat& query, const GpuMat& train,
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
static void knnMatchConvert(const Mat& trainIdx, const Mat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
void knnMatch(const GpuMat& query, const GpuMat& train,
std::vector< std::vector<DMatch> >& matches, int k,
const GpuMat& mask = GpuMat(), bool compactResult = false);
void knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection,
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
const GpuMat& maskCollection = GpuMat(), Stream& stream = Stream::Null());
static void knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
static void knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
void knnMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, int k,
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
bool compactResult = false);
void radiusMatchSingle(const GpuMat& query, const GpuMat& train,
GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
static void radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
void radiusMatch(const GpuMat& query, const GpuMat& train,
std::vector< std::vector<DMatch> >& matches, float maxDistance,
const GpuMat& mask = GpuMat(), bool compactResult = false);
void radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), Stream& stream = Stream::Null());
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
static void radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
void radiusMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, float maxDistance,
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);
private:
std::vector<GpuMat> trainDescCollection;
};
The class ``BFMatcher_GPU`` has an interface similar to the class :ocv:class:`DescriptorMatcher`. It has two groups of ``match`` methods: for matching descriptors of one image with another image or with an image set. Also, all functions have an alternative to save results either to the GPU memory or to the CPU memory.
.. seealso:: :ocv:class:`DescriptorMatcher`, :ocv:class:`BFMatcher`
gpu::BFMatcher_GPU::match
-------------------------------------
Finds the best match for each descriptor from a query set with train descriptors.
.. ocv:function:: void gpu::BFMatcher_GPU::match(const GpuMat& query, const GpuMat& train, std::vector<DMatch>& matches, const GpuMat& mask = GpuMat())
.. ocv:function:: void gpu::BFMatcher_GPU::matchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null())
.. ocv:function:: void gpu::BFMatcher_GPU::match(const GpuMat& query, std::vector<DMatch>& matches, const std::vector<GpuMat>& masks = std::vector<GpuMat>())
.. ocv:function:: void gpu::BFMatcher_GPU::matchCollection( const GpuMat& query, const GpuMat& trainCollection, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& masks=GpuMat(), Stream& stream=Stream::Null() )
.. seealso:: :ocv:func:`DescriptorMatcher::match`
gpu::BFMatcher_GPU::makeGpuCollection
-------------------------------------------------
Performs a GPU collection of train descriptors and masks in a suitable format for the :ocv:func:`gpu::BFMatcher_GPU::matchCollection` function.
.. ocv:function:: void gpu::BFMatcher_GPU::makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const vector<GpuMat>& masks = std::vector<GpuMat>())
gpu::BFMatcher_GPU::matchDownload
---------------------------------------------
Downloads matrices obtained via :ocv:func:`gpu::BFMatcher_GPU::matchSingle` or :ocv:func:`gpu::BFMatcher_GPU::matchCollection` to vector with :ocv:class:`DMatch`.
.. ocv:function:: static void gpu::BFMatcher_GPU::matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<DMatch>&matches)
.. ocv:function:: static void gpu::BFMatcher_GPU::matchDownload( const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector<DMatch>& matches )
gpu::BFMatcher_GPU::matchConvert
---------------------------------------------
Converts matrices obtained via :ocv:func:`gpu::BFMatcher_GPU::matchSingle` or :ocv:func:`gpu::BFMatcher_GPU::matchCollection` to vector with :ocv:class:`DMatch`.
.. ocv:function:: void gpu::BFMatcher_GPU::matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>&matches)
.. ocv:function:: void gpu::BFMatcher_GPU::matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>&matches)
gpu::BFMatcher_GPU::knnMatch
----------------------------------------
Finds the ``k`` best matches for each descriptor from a query set with train descriptors.
.. ocv:function:: void gpu::BFMatcher_GPU::knnMatch(const GpuMat& query, const GpuMat& train, std::vector< std::vector<DMatch> >&matches, int k, const GpuMat& mask = GpuMat(), bool compactResult = false)
.. ocv:function:: void gpu::BFMatcher_GPU::knnMatchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null())
.. ocv:function:: void gpu::BFMatcher_GPU::knnMatch(const GpuMat& query, std::vector< std::vector<DMatch> >&matches, int k, const std::vector<GpuMat>&masks = std::vector<GpuMat>(), bool compactResult = false )
.. ocv:function:: void gpu::BFMatcher_GPU::knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& maskCollection = GpuMat(), Stream& stream = Stream::Null())
:param query: Query set of descriptors.
:param train: Training set of descriptors. It is not be added to train descriptors collection stored in the class object.
:param k: Number of the best matches per each query descriptor (or less if it is not possible).
:param mask: Mask specifying permissible matches between the input query and train matrices of descriptors.
:param compactResult: If ``compactResult`` is ``true`` , the ``matches`` vector does not contain matches for fully masked-out query descriptors.
:param stream: Stream for the asynchronous version.
The function returns detected ``k`` (or less if not possible) matches in the increasing order by distance.
The third variant of the method stores the results in GPU memory.
.. seealso:: :ocv:func:`DescriptorMatcher::knnMatch`
gpu::BFMatcher_GPU::knnMatchDownload
------------------------------------------------
Downloads matrices obtained via :ocv:func:`gpu::BFMatcher_GPU::knnMatchSingle` or :ocv:func:`gpu::BFMatcher_GPU::knnMatch2Collection` to vector with :ocv:class:`DMatch`.
.. ocv:function:: void gpu::BFMatcher_GPU::knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector< std::vector<DMatch> >&matches, bool compactResult = false)
.. ocv:function:: void gpu::BFMatcher_GPU::knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector< std::vector<DMatch> >& matches, bool compactResult = false)
If ``compactResult`` is ``true`` , the ``matches`` vector does not contain matches for fully masked-out query descriptors.
gpu::BFMatcher_GPU::knnMatchConvert
------------------------------------------------
Converts matrices obtained via :ocv:func:`gpu::BFMatcher_GPU::knnMatchSingle` or :ocv:func:`gpu::BFMatcher_GPU::knnMatch2Collection` to CPU vector with :ocv:class:`DMatch`.
.. ocv:function:: void gpu::BFMatcher_GPU::knnMatchConvert(const Mat& trainIdx, const Mat& distance, std::vector< std::vector<DMatch> >&matches, bool compactResult = false)
.. ocv:function:: void gpu::BFMatcher_GPU::knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector< std::vector<DMatch> >& matches, bool compactResult = false)
If ``compactResult`` is ``true`` , the ``matches`` vector does not contain matches for fully masked-out query descriptors.
gpu::BFMatcher_GPU::radiusMatch
-------------------------------------------
For each query descriptor, finds the best matches with a distance less than a given threshold.
.. ocv:function:: void gpu::BFMatcher_GPU::radiusMatch(const GpuMat& query, const GpuMat& train, std::vector< std::vector<DMatch> >&matches, float maxDistance, const GpuMat& mask = GpuMat(), bool compactResult = false)
.. ocv:function:: void gpu::BFMatcher_GPU::radiusMatchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null())
.. ocv:function:: void gpu::BFMatcher_GPU::radiusMatch(const GpuMat& query, std::vector< std::vector<DMatch> >&matches, float maxDistance, const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false)
.. ocv:function:: void gpu::BFMatcher_GPU::radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, const std::vector<GpuMat>& masks = std::vector<GpuMat>(), Stream& stream = Stream::Null())
:param query: Query set of descriptors.
:param train: Training set of descriptors. It is not added to train descriptors collection stored in the class object.
:param maxDistance: Distance threshold.
:param mask: Mask specifying permissible matches between the input query and train matrices of descriptors.
:param compactResult: If ``compactResult`` is ``true`` , the ``matches`` vector does not contain matches for fully masked-out query descriptors.
:param stream: Stream for the asynchronous version.
The function returns detected matches in the increasing order by distance.
The methods work only on devices with the compute capability :math:`>=` 1.1.
The third variant of the method stores the results in GPU memory and does not store the points by the distance.
.. seealso:: :ocv:func:`DescriptorMatcher::radiusMatch`
gpu::BFMatcher_GPU::radiusMatchDownload
---------------------------------------------------
Downloads matrices obtained via :ocv:func:`gpu::BFMatcher_GPU::radiusMatchSingle` or :ocv:func:`gpu::BFMatcher_GPU::radiusMatchCollection` to vector with :ocv:class:`DMatch`.
