Merge with master and fix conflicts
@@ -4,6 +4,7 @@
|
||||
|
||||
#include "opencv2/calib3d/calib3d.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
#include <stdio.h>
|
||||
|
@@ -4,8 +4,9 @@
|
||||
# ----------------------------------------------------------------------------
|
||||
|
||||
SET(OPENCV_CPP_SAMPLES_REQUIRED_DEPS opencv_core opencv_imgproc opencv_flann
|
||||
opencv_highgui opencv_ml opencv_video opencv_objdetect opencv_photo opencv_nonfree
|
||||
opencv_features2d opencv_calib3d opencv_stitching opencv_videostab opencv_shape)
|
||||
opencv_imgcodecs opencv_videoio opencv_highgui opencv_ml opencv_video
|
||||
opencv_objdetect opencv_photo opencv_features2d opencv_calib3d
|
||||
opencv_stitching opencv_videostab opencv_shape)
|
||||
|
||||
ocv_check_dependencies(${OPENCV_CPP_SAMPLES_REQUIRED_DEPS})
|
||||
|
||||
@@ -54,14 +55,14 @@ if(BUILD_EXAMPLES AND OCV_DEPENDENCIES_FOUND)
|
||||
|
||||
set(the_target "${sample_kind}_${name}")
|
||||
add_executable(${the_target} ${srcs})
|
||||
target_link_libraries(${the_target} ${OPENCV_LINKER_LIBS} ${OPENCV_CPP_SAMPLES_REQUIRED_DEPS})
|
||||
ocv_target_link_libraries(${the_target} ${OPENCV_LINKER_LIBS} ${OPENCV_CPP_SAMPLES_REQUIRED_DEPS})
|
||||
|
||||
if("${srcs}" MATCHES "gpu/")
|
||||
target_link_libraries(${the_target} opencv_cudaarithm opencv_cudafilters)
|
||||
ocv_target_link_libraries(${the_target} opencv_cudaarithm opencv_cudafilters)
|
||||
endif()
|
||||
|
||||
if(HAVE_opencv_ocl)
|
||||
target_link_libraries(${the_target} opencv_ocl)
|
||||
ocv_target_link_libraries(${the_target} opencv_ocl)
|
||||
endif()
|
||||
|
||||
set_target_properties(${the_target} PROPERTIES
|
||||
|
11
samples/cpp/H1to3p.xml
Executable file
@@ -0,0 +1,11 @@
|
||||
<?xml version="1.0"?>
|
||||
<opencv_storage>
|
||||
<H13 type_id="opencv-matrix">
|
||||
<rows>3</rows>
|
||||
<cols>3</cols>
|
||||
<dt>d</dt>
|
||||
<data>
|
||||
7.6285898e-01 -2.9922929e-01 2.2567123e+02
|
||||
3.3443473e-01 1.0143901e+00 -7.6999973e+01
|
||||
3.4663091e-04 -1.4364524e-05 1.0000000e+00 </data></H13>
|
||||
</opencv_storage>
|
@@ -1,80 +0,0 @@
|
||||
/*
|
||||
* FGBGTest.cpp
|
||||
*
|
||||
* Created on: May 7, 2012
|
||||
* Author: Andrew B. Godbehere
|
||||
*/
|
||||
|
||||
#include "opencv2/video.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include <iostream>
|
||||
|
||||
using namespace cv;
|
||||
|
||||
static void help()
|
||||
{
|
||||
std::cout <<
|
||||
"\nA program demonstrating the use and capabilities of a particular BackgroundSubtraction\n"
|
||||
"algorithm described in A. Godbehere, A. Matsukawa, K. Goldberg, \n"
|
||||
"\"Visual Tracking of Human Visitors under Variable-Lighting Conditions for a Responsive\n"
|
||||
"Audio Art Installation\", American Control Conference, 2012, used in an interactive\n"
|
||||
"installation at the Contemporary Jewish Museum in San Francisco, CA from March 31 through\n"
|
||||
"July 31, 2011.\n"
|
||||
"Call:\n"
|
||||
"./BackgroundSubtractorGMG_sample\n"
|
||||
"Using OpenCV version " << CV_VERSION << "\n"<<std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
help();
|
||||
|
||||
initModule_video();
|
||||
setUseOptimized(true);
|
||||
setNumThreads(8);
|
||||
|
||||
Ptr<BackgroundSubtractor> fgbg = createBackgroundSubtractorGMG(20, 0.7);
|
||||
if (!fgbg)
|
||||
{
|
||||
std::cerr << "Failed to create BackgroundSubtractor.GMG Algorithm." << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
VideoCapture cap;
|
||||
if (argc > 1)
|
||||
cap.open(argv[1]);
|
||||
else
|
||||
cap.open(0);
|
||||
|
||||
if (!cap.isOpened())
|
||||
{
|
||||
std::cerr << "Cannot read video. Try moving video file to sample directory." << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
Mat frame, fgmask, segm;
|
||||
|
||||
namedWindow("FG Segmentation", WINDOW_NORMAL);
|
||||
|
||||
for (;;)
|
||||
{
|
||||
cap >> frame;
|
||||
|
||||
if (frame.empty())
|
||||
break;
|
||||
|
||||
fgbg->apply(frame, fgmask);
|
||||
|
||||
frame.convertTo(segm, CV_8U, 0.5);
|
||||
add(frame, Scalar(100, 100, 0), segm, fgmask);
|
||||
|
||||
imshow("FG Segmentation", segm);
|
||||
|
||||
int c = waitKey(30);
|
||||
if (c == 'q' || c == 'Q' || (c & 255) == 27)
|
||||
break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
@@ -2,6 +2,7 @@
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/video/background_segm.hpp"
|
||||
#include "opencv2/videoio.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include <stdio.h>
|
||||
|
||||
@@ -20,6 +21,8 @@ static void help()
|
||||
const char* keys =
|
||||
{
|
||||
"{c camera | | use camera or not}"
|
||||
"{m method |mog2 | method (knn or mog2) }"
|
||||
"{s smooth | | smooth the mask }"
|
||||
"{fn file_name|tree.avi | movie file }"
|
||||
};
|
||||
|
||||
@@ -30,7 +33,9 @@ int main(int argc, const char** argv)
|
||||
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
bool useCamera = parser.has("camera");
|
||||
bool smoothMask = parser.has("smooth");
|
||||
string file = parser.get<string>("file_name");
|
||||
string method = parser.get<string>("method");
|
||||
VideoCapture cap;
|
||||
bool update_bg_model = true;
|
||||
|
||||
@@ -52,24 +57,31 @@ int main(int argc, const char** argv)
|
||||
namedWindow("foreground image", WINDOW_NORMAL);
|
||||
namedWindow("mean background image", WINDOW_NORMAL);
|
||||
|
||||
Ptr<BackgroundSubtractor> bg_model = createBackgroundSubtractorMOG2();
|
||||
Ptr<BackgroundSubtractor> bg_model = method == "knn" ?