.. ocv:function:: void gpu::BFMatcher_GPU::radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches, std::vector< std::vector<DMatch> >&matches, bool compactResult = false)
.. ocv:function:: void gpu::BFMatcher_GPU::radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches, std::vector< std::vector<DMatch> >& matches, bool compactResult = false)
If ``compactResult`` is ``true`` , the ``matches`` vector does not contain matches for fully masked-out query descriptors.
gpu::BFMatcher_GPU::radiusMatchConvert
---------------------------------------------------
Converts matrices obtained via :ocv:func:`gpu::BFMatcher_GPU::radiusMatchSingle` or :ocv:func:`gpu::BFMatcher_GPU::radiusMatchCollection` to vector with :ocv:class:`DMatch`.
.. ocv:function:: void gpu::BFMatcher_GPU::radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches, std::vector< std::vector<DMatch> >&matches, bool compactResult = false)
.. ocv:function:: void gpu::BFMatcher_GPU::radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches, std::vector< std::vector<DMatch> >& matches, bool compactResult = false)
If ``compactResult`` is ``true`` , the ``matches`` vector does not contain matches for fully masked-out query descriptors.

View File

@@ -8,12 +8,5 @@ gpu. GPU-accelerated Computer Vision
introduction
initalization_and_information
data_structures
operations_on_matrices
per_element_operations
image_processing
matrix_reductions
object_detection
feature_detection_and_description
image_filtering
camera_calibration_and_3d_reconstruction
video
calib3d

View File

@@ -1,719 +0,0 @@
Image Filtering
===============
.. highlight:: cpp
Functions and classes described in this section are used to perform various linear or non-linear filtering operations on 2D images.
gpu::BaseRowFilter_GPU
----------------------
.. ocv:class:: gpu::BaseRowFilter_GPU
Base class for linear or non-linear filters that processes rows of 2D arrays. Such filters are used for the "horizontal" filtering passes in separable filters. ::
class BaseRowFilter_GPU
{
public:
BaseRowFilter_GPU(int ksize_, int anchor_);
virtual ~BaseRowFilter_GPU() {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
int ksize, anchor;
};
.. note:: This class does not allocate memory for a destination image. Usually this class is used inside :ocv:class:`gpu::FilterEngine_GPU`.
gpu::BaseColumnFilter_GPU
-------------------------
.. ocv:class:: gpu::BaseColumnFilter_GPU
Base class for linear or non-linear filters that processes columns of 2D arrays. Such filters are used for the "vertical" filtering passes in separable filters. ::
class BaseColumnFilter_GPU
{
public:
BaseColumnFilter_GPU(int ksize_, int anchor_);
virtual ~BaseColumnFilter_GPU() {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
int ksize, anchor;
};
.. note:: This class does not allocate memory for a destination image. Usually this class is used inside :ocv:class:`gpu::FilterEngine_GPU`.
gpu::BaseFilter_GPU
-------------------
.. ocv:class:: gpu::BaseFilter_GPU
Base class for non-separable 2D filters. ::
class CV_EXPORTS BaseFilter_GPU
{
public:
BaseFilter_GPU(const Size& ksize_, const Point& anchor_);
virtual ~BaseFilter_GPU() {}
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
Size ksize;
Point anchor;
};
.. note:: This class does not allocate memory for a destination image. Usually this class is used inside :ocv:class:`gpu::FilterEngine_GPU`.
gpu::FilterEngine_GPU
---------------------
.. ocv:class:: gpu::FilterEngine_GPU
Base class for the Filter Engine. ::
class CV_EXPORTS FilterEngine_GPU
{
public:
virtual ~FilterEngine_GPU() {}
virtual void apply(const GpuMat& src, GpuMat& dst,
Rect roi = Rect(0,0,-1,-1), Stream& stream = Stream::Null()) = 0;
};
The class can be used to apply an arbitrary filtering operation to an image. It contains all the necessary intermediate buffers. Pointers to the initialized ``FilterEngine_GPU`` instances are returned by various ``create*Filter_GPU`` functions (see below), and they are used inside high-level functions such as :ocv:func:`gpu::filter2D`, :ocv:func:`gpu::erode`, :ocv:func:`gpu::Sobel` , and others.
By using ``FilterEngine_GPU`` instead of functions you can avoid unnecessary memory allocation for intermediate buffers and get better performance: ::
while (...)
{
gpu::GpuMat src = getImg();
gpu::GpuMat dst;
// Allocate and release buffers at each iterations
gpu::GaussianBlur(src, dst, ksize, sigma1);
}
// Allocate buffers only once
cv::Ptr<gpu::FilterEngine_GPU> filter =
gpu::createGaussianFilter_GPU(CV_8UC4, ksize, sigma1);
while (...)
{
gpu::GpuMat src = getImg();
gpu::GpuMat dst;
filter->apply(src, dst, cv::Rect(0, 0, src.cols, src.rows));
}
// Release buffers only once
filter.release();
``FilterEngine_GPU`` can process a rectangular sub-region of an image. By default, if ``roi == Rect(0,0,-1,-1)`` , ``FilterEngine_GPU`` processes the inner region of an image ( ``Rect(anchor.x, anchor.y, src_size.width - ksize.width, src_size.height - ksize.height)`` ) because some filters do not check whether indices are outside the image for better performance. See below to understand which filters support processing the whole image and which do not and identify image type limitations.
.. note:: The GPU filters do not support the in-place mode.
.. seealso:: :ocv:class:`gpu::BaseRowFilter_GPU`, :ocv:class:`gpu::BaseColumnFilter_GPU`, :ocv:class:`gpu::BaseFilter_GPU`, :ocv:func:`gpu::createFilter2D_GPU`, :ocv:func:`gpu::createSeparableFilter_GPU`, :ocv:func:`gpu::createBoxFilter_GPU`, :ocv:func:`gpu::createMorphologyFilter_GPU`, :ocv:func:`gpu::createLinearFilter_GPU`, :ocv:func:`gpu::createSeparableLinearFilter_GPU`, :ocv:func:`gpu::createDerivFilter_GPU`, :ocv:func:`gpu::createGaussianFilter_GPU`
gpu::createFilter2D_GPU
---------------------------
Creates a non-separable filter engine with the specified filter.
.. ocv:function:: Ptr<FilterEngine_GPU> gpu::createFilter2D_GPU( const Ptr<BaseFilter_GPU>& filter2D, int srcType, int dstType)
:param filter2D: Non-separable 2D filter.
:param srcType: Input image type. It must be supported by ``filter2D`` .
:param dstType: Output image type. It must be supported by ``filter2D`` .
Usually this function is used inside such high-level functions as :ocv:func:`gpu::createLinearFilter_GPU`, :ocv:func:`gpu::createBoxFilter_GPU`.
gpu::createSeparableFilter_GPU
----------------------------------
Creates a separable filter engine with the specified filters.
.. ocv:function:: Ptr<FilterEngine_GPU> gpu::createSeparableFilter_GPU( const Ptr<BaseRowFilter_GPU>& rowFilter, const Ptr<BaseColumnFilter_GPU>& columnFilter, int srcType, int bufType, int dstType)
:param rowFilter: "Horizontal" 1D filter.
:param columnFilter: "Vertical" 1D filter.
:param srcType: Input image type. It must be supported by ``rowFilter`` .
:param bufType: Buffer image type. It must be supported by ``rowFilter`` and ``columnFilter`` .
:param dstType: Output image type. It must be supported by ``columnFilter`` .
Usually this function is used inside such high-level functions as :ocv:func:`gpu::createSeparableLinearFilter_GPU`.
gpu::getRowSumFilter_GPU
----------------------------
Creates a horizontal 1D box filter.
.. ocv:function:: Ptr<BaseRowFilter_GPU> gpu::getRowSumFilter_GPU(int srcType, int sumType, int ksize, int anchor = -1)
:param srcType: Input image type. Only ``CV_8UC1`` type is supported for now.
:param sumType: Output image type. Only ``CV_32FC1`` type is supported for now.
:param ksize: Kernel size.
:param anchor: Anchor point. The default value (-1) means that the anchor is at the kernel center.
.. note:: This filter does not check out-of-border accesses, so only a proper sub-matrix of a bigger matrix has to be passed to it.
gpu::getColumnSumFilter_GPU
-------------------------------
Creates a vertical 1D box filter.
.. ocv:function:: Ptr<BaseColumnFilter_GPU> gpu::getColumnSumFilter_GPU(int sumType, int dstType, int ksize, int anchor = -1)
:param sumType: Input image type. Only ``CV_8UC1`` type is supported for now.
:param dstType: Output image type. Only ``CV_32FC1`` type is supported for now.
:param ksize: Kernel size.
:param anchor: Anchor point. The default value (-1) means that the anchor is at the kernel center.
.. note:: This filter does not check out-of-border accesses, so only a proper sub-matrix of a bigger matrix has to be passed to it.
gpu::createBoxFilter_GPU
----------------------------
Creates a normalized 2D box filter.
.. ocv:function:: Ptr<FilterEngine_GPU> gpu::createBoxFilter_GPU(int srcType, int dstType, const Size& ksize, const Point& anchor = Point(-1,-1))
.. ocv:function:: Ptr<BaseFilter_GPU> gpu::getBoxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1, -1))
:param srcType: Input image type supporting ``CV_8UC1`` and ``CV_8UC4`` .
:param dstType: Output image type. It supports only the same values as the source type.
:param ksize: Kernel size.
:param anchor: Anchor point. The default value ``Point(-1, -1)`` means that the anchor is at the kernel center.
.. note:: This filter does not check out-of-border accesses, so only a proper sub-matrix of a bigger matrix has to be passed to it.
.. seealso:: :ocv:func:`boxFilter`
gpu::boxFilter
------------------
Smooths the image using the normalized box filter.
.. ocv:function:: void gpu::boxFilter(const GpuMat& src, GpuMat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null())
:param src: Input image. ``CV_8UC1`` and ``CV_8UC4`` source types are supported.
:param dst: Output image type. The size and type is the same as ``src`` .
:param ddepth: Output image depth. If -1, the output image has the same depth as the input one. The only values allowed here are ``CV_8U`` and -1.
:param ksize: Kernel size.
:param anchor: Anchor point. The default value ``Point(-1, -1)`` means that the anchor is at the kernel center.
:param stream: Stream for the asynchronous version.
.. note:: This filter does not check out-of-border accesses, so only a proper sub-matrix of a bigger matrix has to be passed to it.
.. seealso:: :ocv:func:`boxFilter`
gpu::blur
-------------
Acts as a synonym for the normalized box filter.
.. ocv:function:: void gpu::blur(const GpuMat& src, GpuMat& dst, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null())
:param src: Input image. ``CV_8UC1`` and ``CV_8UC4`` source types are supported.
:param dst: Output image type with the same size and type as ``src`` .
:param ksize: Kernel size.
:param anchor: Anchor point. The default value Point(-1, -1) means that the anchor is at the kernel center.
:param stream: Stream for the asynchronous version.
.. note:: This filter does not check out-of-border accesses, so only a proper sub-matrix of a bigger matrix has to be passed to it.
.. seealso:: :ocv:func:`blur`, :ocv:func:`gpu::boxFilter`
gpu::createMorphologyFilter_GPU
-----------------------------------
Creates a 2D morphological filter.
.. ocv:function:: Ptr<FilterEngine_GPU> gpu::createMorphologyFilter_GPU(int op, int type, const Mat& kernel, const Point& anchor = Point(-1,-1), int iterations = 1)
.. ocv:function:: Ptr<BaseFilter_GPU> gpu::getMorphologyFilter_GPU(int op, int type, const Mat& kernel, const Size& ksize, Point anchor=Point(-1,-1))
:param op: Morphology operation id. Only ``MORPH_ERODE`` and ``MORPH_DILATE`` are supported.
:param type: Input/output image type. Only ``CV_8UC1`` and ``CV_8UC4`` are supported.
:param kernel: 2D 8-bit structuring element for the morphological operation.
:param ksize: Size of a horizontal or vertical structuring element used for separable morphological operations.
:param anchor: Anchor position within the structuring element. Negative values mean that the anchor is at the center.
.. note:: This filter does not check out-of-border accesses, so only a proper sub-matrix of a bigger matrix has to be passed to it.
.. seealso:: :ocv:func:`createMorphologyFilter`
gpu::erode
--------------
Erodes an image by using a specific structuring element.
.. ocv:function:: void gpu::erode( const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor=Point(-1, -1), int iterations=1 )
.. ocv:function:: void gpu::erode( const GpuMat& src, GpuMat& dst, const Mat& kernel, GpuMat& buf, Point anchor=Point(-1, -1), int iterations=1, Stream& stream=Stream::Null() )
:param src: Source image. Only ``CV_8UC1`` and ``CV_8UC4`` types are supported.
:param dst: Destination image with the same size and type as ``src`` .
:param kernel: Structuring element used for erosion. If ``kernel=Mat()``, a 3x3 rectangular structuring element is used.
:param anchor: Position of an anchor within the element. The default value ``(-1, -1)`` means that the anchor is at the element center.
:param iterations: Number of times erosion to be applied.
:param stream: Stream for the asynchronous version.
.. note:: This filter does not check out-of-border accesses, so only a proper sub-matrix of a bigger matrix has to be passed to it.
.. seealso:: :ocv:func:`erode`
gpu::dilate
---------------
Dilates an image by using a specific structuring element.
.. ocv:function:: void gpu::dilate( const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor=Point(-1, -1), int iterations=1 )
.. ocv:function:: void gpu::dilate( const GpuMat& src, GpuMat& dst, const Mat& kernel, GpuMat& buf, Point anchor=Point(-1, -1), int iterations=1, Stream& stream=Stream::Null() )
:param src: Source image. ``CV_8UC1`` and ``CV_8UC4`` source types are supported.
:param dst: Destination image with the same size and type as ``src``.
:param kernel: Structuring element used for dilation. If ``kernel=Mat()``, a 3x3 rectangular structuring element is used.
:param anchor: Position of an anchor within the element. The default value ``(-1, -1)`` means that the anchor is at the element center.
:param iterations: Number of times dilation to be applied.
:param stream: Stream for the asynchronous version.
.. note:: This filter does not check out-of-border accesses, so only a proper sub-matrix of a bigger matrix has to be passed to it.
.. seealso:: :ocv:func:`dilate`
gpu::morphologyEx
---------------------
Applies an advanced morphological operation to an image.
.. ocv:function:: void gpu::morphologyEx( const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, Point anchor=Point(-1, -1), int iterations=1 )
.. ocv:function:: void gpu::morphologyEx( const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, GpuMat& buf1, GpuMat& buf2, Point anchor=Point(-1, -1), int iterations=1, Stream& stream=Stream::Null() )
:param src: Source image. ``CV_8UC1`` and ``CV_8UC4`` source types are supported.
:param dst: Destination image with the same size and type as ``src`` .
:param op: Type of morphological operation. The following types are possible:
* **MORPH_OPEN** opening
* **MORPH_CLOSE** closing
* **MORPH_GRADIENT** morphological gradient
* **MORPH_TOPHAT** "top hat"
* **MORPH_BLACKHAT** "black hat"
:param kernel: Structuring element.
:param anchor: Position of an anchor within the element. The default value ``Point(-1, -1)`` means that the anchor is at the element center.
:param iterations: Number of times erosion and dilation to be applied.
:param stream: Stream for the asynchronous version.
.. note:: This filter does not check out-of-border accesses, so only a proper sub-matrix of a bigger matrix has to be passed to it.
.. seealso:: :ocv:func:`morphologyEx`
gpu::createLinearFilter_GPU
-------------------------------
Creates a non-separable linear filter.
.. ocv:function:: Ptr<FilterEngine_GPU> gpu::createLinearFilter_GPU(int srcType, int dstType, const Mat& kernel, Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT)
:param srcType: Input image type. Supports ``CV_8U`` , ``CV_16U`` and ``CV_32F`` one and four channel image.
:param dstType: Output image type. The same type as ``src`` is supported.
:param kernel: 2D array of filter coefficients. Floating-point coefficients will be converted to fixed-point representation before the actual processing. Supports size up to 16. For larger kernels use :ocv:func:`gpu::convolve`.
:param anchor: Anchor point. The default value Point(-1, -1) means that the anchor is at the kernel center.
:param borderType: Pixel extrapolation method. For details, see :ocv:func:`borderInterpolate` .
.. seealso:: :ocv:func:`createLinearFilter`
gpu::filter2D
-----------------
Applies the non-separable 2D linear filter to an image.
.. ocv:function:: void gpu::filter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernel, Point anchor=Point(-1,-1), int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null())
:param src: Source image. Supports ``CV_8U`` , ``CV_16U`` and ``CV_32F`` one and four channel image.
:param dst: Destination image. The size and the number of channels is the same as ``src`` .
:param ddepth: Desired depth of the destination image. If it is negative, it is the same as ``src.depth()`` . It supports only the same depth as the source image depth.
:param kernel: 2D array of filter coefficients.
:param anchor: Anchor of the kernel that indicates the relative position of a filtered point within the kernel. The anchor resides within the kernel. The special default value (-1,-1) means that the anchor is at the kernel center.
:param borderType: Pixel extrapolation method. For details, see :ocv:func:`borderInterpolate` .
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`filter2D`, :ocv:func:`gpu::convolve`
gpu::Laplacian
------------------
Applies the Laplacian operator to an image.