|
||||
createBackgroundSubtractorKNN().dynamicCast<BackgroundSubtractor>() :
|
||||
createBackgroundSubtractorMOG2().dynamicCast<BackgroundSubtractor>();
|
||||
|
||||
Mat img, fgmask, fgimg;
|
||||
Mat img0, img, fgmask, fgimg;
|
||||
|
||||
for(;;)
|
||||
{
|
||||
cap >> img;
|
||||
cap >> img0;
|
||||
|
||||
if( img.empty() )
|
||||
if( img0.empty() )
|
||||
break;
|
||||
|
||||
//cvtColor(_img, img, COLOR_BGR2GRAY);
|
||||
resize(img0, img, Size(640, 640*img0.rows/img0.cols), INTER_LINEAR);
|
||||
|
||||
if( fgimg.empty() )
|
||||
fgimg.create(img.size(), img.type());
|
||||
|
||||
//update the model
|
||||
bg_model->apply(img, fgmask, update_bg_model ? -1 : 0);
|
||||
if( smoothMask )
|
||||
{
|
||||
GaussianBlur(fgmask, fgmask, Size(11, 11), 3.5, 3.5);
|
||||
threshold(fgmask, fgmask, 10, 255, THRESH_BINARY);
|
||||
}
|
||||
|
||||
fgimg = Scalar::all(0);
|
||||
img.copyTo(fgimg, fgmask);
|
||||
|
@@ -2,6 +2,8 @@
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/calib3d.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/videoio.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
#include <cctype>
|
||||
|
@@ -1,6 +1,7 @@
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/videoio.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
@@ -23,6 +23,7 @@
|
||||
|
||||
#include "opencv2/photo.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/core.hpp"
|
||||
#include <iostream>
|
||||
|
@@ -33,6 +33,7 @@
|
||||
#include <signal.h>
|
||||
#include "opencv2/photo.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/core.hpp"
|
||||
#include <iostream>
|
||||
|
@@ -1,5 +1,6 @@
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include <iostream>
|
||||
|
||||
|
@@ -10,6 +10,7 @@
|
||||
*/
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/core.hpp"
|
||||
#include <iostream>
|
||||
|
@@ -2,6 +2,7 @@
|
||||
|
||||
#include <opencv2/imgproc/imgproc.hpp> // Gaussian Blur
|
||||
#include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar)
|
||||
#include <opencv2/videoio/videoio.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp> // OpenCV window I/O
|
||||
#include <opencv2/features2d/features2d.hpp>
|
||||
#include <opencv2/objdetect/objdetect.hpp>
|
||||
|
@@ -1,5 +1,6 @@
|
||||
#include "opencv2/core/utility.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
@@ -1,304 +0,0 @@
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/calib3d/calib3d.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/features2d/features2d.hpp"
|
||||
#include "opencv2/nonfree/nonfree.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
static void help(char** argv)
|
||||
{
|
||||
cout << "\nThis program demonstrats keypoint finding and matching between 2 images using features2d framework.\n"
|
||||
<< " In one case, the 2nd image is synthesized by homography from the first, in the second case, there are 2 images\n"
|
||||
<< "\n"
|
||||
<< "Case1: second image is obtained from the first (given) image using random generated homography matrix\n"
|
||||
<< argv[0] << " [detectorType] [descriptorType] [matcherType] [matcherFilterType] [image] [evaluate(0 or 1)]\n"
|
||||
<< "Example of case1:\n"
|
||||
<< "./descriptor_extractor_matcher SURF SURF FlannBased NoneFilter cola.jpg 0\n"
|
||||
<< "\n"
|
||||
<< "Case2: both images are given. If ransacReprojThreshold>=0 then homography matrix are calculated\n"
|
||||
<< argv[0] << " [detectorType] [descriptorType] [matcherType] [matcherFilterType] [image1] [image2] [ransacReprojThreshold]\n"
|
||||
<< "\n"
|
||||
<< "Matches are filtered using homography matrix in case1 and case2 (if ransacReprojThreshold>=0)\n"
|
||||
<< "Example of case2:\n"
|
||||
<< "./descriptor_extractor_matcher SURF SURF BruteForce CrossCheckFilter cola1.jpg cola2.jpg 3\n"
|
||||
<< "\n"
|
||||
<< "Possible detectorType values: see in documentation on createFeatureDetector().\n"
|
||||
<< "Possible descriptorType values: see in documentation on createDescriptorExtractor().\n"
|
||||
<< "Possible matcherType values: see in documentation on createDescriptorMatcher().\n"
|
||||
<< "Possible matcherFilterType values: NoneFilter, CrossCheckFilter." << endl;
|
||||
}
|
||||
|
||||
#define DRAW_RICH_KEYPOINTS_MODE 0
|
||||
#define DRAW_OUTLIERS_MODE 0
|
||||
|
||||
const string winName = "correspondences";
|
||||
|
||||
enum { NONE_FILTER = 0, CROSS_CHECK_FILTER = 1 };
|
||||
|
||||
static int getMatcherFilterType( const string& str )
|
||||
{
|
||||
if( str == "NoneFilter" )
|
||||
return NONE_FILTER;
|
||||
if( str == "CrossCheckFilter" )
|
||||
return CROSS_CHECK_FILTER;
|
||||
CV_Error(Error::StsBadArg, "Invalid filter name");
|
||||
return -1;
|
||||
}
|
||||
|
||||
static void simpleMatching( Ptr<DescriptorMatcher>& descriptorMatcher,
|
||||
const Mat& descriptors1, const Mat& descriptors2,
|
||||
vector<DMatch>& matches12 )
|
||||
{
|
||||
vector<DMatch> matches;
|
||||
descriptorMatcher->match( descriptors1, descriptors2, matches12 );
|
||||
}
|
||||
|
||||
static void crossCheckMatching( Ptr<DescriptorMatcher>& descriptorMatcher,
|
||||
const Mat& descriptors1, const Mat& descriptors2,
|
||||
vector<DMatch>& filteredMatches12, int knn=1 )
|
||||
{
|
||||
filteredMatches12.clear();
|
||||
vector<vector<DMatch> > matches12, matches21;
|
||||
descriptorMatcher->knnMatch( descriptors1, descriptors2, matches12, knn );
|
||||
descriptorMatcher->knnMatch( descriptors2, descriptors1, matches21, knn );
|
||||
for( size_t m = 0; m < matches12.size(); m++ )
|
||||
{
|
||||
bool findCrossCheck = false;
|
||||
for( size_t fk = 0; fk < matches12[m].size(); fk++ )
|
||||
{
|
||||
DMatch forward = matches12[m][fk];
|
||||
|
||||
for( size_t bk = 0; bk < matches21[forward.trainIdx].size(); bk++ )
|
||||
{
|
||||
DMatch backward = matches21[forward.trainIdx][bk];
|
||||
if( backward.trainIdx == forward.queryIdx )
|
||||
{
|
||||
filteredMatches12.push_back(forward);
|
||||
findCrossCheck = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if( findCrossCheck ) break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void warpPerspectiveRand( const Mat& src, Mat& dst, Mat& H, RNG& rng )
|
||||
{
|
||||
H.create(3, 3, CV_32FC1);
|
||||
H.at<float>(0,0) = rng.uniform( 0.8f, 1.2f);
|
||||
H.at<float>(0,1) = rng.uniform(-0.1f, 0.1f);
|
||||
H.at<float>(0,2) = rng.uniform(-0.1f, 0.1f)*src.cols;
|
||||
H.at<float>(1,0) = rng.uniform(-0.1f, 0.1f);
|
||||
H.at<float>(1,1) = rng.uniform( 0.8f, 1.2f);
|
||||
H.at<float>(1,2) = rng.uniform(-0.1f, 0.1f)*src.rows;
|
||||
H.at<float>(2,0) = rng.uniform( -1e-4f, 1e-4f);
|
||||
H.at<float>(2,1) = rng.uniform( -1e-4f, 1e-4f);
|
||||
H.at<float>(2,2) = rng.uniform( 0.8f, 1.2f);
|
||||
|
||||
warpPerspective( src, dst, H, src.size() );
|
||||
}
|
||||
|
||||
static void doIteration( const Mat& img1, Mat& img2, bool isWarpPerspective,
|
||||
vector<KeyPoint>& keypoints1, const Mat& descriptors1,
|
||||
Ptr<FeatureDetector>& detector, Ptr<DescriptorExtractor>& descriptorExtractor,
|
||||
Ptr<DescriptorMatcher>& descriptorMatcher, int matcherFilter, bool eval,
|
||||
double ransacReprojThreshold, RNG& rng )
|
||||
{
|
||||
CV_Assert( !img1.empty() );
|
||||
Mat H12;
|
||||
if( isWarpPerspective )
|
||||
warpPerspectiveRand(img1, img2, H12, rng );