.. ocv:function:: void gpu::Laplacian(const GpuMat& src, GpuMat& dst, int ddepth, int ksize = 1, double scale = 1, int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null())
:param src: Source image. ``CV_8UC1`` and ``CV_8UC4`` source types are supported.
:param dst: Destination image. The size and number of channels is the same as ``src`` .
:param ddepth: Desired depth of the destination image. It supports only the same depth as the source image depth.
:param ksize: Aperture size used to compute the second-derivative filters (see :ocv:func:`getDerivKernels`). It must be positive and odd. Only ``ksize`` = 1 and ``ksize`` = 3 are supported.
:param scale: Optional scale factor for the computed Laplacian values. By default, no scaling is applied (see :ocv:func:`getDerivKernels` ).
:param borderType: Pixel extrapolation method. For details, see :ocv:func:`borderInterpolate` .
:param stream: Stream for the asynchronous version.
.. note:: This filter does not check out-of-border accesses, so only a proper sub-matrix of a bigger matrix has to be passed to it.
.. seealso:: :ocv:func:`Laplacian`, :ocv:func:`gpu::filter2D`
gpu::getLinearRowFilter_GPU
-------------------------------
Creates a primitive row filter with the specified kernel.
.. ocv:function:: Ptr<BaseRowFilter_GPU> gpu::getLinearRowFilter_GPU( int srcType, int bufType, const Mat& rowKernel, int anchor=-1, int borderType=BORDER_DEFAULT )
:param srcType: Source array type. Only ``CV_8UC1`` , ``CV_8UC4`` , ``CV_16SC1`` , ``CV_16SC2`` , ``CV_16SC3`` , ``CV_32SC1`` , ``CV_32FC1`` source types are supported.
:param bufType: Intermediate buffer type with as many channels as ``srcType`` .
:param rowKernel: Filter coefficients. Support kernels with ``size <= 16`` .
:param anchor: Anchor position within the kernel. Negative values mean that the anchor is positioned at the aperture center.
:param borderType: Pixel extrapolation method. For details, see :ocv:func:`borderInterpolate`. For details on limitations, see below.
There are two versions of the algorithm: NPP and OpenCV.
* NPP version is called when ``srcType == CV_8UC1`` or ``srcType == CV_8UC4`` and ``bufType == srcType`` . Otherwise, the OpenCV version is called. NPP supports only ``BORDER_CONSTANT`` border type and does not check indices outside the image.
* OpenCV version supports only ``CV_32F`` buffer depth and ``BORDER_REFLECT101`` , ``BORDER_REPLICATE`` , and ``BORDER_CONSTANT`` border types. It checks indices outside the image.
.. seealso:: :ocv:func:`createSeparableLinearFilter` .
gpu::getLinearColumnFilter_GPU
----------------------------------
Creates a primitive column filter with the specified kernel.
.. ocv:function:: Ptr<BaseColumnFilter_GPU> gpu::getLinearColumnFilter_GPU( int bufType, int dstType, const Mat& columnKernel, int anchor=-1, int borderType=BORDER_DEFAULT )
:param bufType: Intermediate buffer type with as many channels as ``dstType`` .
:param dstType: Destination array type. ``CV_8UC1`` , ``CV_8UC4`` , ``CV_16SC1`` , ``CV_16SC2`` , ``CV_16SC3`` , ``CV_32SC1`` , ``CV_32FC1`` destination types are supported.
:param columnKernel: Filter coefficients. Support kernels with ``size <= 16`` .
:param anchor: Anchor position within the kernel. Negative values mean that the anchor is positioned at the aperture center.
:param borderType: Pixel extrapolation method. For details, see :ocv:func:`borderInterpolate` . For details on limitations, see below.
There are two versions of the algorithm: NPP and OpenCV.
* NPP version is called when ``dstType == CV_8UC1`` or ``dstType == CV_8UC4`` and ``bufType == dstType`` . Otherwise, the OpenCV version is called. NPP supports only ``BORDER_CONSTANT`` border type and does not check indices outside the image.
* OpenCV version supports only ``CV_32F`` buffer depth and ``BORDER_REFLECT101`` , ``BORDER_REPLICATE`` , and ``BORDER_CONSTANT`` border types. It checks indices outside image.
.. seealso:: :ocv:func:`gpu::getLinearRowFilter_GPU`, :ocv:func:`createSeparableLinearFilter`
gpu::createSeparableLinearFilter_GPU
----------------------------------------
Creates a separable linear filter engine.
.. ocv:function:: Ptr<FilterEngine_GPU> gpu::createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel, const Mat& columnKernel, const Point& anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1)
:param srcType: Source array type. ``CV_8UC1`` , ``CV_8UC4`` , ``CV_16SC1`` , ``CV_16SC2`` , ``CV_16SC3`` , ``CV_32SC1`` , ``CV_32FC1`` source types are supported.
:param dstType: Destination array type. ``CV_8UC1`` , ``CV_8UC4`` , ``CV_16SC1`` , ``CV_16SC2`` , ``CV_16SC3`` , ``CV_32SC1`` , ``CV_32FC1`` destination types are supported.
:param rowKernel: Horizontal filter coefficients. Support kernels with ``size <= 16`` .
:param columnKernel: Vertical filter coefficients. Support kernels with ``size <= 16`` .
:param anchor: Anchor position within the kernel. Negative values mean that anchor is positioned at the aperture center.
:param rowBorderType: Pixel extrapolation method in the vertical direction For details, see :ocv:func:`borderInterpolate`. For details on limitations, see :ocv:func:`gpu::getLinearRowFilter_GPU`, cpp:ocv:func:`gpu::getLinearColumnFilter_GPU`.
:param columnBorderType: Pixel extrapolation method in the horizontal direction.
.. seealso:: :ocv:func:`gpu::getLinearRowFilter_GPU`, :ocv:func:`gpu::getLinearColumnFilter_GPU`, :ocv:func:`createSeparableLinearFilter`
gpu::sepFilter2D
--------------------
Applies a separable 2D linear filter to an image.
.. ocv:function:: void gpu::sepFilter2D( const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY, Point anchor=Point(-1,-1), int rowBorderType=BORDER_DEFAULT, int columnBorderType=-1 )
.. ocv:function:: void gpu::sepFilter2D( const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY, GpuMat& buf, Point anchor=Point(-1,-1), int rowBorderType=BORDER_DEFAULT, int columnBorderType=-1, Stream& stream=Stream::Null() )
:param src: Source image. ``CV_8UC1`` , ``CV_8UC4`` , ``CV_16SC1`` , ``CV_16SC2`` , ``CV_32SC1`` , ``CV_32FC1`` source types are supported.
:param dst: Destination image with the same size and number of channels as ``src`` .
:param ddepth: Destination image depth. ``CV_8U`` , ``CV_16S`` , ``CV_32S`` , and ``CV_32F`` are supported.
:param kernelX: Horizontal filter coefficients.
:param kernelY: Vertical filter coefficients.
:param anchor: Anchor position within the kernel. The default value ``(-1, 1)`` means that the anchor is at the kernel center.
:param rowBorderType: Pixel extrapolation method in the vertical direction. For details, see :ocv:func:`borderInterpolate`.
:param columnBorderType: Pixel extrapolation method in the horizontal direction.
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`gpu::createSeparableLinearFilter_GPU`, :ocv:func:`sepFilter2D`
gpu::createDerivFilter_GPU
------------------------------
Creates a filter engine for the generalized Sobel operator.
.. ocv:function:: Ptr<FilterEngine_GPU> gpu::createDerivFilter_GPU(int srcType, int dstType, int dx, int dy, int ksize, int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1)
:param srcType: Source image type. ``CV_8UC1`` , ``CV_8UC4`` , ``CV_16SC1`` , ``CV_16SC2`` , ``CV_16SC3`` , ``CV_32SC1`` , ``CV_32FC1`` source types are supported.
:param dstType: Destination image type with as many channels as ``srcType`` , ``CV_8U`` , ``CV_16S`` , ``CV_32S`` , and ``CV_32F`` depths are supported.
:param dx: Derivative order in respect of x.
:param dy: Derivative order in respect of y.
:param ksize: Aperture size. See :ocv:func:`getDerivKernels` for details.
:param rowBorderType: Pixel extrapolation method in the vertical direction. For details, see :ocv:func:`borderInterpolate`.
:param columnBorderType: Pixel extrapolation method in the horizontal direction.
.. seealso:: :ocv:func:`gpu::createSeparableLinearFilter_GPU`, :ocv:func:`createDerivFilter`
gpu::Sobel
--------------
Applies the generalized Sobel operator to an image.
.. ocv:function:: void gpu::Sobel( const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, int ksize=3, double scale=1, int rowBorderType=BORDER_DEFAULT, int columnBorderType=-1 )
.. ocv:function:: void gpu::Sobel( const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, GpuMat& buf, int ksize=3, double scale=1, int rowBorderType=BORDER_DEFAULT, int columnBorderType=-1, Stream& stream=Stream::Null() )
:param src: Source image. ``CV_8UC1`` , ``CV_8UC4`` , ``CV_16SC1`` , ``CV_16SC2`` , ``CV_16SC3`` , ``CV_32SC1`` , ``CV_32FC1`` source types are supported.
:param dst: Destination image with the same size and number of channels as source image.
:param ddepth: Destination image depth. ``CV_8U`` , ``CV_16S`` , ``CV_32S`` , and ``CV_32F`` are supported.
:param dx: Derivative order in respect of x.
:param dy: Derivative order in respect of y.
:param ksize: Size of the extended Sobel kernel. Possible values are 1, 3, 5 or 7.
:param scale: Optional scale factor for the computed derivative values. By default, no scaling is applied. For details, see :ocv:func:`getDerivKernels` .
:param rowBorderType: Pixel extrapolation method in the vertical direction. For details, see :ocv:func:`borderInterpolate`.
:param columnBorderType: Pixel extrapolation method in the horizontal direction.
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`gpu::createSeparableLinearFilter_GPU`, :ocv:func:`Sobel`
gpu::Scharr
---------------
Calculates the first x- or y- image derivative using the Scharr operator.
.. ocv:function:: void gpu::Scharr( const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, double scale=1, int rowBorderType=BORDER_DEFAULT, int columnBorderType=-1 )
.. ocv:function:: void gpu::Scharr( const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, GpuMat& buf, double scale=1, int rowBorderType=BORDER_DEFAULT, int columnBorderType=-1, Stream& stream=Stream::Null() )
:param src: Source image. ``CV_8UC1`` , ``CV_8UC4`` , ``CV_16SC1`` , ``CV_16SC2`` , ``CV_16SC3`` , ``CV_32SC1`` , ``CV_32FC1`` source types are supported.
:param dst: Destination image with the same size and number of channels as ``src`` has.
:param ddepth: Destination image depth. ``CV_8U`` , ``CV_16S`` , ``CV_32S`` , and ``CV_32F`` are supported.
:param dx: Order of the derivative x.
:param dy: Order of the derivative y.
:param scale: Optional scale factor for the computed derivative values. By default, no scaling is applied. See :ocv:func:`getDerivKernels` for details.
:param rowBorderType: Pixel extrapolation method in the vertical direction. For details, see :ocv:func:`borderInterpolate`.
:param columnBorderType: Pixel extrapolation method in the horizontal direction.
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`gpu::createSeparableLinearFilter_GPU`, :ocv:func:`Scharr`
gpu::createGaussianFilter_GPU
---------------------------------
Creates a Gaussian filter engine.
.. ocv:function:: Ptr<FilterEngine_GPU> gpu::createGaussianFilter_GPU( int type, Size ksize, double sigma1, double sigma2=0, int rowBorderType=BORDER_DEFAULT, int columnBorderType=-1 )
:param type: Source and destination image type. ``CV_8UC1`` , ``CV_8UC4`` , ``CV_16SC1`` , ``CV_16SC2`` , ``CV_16SC3`` , ``CV_32SC1`` , ``CV_32FC1`` are supported.
:param ksize: Aperture size. See :ocv:func:`getGaussianKernel` for details.
:param sigma1: Gaussian sigma in the horizontal direction. See :ocv:func:`getGaussianKernel` for details.
:param sigma2: Gaussian sigma in the vertical direction. If 0, then :math:`\texttt{sigma2}\leftarrow\texttt{sigma1}` .
:param rowBorderType: Pixel extrapolation method in the vertical direction. For details, see :ocv:func:`borderInterpolate`.
:param columnBorderType: Pixel extrapolation method in the horizontal direction.
.. seealso:: :ocv:func:`gpu::createSeparableLinearFilter_GPU`, :ocv:func:`createGaussianFilter`
gpu::GaussianBlur
---------------------
Smooths an image using the Gaussian filter.
.. ocv:function:: void gpu::GaussianBlur( const GpuMat& src, GpuMat& dst, Size ksize, double sigma1, double sigma2=0, int rowBorderType=BORDER_DEFAULT, int columnBorderType=-1 )
.. ocv:function:: void gpu::GaussianBlur( const GpuMat& src, GpuMat& dst, Size ksize, GpuMat& buf, double sigma1, double sigma2=0, int rowBorderType=BORDER_DEFAULT, int columnBorderType=-1, Stream& stream=Stream::Null() )
:param src: Source image. ``CV_8UC1`` , ``CV_8UC4`` , ``CV_16SC1`` , ``CV_16SC2`` , ``CV_16SC3`` , ``CV_32SC1`` , ``CV_32FC1`` source types are supported.
:param dst: Destination image with the same size and type as ``src`` .
:param ksize: Gaussian kernel size. ``ksize.width`` and ``ksize.height`` can differ but they both must be positive and odd. If they are zeros, they are computed from ``sigma1`` and ``sigma2`` .
:param sigma1: Gaussian kernel standard deviation in X direction.
:param sigma2: Gaussian kernel standard deviation in Y direction. If ``sigma2`` is zero, it is set to be equal to ``sigma1`` . If they are both zeros, they are computed from ``ksize.width`` and ``ksize.height``, respectively. See :ocv:func:`getGaussianKernel` for details. To fully control the result regardless of possible future modification of all this semantics, you are recommended to specify all of ``ksize`` , ``sigma1`` , and ``sigma2`` .
:param rowBorderType: Pixel extrapolation method in the vertical direction. For details, see :ocv:func:`borderInterpolate`.
:param columnBorderType: Pixel extrapolation method in the horizontal direction.
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`gpu::createGaussianFilter_GPU`, :ocv:func:`GaussianBlur`
gpu::getMaxFilter_GPU
-------------------------
Creates the maximum filter.
.. ocv:function:: Ptr<BaseFilter_GPU> gpu::getMaxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1))
:param srcType: Input image type. Only ``CV_8UC1`` and ``CV_8UC4`` are supported.
:param dstType: Output image type. It supports only the same type as the source type.
:param ksize: Kernel size.
:param anchor: Anchor point. The default value (-1) means that the anchor is at the kernel center.
.. note:: This filter does not check out-of-border accesses, so only a proper sub-matrix of a bigger matrix has to be passed to it.
gpu::getMinFilter_GPU
-------------------------
Creates the minimum filter.
.. ocv:function:: Ptr<BaseFilter_GPU> gpu::getMinFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1))
:param srcType: Input image type. Only ``CV_8UC1`` and ``CV_8UC4`` are supported.
:param dstType: Output image type. It supports only the same type as the source type.
:param ksize: Kernel size.
:param anchor: Anchor point. The default value (-1) means that the anchor is at the kernel center.
.. note:: This filter does not check out-of-border accesses, so only a proper sub-matrix of a bigger matrix has to be passed to it.

File diff suppressed because it is too large Load Diff

View File

@@ -1,207 +0,0 @@
Matrix Reductions
=================
.. highlight:: cpp
gpu::meanStdDev
-------------------
Computes a mean value and a standard deviation of matrix elements.
.. ocv:function:: void gpu::meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev)
.. ocv:function:: void gpu::meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev, GpuMat& buf)
:param mtx: Source matrix. ``CV_8UC1`` matrices are supported for now.
:param mean: Mean value.
:param stddev: Standard deviation value.
:param buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
.. seealso:: :ocv:func:`meanStdDev`
gpu::norm
-------------
Returns the norm of a matrix (or difference of two matrices).
.. ocv:function:: double gpu::norm(const GpuMat& src1, int normType=NORM_L2)
.. ocv:function:: double gpu::norm(const GpuMat& src1, int normType, GpuMat& buf)
.. ocv:function:: double gpu::norm(const GpuMat& src1, int normType, const GpuMat& mask, GpuMat& buf)
.. ocv:function:: double gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType=NORM_L2)
:param src1: Source matrix. Any matrices except 64F are supported.
:param src2: Second source matrix (if any) with the same size and type as ``src1``.
:param normType: Norm type. ``NORM_L1`` , ``NORM_L2`` , and ``NORM_INF`` are supported for now.
:param mask: optional operation mask; it must have the same size as ``src1`` and ``CV_8UC1`` type.
:param buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
.. seealso:: :ocv:func:`norm`
gpu::sum
------------
Returns the sum of matrix elements.