|
||||
else
|
||||
CV_Assert( !img2.empty()/* && img2.cols==img1.cols && img2.rows==img1.rows*/ );
|
||||
|
||||
cout << endl << "< Extracting keypoints from second image..." << endl;
|
||||
vector<KeyPoint> keypoints2;
|
||||
detector->detect( img2, keypoints2 );
|
||||
cout << keypoints2.size() << " points" << endl << ">" << endl;
|
||||
|
||||
if( !H12.empty() && eval )
|
||||
{
|
||||
cout << "< Evaluate feature detector..." << endl;
|
||||
float repeatability;
|
||||
int correspCount;
|
||||
evaluateFeatureDetector( img1, img2, H12, &keypoints1, &keypoints2, repeatability, correspCount );
|
||||
cout << "repeatability = " << repeatability << endl;
|
||||
cout << "correspCount = " << correspCount << endl;
|
||||
cout << ">" << endl;
|
||||
}
|
||||
|
||||
cout << "< Computing descriptors for keypoints from second image..." << endl;
|
||||
Mat descriptors2;
|
||||
descriptorExtractor->compute( img2, keypoints2, descriptors2 );
|
||||
cout << ">" << endl;
|
||||
|
||||
cout << "< Matching descriptors..." << endl;
|
||||
vector<DMatch> filteredMatches;
|
||||
switch( matcherFilter )
|
||||
{
|
||||
case CROSS_CHECK_FILTER :
|
||||
crossCheckMatching( descriptorMatcher, descriptors1, descriptors2, filteredMatches, 1 );
|
||||
break;
|
||||
default :
|
||||
simpleMatching( descriptorMatcher, descriptors1, descriptors2, filteredMatches );
|
||||
}
|
||||
cout << ">" << endl;
|
||||
|
||||
if( !H12.empty() && eval )
|
||||
{
|
||||
cout << "< Evaluate descriptor matcher..." << endl;
|
||||
vector<Point2f> curve;
|
||||
Ptr<GenericDescriptorMatcher> gdm = makePtr<VectorDescriptorMatcher>( descriptorExtractor, descriptorMatcher );
|
||||
evaluateGenericDescriptorMatcher( img1, img2, H12, keypoints1, keypoints2, 0, 0, curve, gdm );
|
||||
|
||||
Point2f firstPoint = *curve.begin();
|
||||
Point2f lastPoint = *curve.rbegin();
|
||||
int prevPointIndex = -1;
|
||||
cout << "1-precision = " << firstPoint.x << "; recall = " << firstPoint.y << endl;
|
||||
for( float l_p = 0; l_p <= 1 + FLT_EPSILON; l_p+=0.05f )
|
||||
{
|
||||
int nearest = getNearestPoint( curve, l_p );
|
||||
if( nearest >= 0 )
|
||||
{
|
||||
Point2f curPoint = curve[nearest];
|
||||
if( curPoint.x > firstPoint.x && curPoint.x < lastPoint.x && nearest != prevPointIndex )
|
||||
{
|
||||
cout << "1-precision = " << curPoint.x << "; recall = " << curPoint.y << endl;
|
||||
prevPointIndex = nearest;
|
||||
}
|
||||
}
|
||||
}
|
||||
cout << "1-precision = " << lastPoint.x << "; recall = " << lastPoint.y << endl;
|
||||
cout << ">" << endl;
|
||||
}
|
||||
|
||||
vector<int> queryIdxs( filteredMatches.size() ), trainIdxs( filteredMatches.size() );
|
||||
for( size_t i = 0; i < filteredMatches.size(); i++ )
|
||||
{
|
||||
queryIdxs[i] = filteredMatches[i].queryIdx;
|
||||
trainIdxs[i] = filteredMatches[i].trainIdx;
|
||||
}
|
||||
|
||||
if( !isWarpPerspective && ransacReprojThreshold >= 0 )
|
||||
{
|
||||
cout << "< Computing homography (RANSAC)..." << endl;
|
||||
vector<Point2f> points1; KeyPoint::convert(keypoints1, points1, queryIdxs);
|
||||
vector<Point2f> points2; KeyPoint::convert(keypoints2, points2, trainIdxs);
|
||||
H12 = findHomography( Mat(points1), Mat(points2), RANSAC, ransacReprojThreshold );
|
||||
cout << ">" << endl;
|
||||
}
|
||||
|
||||
Mat drawImg;
|
||||
if( !H12.empty() ) // filter outliers
|
||||
{
|
||||
vector<char> matchesMask( filteredMatches.size(), 0 );
|
||||
vector<Point2f> points1; KeyPoint::convert(keypoints1, points1, queryIdxs);
|
||||
vector<Point2f> points2; KeyPoint::convert(keypoints2, points2, trainIdxs);
|
||||
Mat points1t; perspectiveTransform(Mat(points1), points1t, H12);
|
||||
|
||||
double maxInlierDist = ransacReprojThreshold < 0 ? 3 : ransacReprojThreshold;
|
||||
for( size_t i1 = 0; i1 < points1.size(); i1++ )
|
||||
{
|
||||
if( norm(points2[i1] - points1t.at<Point2f>((int)i1,0)) <= maxInlierDist ) // inlier
|
||||
matchesMask[i1] = 1;
|
||||
}
|
||||
// draw inliers
|
||||
drawMatches( img1, keypoints1, img2, keypoints2, filteredMatches, drawImg, Scalar(0, 255, 0), Scalar(255, 0, 0), matchesMask
|
||||
#if DRAW_RICH_KEYPOINTS_MODE
|
||||
, DrawMatchesFlags::DRAW_RICH_KEYPOINTS
|
||||
#endif
|
||||
);
|
||||
|
||||
#if DRAW_OUTLIERS_MODE
|
||||
// draw outliers
|
||||
for( size_t i1 = 0; i1 < matchesMask.size(); i1++ )
|
||||
matchesMask[i1] = !matchesMask[i1];
|
||||
drawMatches( img1, keypoints1, img2, keypoints2, filteredMatches, drawImg, Scalar(255, 0, 0), Scalar(0, 0, 255), matchesMask,
|
||||
DrawMatchesFlags::DRAW_OVER_OUTIMG | DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
|
||||
#endif
|
||||
|
||||
cout << "Number of inliers: " << countNonZero(matchesMask) << endl;
|
||||
}
|
||||
else
|
||||
drawMatches( img1, keypoints1, img2, keypoints2, filteredMatches, drawImg );
|
||||
|
||||
imshow( winName, drawImg );
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
if( argc != 7 && argc != 8 )
|
||||
{
|
||||
help(argv);
|
||||
return -1;
|
||||
}
|
||||
|
||||
cv::initModule_nonfree();
|
||||
|
||||
bool isWarpPerspective = argc == 7;
|
||||
double ransacReprojThreshold = -1;
|
||||
if( !isWarpPerspective )
|
||||
ransacReprojThreshold = atof(argv[7]);
|
||||
|
||||
cout << "< Creating detector, descriptor extractor and descriptor matcher ..." << endl;
|
||||
Ptr<FeatureDetector> detector = FeatureDetector::create( argv[1] );
|
||||
Ptr<DescriptorExtractor> descriptorExtractor = DescriptorExtractor::create( argv[2] );
|
||||
Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create( argv[3] );
|
||||
int mactherFilterType = getMatcherFilterType( argv[4] );
|
||||
bool eval = !isWarpPerspective ? false : (atoi(argv[6]) == 0 ? false : true);
|
||||
cout << ">" << endl;
|
||||
if( !detector || !descriptorExtractor || !descriptorMatcher )
|
||||
{
|
||||
cout << "Can not create detector or descriptor exstractor or descriptor matcher of given types" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
cout << "< Reading the images..." << endl;
|
||||
Mat img1 = imread( argv[5] ), img2;
|
||||
if( !isWarpPerspective )
|
||||
img2 = imread( argv[6] );
|
||||
cout << ">" << endl;
|
||||
if( img1.empty() || (!isWarpPerspective && img2.empty()) )
|
||||
{
|
||||
cout << "Can not read images" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
cout << endl << "< Extracting keypoints from first image..." << endl;
|
||||
vector<KeyPoint> keypoints1;
|
||||
detector->detect( img1, keypoints1 );
|
||||
cout << keypoints1.size() << " points" << endl << ">" << endl;
|
||||
|
||||
cout << "< Computing descriptors for keypoints from first image..." << endl;
|
||||
Mat descriptors1;
|
||||
descriptorExtractor->compute( img1, keypoints1, descriptors1 );
|
||||
cout << ">" << endl;
|
||||
|
||||
namedWindow(winName, 1);
|
||||
RNG rng = theRNG();
|
||||
doIteration( img1, img2, isWarpPerspective, keypoints1, descriptors1,
|
||||
detector, descriptorExtractor, descriptorMatcher, mactherFilterType, eval,
|
||||
ransacReprojThreshold, rng );
|
||||
for(;;)
|
||||
{
|
||||
char c = (char)waitKey(0);
|
||||
if( c == '\x1b' ) // esc
|
||||
{
|
||||
cout << "Exiting ..." << endl;
|
||||
break;
|
||||
}
|
||||
else if( isWarpPerspective )
|
||||
{
|
||||