.. ocv:function:: Scalar gpu::sum(const GpuMat& src)
.. ocv:function:: Scalar gpu::sum(const GpuMat& src, GpuMat& buf)
.. ocv:function:: Scalar gpu::sum(const GpuMat& src, const GpuMat& mask, GpuMat& buf)
:param src: Source image of any depth except for ``CV_64F`` .
:param mask: optional operation mask; it must have the same size as ``src1`` and ``CV_8UC1`` type.
:param buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
.. seealso:: :ocv:func:`sum`
gpu::absSum
---------------
Returns the sum of absolute values for matrix elements.
.. ocv:function:: Scalar gpu::absSum(const GpuMat& src)
.. ocv:function:: Scalar gpu::absSum(const GpuMat& src, GpuMat& buf)
.. ocv:function:: Scalar gpu::absSum(const GpuMat& src, const GpuMat& mask, GpuMat& buf)
:param src: Source image of any depth except for ``CV_64F`` .
:param mask: optional operation mask; it must have the same size as ``src1`` and ``CV_8UC1`` type.
:param buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
gpu::sqrSum
---------------
Returns the squared sum of matrix elements.
.. ocv:function:: Scalar gpu::sqrSum(const GpuMat& src)
.. ocv:function:: Scalar gpu::sqrSum(const GpuMat& src, GpuMat& buf)
.. ocv:function:: Scalar gpu::sqrSum(const GpuMat& src, const GpuMat& mask, GpuMat& buf)
:param src: Source image of any depth except for ``CV_64F`` .
:param mask: optional operation mask; it must have the same size as ``src1`` and ``CV_8UC1`` type.
:param buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
gpu::minMax
---------------
Finds global minimum and maximum matrix elements and returns their values.
.. ocv:function:: void gpu::minMax(const GpuMat& src, double* minVal, double* maxVal=0, const GpuMat& mask=GpuMat())
.. ocv:function:: void gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask, GpuMat& buf)
:param src: Single-channel source image.
:param minVal: Pointer to the returned minimum value. Use ``NULL`` if not required.
:param maxVal: Pointer to the returned maximum value. Use ``NULL`` if not required.
:param mask: Optional mask to select a sub-matrix.
:param buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
The function does not work with ``CV_64F`` images on GPUs with the compute capability < 1.3.
.. seealso:: :ocv:func:`minMaxLoc`
gpu::minMaxLoc
------------------
Finds global minimum and maximum matrix elements and returns their values with locations.
.. ocv:function:: void gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, const GpuMat& mask=GpuMat())
.. ocv:function:: void gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, const GpuMat& mask, GpuMat& valbuf, GpuMat& locbuf)
:param src: Single-channel source image.
:param minVal: Pointer to the returned minimum value. Use ``NULL`` if not required.
:param maxVal: Pointer to the returned maximum value. Use ``NULL`` if not required.
:param minLoc: Pointer to the returned minimum location. Use ``NULL`` if not required.
:param maxLoc: Pointer to the returned maximum location. Use ``NULL`` if not required.
:param mask: Optional mask to select a sub-matrix.
:param valbuf: Optional values buffer to avoid extra memory allocations. It is resized automatically.
:param locbuf: Optional locations buffer to avoid extra memory allocations. It is resized automatically.
The function does not work with ``CV_64F`` images on GPU with the compute capability < 1.3.
.. seealso:: :ocv:func:`minMaxLoc`
gpu::countNonZero
---------------------
Counts non-zero matrix elements.
.. ocv:function:: int gpu::countNonZero(const GpuMat& src)
.. ocv:function:: int gpu::countNonZero(const GpuMat& src, GpuMat& buf)
:param src: Single-channel source image.
:param buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
The function does not work with ``CV_64F`` images on GPUs with the compute capability < 1.3.
.. seealso:: :ocv:func:`countNonZero`
gpu::reduce
-----------
Reduces a matrix to a vector.
.. ocv:function:: void gpu::reduce(const GpuMat& mtx, GpuMat& vec, int dim, int reduceOp, int dtype = -1, Stream& stream = Stream::Null())
:param mtx: Source 2D matrix.
:param vec: Destination vector. Its size and type is defined by ``dim`` and ``dtype`` parameters.
:param dim: Dimension index along which the matrix is reduced. 0 means that the matrix is reduced to a single row. 1 means that the matrix is reduced to a single column.
:param reduceOp: Reduction operation that could be one of the following:
* **CV_REDUCE_SUM** The output is the sum of all rows/columns of the matrix.
* **CV_REDUCE_AVG** The output is the mean vector of all rows/columns of the matrix.
* **CV_REDUCE_MAX** The output is the maximum (column/row-wise) of all rows/columns of the matrix.
* **CV_REDUCE_MIN** The output is the minimum (column/row-wise) of all rows/columns of the matrix.
:param dtype: When it is negative, the destination vector will have the same type as the source matrix. Otherwise, its type will be ``CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), mtx.channels())`` .
The function ``reduce`` reduces the matrix to a vector by treating the matrix rows/columns as a set of 1D vectors and performing the specified operation on the vectors until a single row/column is obtained. For example, the function can be used to compute horizontal and vertical projections of a raster image. In case of ``CV_REDUCE_SUM`` and ``CV_REDUCE_AVG`` , the output may have a larger element bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction modes.
.. seealso:: :ocv:func:`reduce`

View File

@@ -1,274 +0,0 @@
Operations on Matrices
======================
.. highlight:: cpp
gpu::gemm
------------------
Performs generalized matrix multiplication.
.. ocv:function:: void gpu::gemm(const GpuMat& src1, const GpuMat& src2, double alpha, const GpuMat& src3, double beta, GpuMat& dst, int flags = 0, Stream& stream = Stream::Null())
:param src1: First multiplied input matrix that should have ``CV_32FC1`` , ``CV_64FC1`` , ``CV_32FC2`` , or ``CV_64FC2`` type.
:param src2: Second multiplied input matrix of the same type as ``src1`` .
:param alpha: Weight of the matrix product.
:param src3: Third optional delta matrix added to the matrix product. It should have the same type as ``src1`` and ``src2`` .
:param beta: Weight of ``src3`` .
:param dst: Destination matrix. It has the proper size and the same type as input matrices.
:param flags: Operation flags:
* **GEMM_1_T** transpose ``src1``
* **GEMM_2_T** transpose ``src2``
* **GEMM_3_T** transpose ``src3``
:param stream: Stream for the asynchronous version.
The function performs generalized matrix multiplication similar to the ``gemm`` functions in BLAS level 3. For example, ``gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`` corresponds to
.. math::
\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T
.. note:: Transposition operation doesn't support ``CV_64FC2`` input type.
.. seealso:: :ocv:func:`gemm`
gpu::transpose
------------------
Transposes a matrix.
.. ocv:function:: void gpu::transpose( const GpuMat& src1, GpuMat& dst, Stream& stream=Stream::Null() )
:param src1: Source matrix. 1-, 4-, 8-byte element sizes are supported for now (CV_8UC1, CV_8UC4, CV_16UC2, CV_32FC1, etc).
:param dst: Destination matrix.
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`transpose`
gpu::flip
-------------
Flips a 2D matrix around vertical, horizontal, or both axes.
.. ocv:function:: void gpu::flip( const GpuMat& a, GpuMat& b, int flipCode, Stream& stream=Stream::Null() )
:param a: Source matrix. Supports 1, 3 and 4 channels images with ``CV_8U``, ``CV_16U``, ``CV_32S`` or ``CV_32F`` depth.
:param b: Destination matrix.
:param flipCode: Flip mode for the source:
* ``0`` Flips around x-axis.
* ``>0`` Flips around y-axis.
* ``<0`` Flips around both axes.
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`flip`
gpu::LUT
------------
Transforms the source matrix into the destination matrix using the given look-up table: ``dst(I) = lut(src(I))``
.. ocv:function:: void gpu::LUT(const GpuMat& src, const Mat& lut, GpuMat& dst, Stream& stream = Stream::Null())
:param src: Source matrix. ``CV_8UC1`` and ``CV_8UC3`` matrices are supported for now.
:param lut: Look-up table of 256 elements. It is a continuous ``CV_8U`` matrix.
:param dst: Destination matrix with the same depth as ``lut`` and the same number of channels as ``src`` .
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`LUT`
gpu::merge
--------------
Makes a multi-channel matrix out of several single-channel matrices.
.. ocv:function:: void gpu::merge(const GpuMat* src, size_t n, GpuMat& dst, Stream& stream = Stream::Null())
.. ocv:function:: void gpu::merge(const vector<GpuMat>& src, GpuMat& dst, Stream& stream = Stream::Null())
:param src: Array/vector of source matrices.