doIteration( img1, img2, isWarpPerspective, keypoints1, descriptors1,
|
||||
detector, descriptorExtractor, descriptorMatcher, mactherFilterType, eval,
|
||||
ransacReprojThreshold, rng );
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
@@ -1,6 +1,7 @@
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/core/utility.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
#include <stdio.h>
|
||||
|
@@ -1,5 +1,6 @@
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
#include <stdio.h>
|
||||
|
@@ -1,5 +1,6 @@
|
||||
#include "opencv2/core/utility.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
#include <stdio.h>
|
||||
|
@@ -2,6 +2,7 @@
|
||||
#include "opencv2/ml.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::ml;
|
||||
|
||||
int main( int /*argc*/, char** /*argv*/ )
|
||||
{
|
||||
@@ -34,8 +35,9 @@ int main( int /*argc*/, char** /*argv*/ )
|
||||
samples = samples.reshape(1, 0);
|
||||
|
||||
// cluster the data
|
||||
EM em_model(N, EM::COV_MAT_SPHERICAL, TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 300, 0.1));
|
||||
em_model.train( samples, noArray(), labels, noArray() );
|
||||
Ptr<EM> em_model = EM::train( samples, noArray(), labels, noArray(),
|
||||
EM::Params(N, EM::COV_MAT_SPHERICAL,
|
||||
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 300, 0.1)));
|
||||
|
||||
// classify every image pixel
|
||||
for( i = 0; i < img.rows; i++ )
|
||||
@@ -44,7 +46,7 @@ int main( int /*argc*/, char** /*argv*/ )
|
||||
{
|
||||
sample.at<float>(0) = (float)j;
|
||||
sample.at<float>(1) = (float)i;
|
||||
int response = cvRound(em_model.predict( sample )[1]);
|
||||
int response = cvRound(em_model->predict2( sample, noArray() )[1]);
|
||||
Scalar c = colors[response];
|
||||
|
||||
circle( img, Point(j, i), 1, c*0.75, FILLED );
|
||||
|
@@ -1,8 +1,11 @@
|
||||
#include "opencv2/objdetect.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/videoio.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/core/utility.hpp"
|
||||
|
||||
#include "opencv2/videoio/videoio_c.h"
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
|
||||
#include <cctype>
|
||||
|
@@ -1,5 +1,6 @@
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/videoio/videoio.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
#include <iostream>
|
||||
@@ -36,7 +37,8 @@ int main(int, char**)
|
||||
if( !cap.isOpened() )
|
||||
return -1;
|
||||
|
||||
Mat prevgray, gray, flow, cflow, frame;
|
||||
Mat flow, cflow, frame;
|
||||
UMat gray, prevgray, uflow;
|
||||
namedWindow("flow", 1);
|
||||
|
||||
for(;;)
|
||||
@@ -44,10 +46,11 @@ int main(int, char**)
|
||||
cap >> frame;
|
||||
cvtColor(frame, gray, COLOR_BGR2GRAY);
|
||||
|
||||
if( prevgray.data )
|
||||
if( !prevgray.empty() )
|
||||
{
|
||||
calcOpticalFlowFarneback(prevgray, gray, flow, 0.5, 3, 15, 3, 5, 1.2, 0);
|
||||
calcOpticalFlowFarneback(prevgray, gray, uflow, 0.5, 3, 15, 3, 5, 1.2, 0);
|
||||
cvtColor(prevgray, cflow, COLOR_GRAY2BGR);
|
||||
uflow.copyTo(flow);
|
||||
drawOptFlowMap(flow, cflow, 16, 1.5, Scalar(0, 255, 0));
|
||||
imshow("flow", cflow);
|
||||
}
|
||||
|
@@ -1,4 +1,6 @@
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/videoio/videoio.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
@@ -15,6 +15,7 @@
|
||||
*
|
||||
********************************************************************************/
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <iostream>
|
||||
using namespace cv;
|
||||
|
@@ -1,3 +1,4 @@
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
|
||||
|
BIN
samples/cpp/graf1.png
Executable file
After Width: | Height: | Size: 929 KiB |
BIN
samples/cpp/graf3.png
Executable file
After Width: | Height: | Size: 953 KiB |
@@ -1,3 +1,4 @@
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
|
||||
|
@@ -1,3 +1,4 @@
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
|
||||
|
@@ -22,6 +22,7 @@ static void help()
|
||||
|
||||
#ifdef DEMO_MIXED_API_USE
|
||||
# include <opencv2/highgui/highgui_c.h>
|
||||
# include <opencv2/imgcodecs/imgcodecs_c.h>
|
||||
#endif
|
||||
|
||||
int main( int argc, char** argv )
|
||||
|
@@ -13,6 +13,7 @@
|
||||
* Authors: G. Evangelidis, INRIA, Grenoble, France
|
||||
* M. Asbach, Fraunhofer IAIS, St. Augustin, Germany
|
||||
*/
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <opencv2/video.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
|
@@ -1,4 +1,5 @@
|
||||
#include <opencv2/core/core.hpp>
|
||||
#include <opencv2/videoio/videoio.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
#include <iostream>
|
||||
|
@@ -2,6 +2,7 @@
|
||||
*/
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
|
@@ -1,3 +1,4 @@
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/photo/photo.hpp"
|
||||
|
@@ -1,6 +1,7 @@
|
||||
// testOpenCVCam.cpp : Defines the entry point for the console application.
|
||||
//
|
||||
|
||||
#include "opencv2/videoio/videoio.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
@@ -1,3 +1,4 @@
|
||||
#include "opencv2/videoio/videoio.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
|
||||
|
@@ -1,704 +0,0 @@
|
||||
#include <opencv2/core.hpp>
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include <opencv2/imgproc/imgproc_c.h> // cvFindContours
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/objdetect.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <iterator>
|
||||
#include <set>
|
||||
#include <cstdio>
|
||||
#include <iostream>
|
||||
|
||||
// Function prototypes
|
||||
void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector<CvPoint>& chain, double f);
|
||||
|
||||
std::vector<CvPoint> maskFromTemplate(const std::vector<cv::linemod::Template>& templates,
|
||||
int num_modalities, cv::Point offset, cv::Size size,
|
||||
cv::Mat& mask, cv::Mat& dst);
|
||||
|
||||
void templateConvexHull(const std::vector<cv::linemod::Template>& templates,
|
||||
int num_modalities, cv::Point offset, cv::Size size,
|
||||
cv::Mat& dst);
|
||||
|
||||
void drawResponse(const std::vector<cv::linemod::Template>& templates,
|
||||
int num_modalities, cv::Mat& dst, cv::Point offset, int T);
|
||||
|
||||
cv::Mat displayQuantized(const cv::Mat& quantized);
|
||||
|
||||
// Copy of cv_mouse from cv_utilities
|
||||
class Mouse
|
||||
{
|
||||
public:
|
||||
static void start(const std::string& a_img_name)
|
||||
{
|
||||
cv::setMouseCallback(a_img_name.c_str(), Mouse::cv_on_mouse, 0);
|
||||
}
|
||||
static int event(void)
|
||||
{
|
||||
int l_event = m_event;
|
||||
m_event = -1;
|
||||
return l_event;
|
||||
}
|
||||
static int x(void)
|
||||
{
|
||||
return m_x;
|
||||
}
|
||||
static int y(void)
|
||||
{
|
||||
return m_y;
|
||||
}
|
||||
|
||||
private:
|
||||
static void cv_on_mouse(int a_event, int a_x, int a_y, int, void *)
|
||||
{
|
||||
m_event = a_event;
|
||||
m_x = a_x;
|
||||
m_y = a_y;
|
||||
}
|
||||
|
||||
static int m_event;
|
||||
static int m_x;
|
||||
static int m_y;
|
||||
};
|
||||
int Mouse::m_event;
|
||||
int Mouse::m_x;
|
||||
int Mouse::m_y;
|
||||
|
||||
static void help()
|
||||
{
|
||||
printf("Usage: openni_demo [templates.yml]\n\n"
|
||||
"Place your object on a planar, featureless surface. With the mouse,\n"
|
||||
"frame it in the 'color' window and right click to learn a first template.\n"
|