:param n: Number of source matrices.
:param dst: Destination matrix.
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`merge`
gpu::split
--------------
Copies each plane of a multi-channel matrix into an array.
.. ocv:function:: void gpu::split(const GpuMat& src, GpuMat* dst, Stream& stream = Stream::Null())
.. ocv:function:: void gpu::split(const GpuMat& src, vector<GpuMat>& dst, Stream& stream = Stream::Null())
:param src: Source matrix.
:param dst: Destination array/vector of single-channel matrices.
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`split`
gpu::magnitude
------------------
Computes magnitudes of complex matrix elements.
.. ocv:function:: void gpu::magnitude( const GpuMat& xy, GpuMat& magnitude, Stream& stream=Stream::Null() )
.. ocv:function:: void gpu::magnitude(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, Stream& stream = Stream::Null())
:param xy: Source complex matrix in the interleaved format ( ``CV_32FC2`` ).
:param x: Source matrix containing real components ( ``CV_32FC1`` ).
:param y: Source matrix containing imaginary components ( ``CV_32FC1`` ).
:param magnitude: Destination matrix of float magnitudes ( ``CV_32FC1`` ).
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`magnitude`
gpu::magnitudeSqr
---------------------
Computes squared magnitudes of complex matrix elements.
.. ocv:function:: void gpu::magnitudeSqr( const GpuMat& xy, GpuMat& magnitude, Stream& stream=Stream::Null() )
.. ocv:function:: void gpu::magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, Stream& stream = Stream::Null())
:param xy: Source complex matrix in the interleaved format ( ``CV_32FC2`` ).
:param x: Source matrix containing real components ( ``CV_32FC1`` ).
:param y: Source matrix containing imaginary components ( ``CV_32FC1`` ).
:param magnitude: Destination matrix of float magnitude squares ( ``CV_32FC1`` ).
:param stream: Stream for the asynchronous version.
gpu::phase
--------------
Computes polar angles of complex matrix elements.
.. ocv:function:: void gpu::phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees=false, Stream& stream = Stream::Null())
:param x: Source matrix containing real components ( ``CV_32FC1`` ).
:param y: Source matrix containing imaginary components ( ``CV_32FC1`` ).
:param angle: Destination matrix of angles ( ``CV_32FC1`` ).
:param angleInDegrees: Flag for angles that must be evaluated in degrees.
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`phase`
gpu::cartToPolar
--------------------
Converts Cartesian coordinates into polar.
.. ocv:function:: void gpu::cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, GpuMat& angle, bool angleInDegrees=false, Stream& stream = Stream::Null())
:param x: Source matrix containing real components ( ``CV_32FC1`` ).
:param y: Source matrix containing imaginary components ( ``CV_32FC1`` ).
:param magnitude: Destination matrix of float magnitudes ( ``CV_32FC1`` ).
:param angle: Destination matrix of angles ( ``CV_32FC1`` ).
:param angleInDegrees: Flag for angles that must be evaluated in degrees.
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`cartToPolar`
gpu::polarToCart
--------------------
Converts polar coordinates into Cartesian.
.. ocv:function:: void gpu::polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees=false, Stream& stream = Stream::Null())
:param magnitude: Source matrix containing magnitudes ( ``CV_32FC1`` ).
:param angle: Source matrix containing angles ( ``CV_32FC1`` ).
:param x: Destination matrix of real components ( ``CV_32FC1`` ).
:param y: Destination matrix of imaginary components ( ``CV_32FC1`` ).
:param angleInDegrees: Flag that indicates angles in degrees.
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`polarToCart`
gpu::normalize
--------------
Normalizes the norm or value range of an array.
.. ocv:function:: void gpu::normalize(const GpuMat& src, GpuMat& dst, double alpha = 1, double beta = 0, int norm_type = NORM_L2, int dtype = -1, const GpuMat& mask = GpuMat())
.. ocv:function:: void gpu::normalize(const GpuMat& src, GpuMat& dst, double a, double b, int norm_type, int dtype, const GpuMat& mask, GpuMat& norm_buf, GpuMat& cvt_buf)
:param src: input array.
:param dst: output array of the same size as ``src`` .
:param alpha: norm value to normalize to or the lower range boundary in case of the range normalization.
:param beta: upper range boundary in case of the range normalization; it is not used for the norm normalization.
:param normType: normalization type (see the details below).
:param dtype: when negative, the output array has the same type as ``src``; otherwise, it has the same number of channels as ``src`` and the depth ``=CV_MAT_DEPTH(dtype)``.
:param mask: optional operation mask.
:param norm_buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
:param cvt_buf: Optional buffer to avoid extra memory allocations. It is resized automatically.
.. seealso:: :ocv:func:`normalize`

View File

@@ -1,445 +0,0 @@
Per-element Operations
=======================
.. highlight:: cpp
gpu::add
------------
Computes a matrix-matrix or matrix-scalar sum.
.. ocv:function:: void gpu::add( const GpuMat& a, const GpuMat& b, GpuMat& c, const GpuMat& mask=GpuMat(), int dtype=-1, Stream& stream=Stream::Null() )
.. ocv:function:: void gpu::add( const GpuMat& a, const Scalar& sc, GpuMat& c, const GpuMat& mask=GpuMat(), int dtype=-1, Stream& stream=Stream::Null() )
:param a: First source matrix.
:param b: Second source matrix to be added to ``a`` . Matrix should have the same size and type as ``a`` .
:param sc: A scalar to be added to ``a`` .
:param c: Destination matrix that has the same size and number of channels as the input array(s). The depth is defined by ``dtype`` or ``a`` depth.
:param mask: Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed.
:param dtype: Optional depth of the output array.
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`add`
gpu::subtract
-----------------
Computes a matrix-matrix or matrix-scalar difference.
.. ocv:function:: void gpu::subtract( const GpuMat& a, const GpuMat& b, GpuMat& c, const GpuMat& mask=GpuMat(), int dtype=-1, Stream& stream=Stream::Null() )
.. ocv:function:: void gpu::subtract( const GpuMat& a, const Scalar& sc, GpuMat& c, const GpuMat& mask=GpuMat(), int dtype=-1, Stream& stream=Stream::Null() )
:param a: First source matrix.
:param b: Second source matrix to be added to ``a`` . Matrix should have the same size and type as ``a`` .
:param sc: A scalar to be added to ``a`` .
:param c: Destination matrix that has the same size and number of channels as the input array(s). The depth is defined by ``dtype`` or ``a`` depth.
:param mask: Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed.
:param dtype: Optional depth of the output array.
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`subtract`
gpu::multiply
-----------------
Computes a matrix-matrix or matrix-scalar per-element product.
.. ocv:function:: void gpu::multiply( const GpuMat& a, const GpuMat& b, GpuMat& c, double scale=1, int dtype=-1, Stream& stream=Stream::Null() )
.. ocv:function:: void gpu::multiply( const GpuMat& a, const Scalar& sc, GpuMat& c, double scale=1, int dtype=-1, Stream& stream=Stream::Null() )
:param a: First source matrix.
:param b: Second source matrix to be multiplied by ``a`` elements.
:param sc: A scalar to be multiplied by ``a`` elements.
:param c: Destination matrix that has the same size and number of channels as the input array(s). The depth is defined by ``dtype`` or ``a`` depth.
:param scale: Optional scale factor.
:param dtype: Optional depth of the output array.
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`multiply`
gpu::divide
-----------
Computes a matrix-matrix or matrix-scalar division.
.. ocv:function:: void gpu::divide( const GpuMat& a, const GpuMat& b, GpuMat& c, double scale=1, int dtype=-1, Stream& stream=Stream::Null() )
.. ocv:function:: void gpu::divide(const GpuMat& a, const Scalar& sc, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null())
.. ocv:function:: void gpu::divide( double scale, const GpuMat& b, GpuMat& c, int dtype=-1, Stream& stream=Stream::Null() )
:param a: First source matrix or a scalar.
:param b: Second source matrix. The ``a`` elements are divided by it.
:param sc: A scalar to be divided by the elements of ``a`` matrix.
:param c: Destination matrix that has the same size and number of channels as the input array(s). The depth is defined by ``dtype`` or ``a`` depth.
:param scale: Optional scale factor.
:param dtype: Optional depth of the output array.
:param stream: Stream for the asynchronous version.
This function, in contrast to :ocv:func:`divide`, uses a round-down rounding mode.
.. seealso:: :ocv:func:`divide`
gpu::addWeighted
----------------
Computes the weighted sum of two arrays.