||||
"Then press 'l' to enter online learning mode, and move the camera around.\n"
|
||||
"When the match score falls between 90-95%% the demo will add a new template.\n\n"
|
||||
"Keys:\n"
|
||||
"\t h -- This help page\n"
|
||||
"\t l -- Toggle online learning\n"
|
||||
"\t m -- Toggle printing match result\n"
|
||||
"\t t -- Toggle printing timings\n"
|
||||
"\t w -- Write learned templates to disk\n"
|
||||
"\t [ ] -- Adjust matching threshold: '[' down, ']' up\n"
|
||||
"\t q -- Quit\n\n");
|
||||
}
|
||||
|
||||
// Adapted from cv_timer in cv_utilities
|
||||
class Timer
|
||||
{
|
||||
public:
|
||||
Timer() : start_(0), time_(0) {}
|
||||
|
||||
void start()
|
||||
{
|
||||
start_ = cv::getTickCount();
|
||||
}
|
||||
|
||||
void stop()
|
||||
{
|
||||
CV_Assert(start_ != 0);
|
||||
int64 end = cv::getTickCount();
|
||||
time_ += end - start_;
|
||||
start_ = 0;
|
||||
}
|
||||
|
||||
double time()
|
||||
{
|
||||
double ret = time_ / cv::getTickFrequency();
|
||||
time_ = 0;
|
||||
return ret;
|
||||
}
|
||||
|
||||
private:
|
||||
int64 start_, time_;
|
||||
};
|
||||
|
||||
// Functions to store detector and templates in single XML/YAML file
|
||||
static cv::Ptr<cv::linemod::Detector> readLinemod(const std::string& filename)
|
||||
{
|
||||
cv::Ptr<cv::linemod::Detector> detector = cv::makePtr<cv::linemod::Detector>();
|
||||
cv::FileStorage fs(filename, cv::FileStorage::READ);
|
||||
detector->read(fs.root());
|
||||
|
||||
cv::FileNode fn = fs["classes"];
|
||||
for (cv::FileNodeIterator i = fn.begin(), iend = fn.end(); i != iend; ++i)
|
||||
detector->readClass(*i);
|
||||
|
||||
return detector;
|
||||
}
|
||||
|
||||
static void writeLinemod(const cv::Ptr<cv::linemod::Detector>& detector, const std::string& filename)
|
||||
{
|
||||
cv::FileStorage fs(filename, cv::FileStorage::WRITE);
|
||||
detector->write(fs);
|
||||
|
||||
std::vector<cv::String> ids = detector->classIds();
|
||||
fs << "classes" << "[";
|
||||
for (int i = 0; i < (int)ids.size(); ++i)
|
||||
{
|
||||
fs << "{";
|
||||
detector->writeClass(ids[i], fs);
|
||||
fs << "}"; // current class
|
||||
}
|
||||
fs << "]"; // classes
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char * argv[])
|
||||
{
|
||||
// Various settings and flags
|
||||
bool show_match_result = true;
|
||||
bool show_timings = false;
|
||||
bool learn_online = false;
|
||||
int num_classes = 0;
|
||||
int matching_threshold = 80;
|
||||
/// @todo Keys for changing these?
|
||||
cv::Size roi_size(200, 200);
|
||||
int learning_lower_bound = 90;
|
||||
int learning_upper_bound = 95;
|
||||
|
||||
// Timers
|
||||
Timer extract_timer;
|
||||
Timer match_timer;
|
||||
|
||||
// Initialize HighGUI
|
||||
help();
|
||||
cv::namedWindow("color");
|
||||
cv::namedWindow("normals");
|
||||
Mouse::start("color");
|
||||
|
||||
// Initialize LINEMOD data structures
|
||||
cv::Ptr<cv::linemod::Detector> detector;
|
||||
std::string filename;
|
||||
if (argc == 1)
|
||||
{
|
||||
filename = "linemod_templates.yml";
|
||||
detector = cv::linemod::getDefaultLINEMOD();
|
||||
}
|
||||
else
|
||||
{
|
||||
detector = readLinemod(argv[1]);
|
||||
|
||||
std::vector<cv::String> ids = detector->classIds();
|
||||
num_classes = detector->numClasses();
|
||||
printf("Loaded %s with %d classes and %d templates\n",
|
||||
argv[1], num_classes, detector->numTemplates());
|
||||
if (!ids.empty())
|
||||
{
|
||||
printf("Class ids:\n");
|
||||
std::copy(ids.begin(), ids.end(), std::ostream_iterator<std::string>(std::cout, "\n"));
|
||||
}
|
||||
}
|
||||
int num_modalities = (int)detector->getModalities().size();
|
||||
|
||||
// Open Kinect sensor
|
||||
cv::VideoCapture capture( cv::CAP_OPENNI );
|
||||
if (!capture.isOpened())
|
||||
{
|
||||
printf("Could not open OpenNI-capable sensor\n");
|
||||
return -1;
|
||||
}
|
||||
capture.set(cv::CAP_PROP_OPENNI_REGISTRATION, 1);
|
||||
double focal_length = capture.get(cv::CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH);
|
||||
//printf("Focal length = %f\n", focal_length);
|
||||
|
||||
// Main loop
|
||||
cv::Mat color, depth;
|
||||
for(;;)
|
||||
{
|
||||
// Capture next color/depth pair
|
||||
capture.grab();
|
||||
capture.retrieve(depth, cv::CAP_OPENNI_DEPTH_MAP);
|
||||
capture.retrieve(color, cv::CAP_OPENNI_BGR_IMAGE);
|
||||
|
||||
std::vector<cv::Mat> sources;
|
||||
sources.push_back(color);
|
||||
sources.push_back(depth);
|
||||
cv::Mat display = color.clone();
|
||||
|
||||
if (!learn_online)
|
||||
{
|
||||
cv::Point mouse(Mouse::x(), Mouse::y());
|
||||
int event = Mouse::event();
|
||||
|
||||
// Compute ROI centered on current mouse location
|
||||
cv::Point roi_offset(roi_size.width / 2, roi_size.height / 2);
|
||||
cv::Point pt1 = mouse - roi_offset; // top left
|
||||
cv::Point pt2 = mouse + roi_offset; // bottom right
|
||||
|
||||
if (event == cv::EVENT_RBUTTONDOWN)
|
||||
{
|
||||
// Compute object mask by subtracting the plane within the ROI
|
||||
std::vector<CvPoint> chain(4);
|
||||
chain[0] = pt1;
|
||||
chain[1] = cv::Point(pt2.x, pt1.y);
|
||||
chain[2] = pt2;
|
||||
chain[3] = cv::Point(pt1.x, pt2.y);
|
||||
cv::Mat mask;
|
||||
subtractPlane(depth, mask, chain, focal_length);
|
||||
|
||||
cv::imshow("mask", mask);
|
||||
|
||||
// Extract template
|
||||
std::string class_id = cv::format("class%d", num_classes);
|
||||
cv::Rect bb;
|
||||
extract_timer.start();
|
||||
int template_id = detector->addTemplate(sources, class_id, mask, &bb);
|
||||
extract_timer.stop();
|
||||
if (template_id != -1)
|
||||
{
|
||||
printf("*** Added template (id %d) for new object class %d***\n",
|
||||
template_id, num_classes);
|
||||
//printf("Extracted at (%d, %d) size %dx%d\n", bb.x, bb.y, bb.width, bb.height);
|
||||
}
|
||||
|
||||
++num_classes;
|
||||
}
|
||||
|
||||
// Draw ROI for display
|
||||
cv::rectangle(display, pt1, pt2, CV_RGB(0,0,0), 3);
|
||||
cv::rectangle(display, pt1, pt2, CV_RGB(255,255,0), 1);
|
||||
}
|
||||
|
||||
// Perform matching
|
||||
std::vector<cv::linemod::Match> matches;
|
||||
std::vector<cv::String> class_ids;
|
||||
std::vector<cv::Mat> quantized_images;
|
||||
match_timer.start();
|
||||
detector->match(sources, (float)matching_threshold, matches, class_ids, quantized_images);
|
||||
match_timer.stop();
|
||||
|
||||
int classes_visited = 0;
|
||||
std::set<std::string> visited;
|
||||
|
||||
for (int i = 0; (i < (int)matches.size()) && (classes_visited < num_classes); ++i)
|
||||
{
|
||||
cv::linemod::Match m = matches[i];
|
||||
|
||||
if (visited.insert(m.class_id).second)
|
||||
{
|
||||
++classes_visited;
|
||||
|
||||
if (show_match_result)
|
||||
{
|
||||
printf("Similarity: %5.1f%%; x: %3d; y: %3d; class: %s; template: %3d\n",
|
||||
m.similarity, m.x, m.y, m.class_id.c_str(), m.template_id);
|
||||
}
|
||||
|
||||
// Draw matching template
|
||||
const std::vector<cv::linemod::Template>& templates = detector->getTemplates(m.class_id, m.template_id);
|
||||
drawResponse(templates, num_modalities, display, cv::Point(m.x, m.y), detector->getT(0));
|
||||
|
||||
if (learn_online == true)
|
||||
{
|
||||
/// @todo Online learning possibly broken by new gradient feature extraction,
|
||||
/// which assumes an accurate object outline.
|
||||
|
||||
// Compute masks based on convex hull of matched template
|
||||
cv::Mat color_mask, depth_mask;
|
||||
std::vector<CvPoint> chain = maskFromTemplate(templates, num_modalities,
|
||||
cv::Point(m.x, m.y), color.size(),
|
||||
color_mask, display);
|
||||
subtractPlane(depth, depth_mask, chain, focal_length);
|
||||
|
||||
cv::imshow("mask", depth_mask);
|
||||
|
||||
// If pretty sure (but not TOO sure), add new template
|
||||
if (learning_lower_bound < m.similarity && m.similarity < learning_upper_bound)
|
||||
{
|
||||
extract_timer.start();
|
||||
int template_id = detector->addTemplate(sources, m.class_id, depth_mask);
|
||||
extract_timer.stop();
|
||||
if (template_id != -1)
|
||||
{
|
||||
printf("*** Added template (id %d) for existing object class %s***\n",
|
||||
template_id, m.class_id.c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (show_match_result && matches.empty())
|
||||
printf("No matches found...\n");
|
||||
if (show_timings)
|
||||
{
|
||||
printf("Training: %.2fs\n", extract_timer.time());
|
||||
printf("Matching: %.2fs\n", match_timer.time());
|
||||
}
|
||||
if (show_match_result || show_timings)
|
||||
printf("------------------------------------------------------------\n");
|
||||
|
||||
cv::imshow("color", display);
|
||||
cv::imshow("normals", quantized_images[1]);
|
||||
|
||||
cv::FileStorage fs;
|
||||
char key = (char)cv::waitKey(10);
|
||||
if( key == 'q' )
|
||||
break;
|
||||
|
||||
switch (key)
|
||||
{
|
||||
case 'h':
|
||||
help();
|
||||
break;
|
||||
case 'm':
|
||||
// toggle printing match result
|
||||
show_match_result = !show_match_result;
|
||||
printf("Show match result %s\n", show_match_result ? "ON" : "OFF");
|
||||
break;
|
||||
case 't':
|
||||
// toggle printing timings
|
||||
show_timings = !show_timings;
|
||||
printf("Show timings %s\n", show_timings ? "ON" : "OFF");
|
||||
break;
|
||||
case 'l':
|
||||
// toggle online learning
|
||||
learn_online = !learn_online;
|
||||
printf("Online learning %s\n", learn_online ? "ON" : "OFF");
|
||||
break;
|
||||
case '[':
|
||||
// decrement threshold
|
||||
matching_threshold = std::max(matching_threshold - 1, -100);
|
||||
printf("New threshold: %d\n", matching_threshold);
|
||||
break;
|
||||
case ']':
|
||||
// increment threshold
|
||||
matching_threshold = std::min(matching_threshold + 1, +100);
|
||||
printf("New threshold: %d\n", matching_threshold);
|
||||
break;
|
||||
case 'w':
|
||||
// write model to disk
|
||||
writeLinemod(detector, filename);
|
||||
printf("Wrote detector and templates to %s\n", filename.c_str());
|
||||
break;
|
||||
default:
|
||||
;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void reprojectPoints(const std::vector<cv::Point3d>& proj, std::vector<cv::Point3d>& real, double f)
|
||||
{
|
||||
real.resize(proj.size());
|
||||
double f_inv = 1.0 / f;
|
||||
|
||||
for (int i = 0; i < (int)proj.size(); ++i)
|
||||
{
|
||||
double Z = proj[i].z;
|
||||
real[i].x = (proj[i].x - 320.) * (f_inv * Z);
|
||||
real[i].y = (proj[i].y - 240.) * (f_inv * Z);
|
||||
real[i].z = Z;
|
||||
}
|
||||
}
|
||||
|
||||
static void filterPlane(IplImage * ap_depth, std::vector<IplImage *> & a_masks, std::vector<CvPoint> & a_chain, double f)
|
||||
{
|
||||
const int l_num_cost_pts = 200;
|
||||
|
||||
float l_thres = 4;
|
||||
|
||||
IplImage * lp_mask = cvCreateImage(cvGetSize(ap_depth), IPL_DEPTH_8U, 1);
|
||||
cvSet(lp_mask, cvRealScalar(0));
|
||||
|
||||
std::vector<CvPoint> l_chain_vector;
|
||||
|
||||
float l_chain_length = 0;
|
||||
float * lp_seg_length = new float[a_chain.size()];
|
||||
|
||||
for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
|
||||
{
|
||||
float x_diff = (float)(a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x);
|
||||
float y_diff = (float)(a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y);
|
||||
lp_seg_length[l_i] = sqrt(x_diff*x_diff + y_diff*y_diff);
|
||||
l_chain_length += lp_seg_length[l_i];
|
||||
}
|
||||
for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
|
||||
{
|
||||
if (lp_seg_length[l_i] > 0)
|
||||
{
|
||||
int l_cur_num = cvRound(l_num_cost_pts * lp_seg_length[l_i] / l_chain_length);
|
||||
float l_cur_len = lp_seg_length[l_i] / l_cur_num;
|
||||
|
||||
for (int l_j = 0; l_j < l_cur_num; ++l_j)
|
||||
{
|
||||
float l_ratio = (l_cur_len * l_j / lp_seg_length[l_i]);
|
||||
|
||||
CvPoint l_pts;
|
||||
|
||||
l_pts.x = cvRound(l_ratio * (a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x) + a_chain[l_i].x);
|
||||
l_pts.y = cvRound(l_ratio * (a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y) + a_chain[l_i].y);
|
||||
|
||||
l_chain_vector.push_back(l_pts);
|
||||
}
|
||||
}
|
||||
}
|
||||
std::vector<cv::Point3d> lp_src_3Dpts(l_chain_vector.size());
|
||||
|
||||
for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
|
||||
{
|
||||
lp_src_3Dpts[l_i].x = l_chain_vector[l_i].x;
|
||||
lp_src_3Dpts[l_i].y = l_chain_vector[l_i].y;
|
||||
lp_src_3Dpts[l_i].z = CV_IMAGE_ELEM(ap_depth, unsigned short, cvRound(lp_src_3Dpts[l_i].y), cvRound(lp_src_3Dpts[l_i].x));
|
||||
//CV_IMAGE_ELEM(lp_mask,unsigned char,(int)lp_src_3Dpts[l_i].Y,(int)lp_src_3Dpts[l_i].X)=255;
|
||||
}
|
||||
//cv_show_image(lp_mask,"hallo2");
|
||||
|
||||
reprojectPoints(lp_src_3Dpts, lp_src_3Dpts, f);
|
||||
|
||||
CvMat * lp_pts = cvCreateMat((int)l_chain_vector.size(), 4, CV_32F);
|
||||
CvMat * lp_v = cvCreateMat(4, 4, CV_32F);
|
||||
CvMat * lp_w = cvCreateMat(4, 1, CV_32F);
|
||||
|
||||
for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
|
||||
{
|
||||
CV_MAT_ELEM(*lp_pts, float, l_i, 0) = (float)lp_src_3Dpts[l_i].x;
|
||||
CV_MAT_ELEM(*lp_pts, float, l_i, 1) = (float)lp_src_3Dpts[l_i].y;
|
||||
CV_MAT_ELEM(*lp_pts, float, l_i, 2) = (float)lp_src_3Dpts[l_i].z;
|
||||
CV_MAT_ELEM(*lp_pts, float, l_i, 3) = 1.0f;
|
||||
}
|