.. ocv:function:: void gpu::addWeighted(const GpuMat& src1, double alpha, const GpuMat& src2, double beta, double gamma, GpuMat& dst, int dtype = -1, Stream& stream = Stream::Null())
:param src1: First source array.
:param alpha: Weight for the first array elements.
:param src2: Second source array of the same size and channel number as ``src1`` .
:param beta: Weight for the second array elements.
:param dst: Destination array that has the same size and number of channels as the input arrays.
:param gamma: Scalar added to each sum.
:param dtype: Optional depth of the destination array. When both input arrays have the same depth, ``dtype`` can be set to ``-1``, which will be equivalent to ``src1.depth()``.
:param stream: Stream for the asynchronous version.
The function ``addWeighted`` calculates the weighted sum of two arrays as follows:
.. math::
\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )
where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.
.. seealso:: :ocv:func:`addWeighted`
gpu::abs
------------
Computes an absolute value of each matrix element.
.. ocv:function:: void gpu::abs(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null())
:param src: Source matrix. Supports ``CV_16S`` and ``CV_32F`` depth.
:param dst: Destination matrix with the same size and type as ``src`` .
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`abs`
gpu::sqr
------------
Computes a square value of each matrix element.
.. ocv:function:: void gpu::sqr(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null())
:param src: Source matrix. Supports ``CV_8U`` , ``CV_16U`` , ``CV_16S`` and ``CV_32F`` depth.
:param dst: Destination matrix with the same size and type as ``src`` .
:param stream: Stream for the asynchronous version.
gpu::sqrt
------------
Computes a square root of each matrix element.
.. ocv:function:: void gpu::sqrt(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null())
:param src: Source matrix. Supports ``CV_8U`` , ``CV_16U`` , ``CV_16S`` and ``CV_32F`` depth.
:param dst: Destination matrix with the same size and type as ``src`` .
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`sqrt`
gpu::exp
------------
Computes an exponent of each matrix element.
.. ocv:function:: void gpu::exp( const GpuMat& a, GpuMat& b, Stream& stream=Stream::Null() )
:param a: Source matrix. Supports ``CV_8U`` , ``CV_16U`` , ``CV_16S`` and ``CV_32F`` depth.
:param b: Destination matrix with the same size and type as ``a`` .
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`exp`
gpu::log
------------
Computes a natural logarithm of absolute value of each matrix element.
.. ocv:function:: void gpu::log( const GpuMat& a, GpuMat& b, Stream& stream=Stream::Null() )
:param a: Source matrix. Supports ``CV_8U`` , ``CV_16U`` , ``CV_16S`` and ``CV_32F`` depth.
:param b: Destination matrix with the same size and type as ``a`` .
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`log`
gpu::pow
------------
Raises every matrix element to a power.
.. ocv:function:: void gpu::pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream = Stream::Null())
:param src: Source matrix. Supports all type, except ``CV_64F`` depth.
:param power: Exponent of power.
:param dst: Destination matrix with the same size and type as ``src`` .
:param stream: Stream for the asynchronous version.
The function ``pow`` raises every element of the input matrix to ``p`` :
.. math::
\texttt{dst} (I) = \fork{\texttt{src}(I)^p}{if \texttt{p} is integer}{|\texttt{src}(I)|^p}{otherwise}
.. seealso:: :ocv:func:`pow`
gpu::absdiff
----------------
Computes per-element absolute difference of two matrices (or of a matrix and scalar).
.. ocv:function:: void gpu::absdiff( const GpuMat& a, const GpuMat& b, GpuMat& c, Stream& stream=Stream::Null() )
.. ocv:function:: void gpu::absdiff( const GpuMat& a, const Scalar& s, GpuMat& c, Stream& stream=Stream::Null() )
:param a: First source matrix.
:param b: Second source matrix to be added to ``a`` .
:param s: A scalar to be added to ``a`` .
:param c: Destination matrix with the same size and type as ``a`` .
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`absdiff`
gpu::compare
----------------
Compares elements of two matrices.
.. ocv:function:: void gpu::compare( const GpuMat& a, const GpuMat& b, GpuMat& c, int cmpop, Stream& stream=Stream::Null() )
.. ocv:function:: void gpu::compare(const GpuMat& a, Scalar sc, GpuMat& c, int cmpop, Stream& stream = Stream::Null())
:param a: First source matrix.
:param b: Second source matrix with the same size and type as ``a`` .
:param sc: A scalar to be compared with ``a`` .
:param c: Destination matrix with the same size as ``a`` and the ``CV_8UC1`` type.
:param cmpop: Flag specifying the relation between the elements to be checked:
* **CMP_EQ:** ``a(.) == b(.)``
* **CMP_GT:** ``a(.) < b(.)``
* **CMP_GE:** ``a(.) <= b(.)``
* **CMP_LT:** ``a(.) < b(.)``
* **CMP_LE:** ``a(.) <= b(.)``
* **CMP_NE:** ``a(.) != b(.)``
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`compare`
gpu::bitwise_not
--------------------
Performs a per-element bitwise inversion.
.. ocv:function:: void gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null())
:param src: Source matrix.
:param dst: Destination matrix with the same size and type as ``src`` .
:param mask: Optional operation mask. 8-bit single channel image.
:param stream: Stream for the asynchronous version.
gpu::bitwise_or
-------------------
Performs a per-element bitwise disjunction of two matrices or of matrix and scalar.
.. ocv:function:: void gpu::bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null())
.. ocv:function:: void gpu::bitwise_or(const GpuMat& src1, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null())
:param src1: First source matrix.
:param src2: Second source matrix with the same size and type as ``src1`` .
:param dst: Destination matrix with the same size and type as ``src1`` .
:param mask: Optional operation mask. 8-bit single channel image.
:param stream: Stream for the asynchronous version.
gpu::bitwise_and
--------------------
Performs a per-element bitwise conjunction of two matrices or of matrix and scalar.
.. ocv:function:: void gpu::bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null())
.. ocv:function:: void gpu::bitwise_and(const GpuMat& src1, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null())
:param src1: First source matrix.
:param src2: Second source matrix with the same size and type as ``src1`` .
:param dst: Destination matrix with the same size and type as ``src1`` .
:param mask: Optional operation mask. 8-bit single channel image.
:param stream: Stream for the asynchronous version.
gpu::bitwise_xor
--------------------
Performs a per-element bitwise ``exclusive or`` operation of two matrices of matrix and scalar.
.. ocv:function:: void gpu::bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null())
.. ocv:function:: void gpu::bitwise_xor(const GpuMat& src1, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null())
:param src1: First source matrix.
:param src2: Second source matrix with the same size and type as ``src1`` .
:param dst: Destination matrix with the same size and type as ``src1`` .
:param mask: Optional operation mask. 8-bit single channel image.
:param stream: Stream for the asynchronous version.
gpu::rshift
--------------------
Performs pixel by pixel right shift of an image by a constant value.
.. ocv:function:: void gpu::rshift( const GpuMat& src, Scalar_<int> sc, GpuMat& dst, Stream& stream=Stream::Null() )
:param src: Source matrix. Supports 1, 3 and 4 channels images with integers elements.
:param sc: Constant values, one per channel.
:param dst: Destination matrix with the same size and type as ``src`` .
:param stream: Stream for the asynchronous version.
gpu::lshift
--------------------
Performs pixel by pixel right left of an image by a constant value.
.. ocv:function:: void gpu::lshift( const GpuMat& src, Scalar_<int> sc, GpuMat& dst, Stream& stream=Stream::Null() )
:param src: Source matrix. Supports 1, 3 and 4 channels images with ``CV_8U`` , ``CV_16U`` or ``CV_32S`` depth.
:param sc: Constant values, one per channel.
:param dst: Destination matrix with the same size and type as ``src`` .
:param stream: Stream for the asynchronous version.
gpu::min
------------
Computes the per-element minimum of two matrices (or a matrix and a scalar).
.. ocv:function:: void gpu::min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null())
.. ocv:function:: void gpu::min(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream = Stream::Null())
:param src1: First source matrix.
:param src2: Second source matrix or a scalar to compare ``src1`` elements with.
:param dst: Destination matrix with the same size and type as ``src1`` .
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`min`
gpu::max
------------
Computes the per-element maximum of two matrices (or a matrix and a scalar).
.. ocv:function:: void gpu::max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null())
.. ocv:function:: void gpu::max(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream = Stream::Null())
:param src1: First source matrix.
:param src2: Second source matrix or a scalar to compare ``src1`` elements with.
:param dst: Destination matrix with the same size and type as ``src1`` .
:param stream: Stream for the asynchronous version.
.. seealso:: :ocv:func:`max`

File diff suppressed because it is too large Load Diff