||||
cvSVD(lp_pts, lp_w, 0, lp_v);
|
||||
|
||||
float l_n[4] = {CV_MAT_ELEM(*lp_v, float, 0, 3),
|
||||
CV_MAT_ELEM(*lp_v, float, 1, 3),
|
||||
CV_MAT_ELEM(*lp_v, float, 2, 3),
|
||||
CV_MAT_ELEM(*lp_v, float, 3, 3)};
|
||||
|
||||
float l_norm = sqrt(l_n[0] * l_n[0] + l_n[1] * l_n[1] + l_n[2] * l_n[2]);
|
||||
|
||||
l_n[0] /= l_norm;
|
||||
l_n[1] /= l_norm;
|
||||
l_n[2] /= l_norm;
|
||||
l_n[3] /= l_norm;
|
||||
|
||||
float l_max_dist = 0;
|
||||
|
||||
for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
|
||||
{
|
||||
float l_dist = l_n[0] * CV_MAT_ELEM(*lp_pts, float, l_i, 0) +
|
||||
l_n[1] * CV_MAT_ELEM(*lp_pts, float, l_i, 1) +
|
||||
l_n[2] * CV_MAT_ELEM(*lp_pts, float, l_i, 2) +
|
||||
l_n[3] * CV_MAT_ELEM(*lp_pts, float, l_i, 3);
|
||||
|
||||
if (fabs(l_dist) > l_max_dist)
|
||||
l_max_dist = l_dist;
|
||||
}
|
||||
//std::cerr << "plane: " << l_n[0] << ";" << l_n[1] << ";" << l_n[2] << ";" << l_n[3] << " maxdist: " << l_max_dist << " end" << std::endl;
|
||||
int l_minx = ap_depth->width;
|
||||
int l_miny = ap_depth->height;
|
||||
int l_maxx = 0;
|
||||
int l_maxy = 0;
|
||||
|
||||
for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
|
||||
{
|
||||
l_minx = std::min(l_minx, a_chain[l_i].x);
|
||||
l_miny = std::min(l_miny, a_chain[l_i].y);
|
||||
l_maxx = std::max(l_maxx, a_chain[l_i].x);
|
||||
l_maxy = std::max(l_maxy, a_chain[l_i].y);
|
||||
}
|
||||
int l_w = l_maxx - l_minx + 1;
|
||||
int l_h = l_maxy - l_miny + 1;
|
||||
int l_nn = (int)a_chain.size();
|
||||
|
||||
CvPoint * lp_chain = new CvPoint[l_nn];
|
||||
|
||||
for (int l_i = 0; l_i < l_nn; ++l_i)
|
||||
lp_chain[l_i] = a_chain[l_i];
|
||||
|
||||
cvFillPoly(lp_mask, &lp_chain, &l_nn, 1, cvScalar(255, 255, 255));
|
||||
|
||||
delete[] lp_chain;
|
||||
|
||||
//cv_show_image(lp_mask,"hallo1");
|
||||
|
||||
std::vector<cv::Point3d> lp_dst_3Dpts(l_h * l_w);
|
||||
|
||||
int l_ind = 0;
|
||||
|
||||
for (int l_r = 0; l_r < l_h; ++l_r)
|
||||
{
|
||||
for (int l_c = 0; l_c < l_w; ++l_c)
|
||||
{
|
||||
lp_dst_3Dpts[l_ind].x = l_c + l_minx;
|
||||
lp_dst_3Dpts[l_ind].y = l_r + l_miny;
|
||||
lp_dst_3Dpts[l_ind].z = CV_IMAGE_ELEM(ap_depth, unsigned short, l_r + l_miny, l_c + l_minx);
|
||||
++l_ind;
|
||||
}
|
||||
}
|
||||
reprojectPoints(lp_dst_3Dpts, lp_dst_3Dpts, f);
|
||||
|
||||
l_ind = 0;
|
||||
|
||||
for (int l_r = 0; l_r < l_h; ++l_r)
|
||||
{
|
||||
for (int l_c = 0; l_c < l_w; ++l_c)
|
||||
{
|
||||
float l_dist = (float)(l_n[0] * lp_dst_3Dpts[l_ind].x + l_n[1] * lp_dst_3Dpts[l_ind].y + lp_dst_3Dpts[l_ind].z * l_n[2] + l_n[3]);
|
||||
|
||||
++l_ind;
|
||||
|
||||
if (CV_IMAGE_ELEM(lp_mask, unsigned char, l_r + l_miny, l_c + l_minx) != 0)
|
||||
{
|
||||
if (fabs(l_dist) < std::max(l_thres, (l_max_dist * 2.0f)))
|
||||
{
|
||||
for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p)
|
||||
{
|
||||
int l_col = cvRound((l_c + l_minx) / (l_p + 1.0));
|
||||
int l_row = cvRound((l_r + l_miny) / (l_p + 1.0));
|
||||
|
||||
CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 0;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p)
|
||||
{
|
||||
int l_col = cvRound((l_c + l_minx) / (l_p + 1.0));
|
||||
int l_row = cvRound((l_r + l_miny) / (l_p + 1.0));
|
||||
|
||||
CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 255;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
cvReleaseImage(&lp_mask);
|
||||
cvReleaseMat(&lp_pts);
|
||||
cvReleaseMat(&lp_w);
|
||||
cvReleaseMat(&lp_v);
|
||||
}
|
||||
|
||||
void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector<CvPoint>& chain, double f)
|
||||
{
|
||||
mask = cv::Mat::zeros(depth.size(), CV_8U);
|
||||
std::vector<IplImage*> tmp;
|
||||
IplImage mask_ipl = mask;
|
||||
tmp.push_back(&mask_ipl);
|
||||
IplImage depth_ipl = depth;
|
||||
filterPlane(&depth_ipl, tmp, chain, f);
|
||||
}
|
||||
|
||||
std::vector<CvPoint> maskFromTemplate(const std::vector<cv::linemod::Template>& templates,
|
||||
int num_modalities, cv::Point offset, cv::Size size,
|
||||
cv::Mat& mask, cv::Mat& dst)
|
||||
{
|
||||
templateConvexHull(templates, num_modalities, offset, size, mask);
|
||||
|
||||
const int OFFSET = 30;
|
||||
cv::dilate(mask, mask, cv::Mat(), cv::Point(-1,-1), OFFSET);
|
||||
|
||||
CvMemStorage * lp_storage = cvCreateMemStorage(0);
|
||||
CvTreeNodeIterator l_iterator;
|
||||
CvSeqReader l_reader;
|
||||
CvSeq * lp_contour = 0;
|
||||
|
||||
cv::Mat mask_copy = mask.clone();
|
||||
IplImage mask_copy_ipl = mask_copy;
|
||||
cvFindContours(&mask_copy_ipl, lp_storage, &lp_contour, sizeof(CvContour),
|
||||
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
|
||||
|
||||
std::vector<CvPoint> l_pts1; // to use as input to cv_primesensor::filter_plane
|
||||
|
||||
cvInitTreeNodeIterator(&l_iterator, lp_contour, 1);
|
||||
while ((lp_contour = (CvSeq *)cvNextTreeNode(&l_iterator)) != 0)
|
||||
{
|
||||
CvPoint l_pt0;
|
||||
cvStartReadSeq(lp_contour, &l_reader, 0);
|
||||
CV_READ_SEQ_ELEM(l_pt0, l_reader);
|
||||
l_pts1.push_back(l_pt0);
|
||||
|
||||
for (int i = 0; i < lp_contour->total; ++i)
|
||||
{
|
||||
CvPoint l_pt1;
|
||||
CV_READ_SEQ_ELEM(l_pt1, l_reader);
|
||||
/// @todo Really need dst at all? Can just as well do this outside
|
||||
cv::line(dst, l_pt0, l_pt1, CV_RGB(0, 255, 0), 2);
|
||||
|
||||
l_pt0 = l_pt1;
|
||||
l_pts1.push_back(l_pt0);
|
||||
}
|
||||
}
|
||||
cvReleaseMemStorage(&lp_storage);
|
||||
|
||||
return l_pts1;
|
||||
}
|
||||
|
||||
// Adapted from cv_show_angles
|
||||
cv::Mat displayQuantized(const cv::Mat& quantized)
|
||||
{
|
||||
cv::Mat color(quantized.size(), CV_8UC3);
|
||||
for (int r = 0; r < quantized.rows; ++r)
|
||||
{
|
||||
const uchar* quant_r = quantized.ptr(r);
|
||||
cv::Vec3b* color_r = color.ptr<cv::Vec3b>(r);
|
||||
|
||||
for (int c = 0; c < quantized.cols; ++c)
|
||||
{
|
||||
cv::Vec3b& bgr = color_r[c];
|
||||
switch (quant_r[c])
|
||||
{
|
||||
case 0: bgr[0]= 0; bgr[1]= 0; bgr[2]= 0; break;
|
||||
case 1: bgr[0]= 55; bgr[1]= 55; bgr[2]= 55; break;
|
||||
case 2: bgr[0]= 80; bgr[1]= 80; bgr[2]= 80; break;
|
||||
case 4: bgr[0]=105; bgr[1]=105; bgr[2]=105; break;
|
||||
case 8: bgr[0]=130; bgr[1]=130; bgr[2]=130; break;
|
||||
case 16: bgr[0]=155; bgr[1]=155; bgr[2]=155; break;
|
||||
case 32: bgr[0]=180; bgr[1]=180; bgr[2]=180; break;
|
||||
case 64: bgr[0]=205; bgr[1]=205; bgr[2]=205; break;
|
||||
case 128: bgr[0]=230; bgr[1]=230; bgr[2]=230; break;
|
||||
case 255: bgr[0]= 0; bgr[1]= 0; bgr[2]=255; break;
|
||||
default: bgr[0]= 0; bgr[1]=255; bgr[2]= 0; break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return color;
|
||||
}
|
||||
|
||||
// Adapted from cv_line_template::convex_hull
|
||||
void templateConvexHull(const std::vector<cv::linemod::Template>& templates,
|
||||
int num_modalities, cv::Point offset, cv::Size size,
|
||||
cv::Mat& dst)
|
||||
{
|
||||
std::vector<cv::Point> points;
|
||||
for (int m = 0; m < num_modalities; ++m)
|
||||
{
|
||||
for (int i = 0; i < (int)templates[m].features.size(); ++i)
|
||||
{
|
||||
cv::linemod::Feature f = templates[m].features[i];
|
||||
points.push_back(cv::Point(f.x, f.y) + offset);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<cv::Point> hull;
|
||||
cv::convexHull(points, hull);
|
||||
|
||||
dst = cv::Mat::zeros(size, CV_8U);
|
||||
const int hull_count = (int)hull.size();
|
||||
const cv::Point* hull_pts = &hull[0];
|
||||
cv::fillPoly(dst, &hull_pts, &hull_count, 1, cv::Scalar(255));
|
||||
}
|
||||
|
||||
void drawResponse(const std::vector<cv::linemod::Template>& templates,
|
||||
int num_modalities, cv::Mat& dst, cv::Point offset, int T)
|
||||
{
|
||||
static const cv::Scalar COLORS[5] = { CV_RGB(0, 0, 255),
|
||||
CV_RGB(0, 255, 0),
|
||||
CV_RGB(255, 255, 0),
|
||||
CV_RGB(255, 140, 0),
|
||||
CV_RGB(255, 0, 0) };
|
||||
|
||||
for (int m = 0; m < num_modalities; ++m)
|
||||
{
|
||||
// NOTE: Original demo recalculated max response for each feature in the TxT
|
||||
// box around it and chose the display color based on that response. Here
|
||||
// the display color just depends on the modality.
|
||||
cv::Scalar color = COLORS[m];
|
||||
|
||||
for (int i = 0; i < (int)templates[m].features.size(); ++i)
|
||||
{
|
||||
cv::linemod::Feature f = templates[m].features[i];
|
||||
cv::Point pt(f.x + offset.x, f.y + offset.y);
|
||||
cv::circle(dst, pt, T / 2, color);
|
||||
}
|
||||
}
|
||||
}
|
@@ -1,5 +1,6 @@
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/videoio/videoio.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
@@ -4,6 +4,7 @@
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/core/utility.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
using namespace std;
|
||||
|
@@ -1,4 +1,5 @@
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
@@ -1,203 +0,0 @@
|
||||
#include "opencv2/video/tracking_c.h"
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
#include <time.h>
|
||||
#include <stdio.h>
|
||||
#include <ctype.h>
|
||||
|
||||
static void help(void)
|
||||
{
|
||||
printf(
|
||||
"\nThis program demonstrated the use of motion templates -- basically using the gradients\n"
|
||||
"of thresholded layers of decaying frame differencing. New movements are stamped on top with floating system\n"
|
||||
"time code and motions too old are thresholded away. This is the 'motion history file'. The program reads from the camera of your choice or from\n"
|
||||
"a file. Gradients of motion history are used to detect direction of motoin etc\n"
|
||||
"Usage :\n"
|
||||
"./motempl [camera number 0-n or file name, default is camera 0]\n"
|
||||
);
|
||||
}
|
||||
// various tracking parameters (in seconds)
|
||||
const double MHI_DURATION = 1;
|
||||
const double MAX_TIME_DELTA = 0.5;
|
||||
const double MIN_TIME_DELTA = 0.05;
|
||||
// number of cyclic frame buffer used for motion detection
|
||||
// (should, probably, depend on FPS)
|
||||
const int N = 4;
|
||||
|
||||
// ring image buffer
|
||||
IplImage **buf = 0;
|
||||
int last = 0;
|
||||
|
||||
// temporary images
|
||||
IplImage *mhi = 0; // MHI
|
||||
IplImage *orient = 0; // orientation
|
||||
IplImage *mask = 0; // valid orientation mask
|
||||
IplImage *segmask = 0; // motion segmentation map
|
||||
CvMemStorage* storage = 0; // temporary storage
|
||||
|
||||
// parameters:
|
||||
// img - input video frame
|
||||
// dst - resultant motion picture
|
||||
// args - optional parameters
|
||||
static void update_mhi( IplImage* img, IplImage* dst, int diff_threshold )
|
||||
{
|
||||
double timestamp = (double)clock()/CLOCKS_PER_SEC; // get current time in seconds
|
||||
CvSize size = cvSize(img->width,img->height); // get current frame size
|
||||
int i, idx1 = last, idx2;
|
||||
IplImage* silh;
|
||||
CvSeq* seq;
|
||||
CvRect comp_rect;
|
||||
double count;
|
||||
double angle;
|
||||
CvPoint center;
|
||||
double magnitude;
|
||||
CvScalar color;
|
||||
|
||||
// allocate images at the beginning or
|
||||
// reallocate them if the frame size is changed
|
||||
if( !mhi || mhi->width != size.width || mhi->height != size.height ) {
|
||||
if( buf == 0 ) {
|
||||
buf = (IplImage**)malloc(N*sizeof(buf[0]));
|
||||
memset( buf, 0, N*sizeof(buf[0]));
|
||||
}
|
||||
|
||||
for( i = 0; i < N; i++ ) {
|
||||
cvReleaseImage( &buf[i] );
|
||||
buf[i] = cvCreateImage( size, IPL_DEPTH_8U, 1 );
|
||||
cvZero( buf[i] );
|
||||
}
|
||||
cvReleaseImage( &mhi );
|
||||
cvReleaseImage( &orient );
|
||||
cvReleaseImage( &segmask );
|
||||
cvReleaseImage( &mask );
|
||||
|
||||
mhi = cvCreateImage( size, IPL_DEPTH_32F, 1 );
|
||||
cvZero( mhi ); // clear MHI at the beginning
|
||||
orient = cvCreateImage( size, IPL_DEPTH_32F, 1 );
|
||||
segmask = cvCreateImage( size, IPL_DEPTH_32F, 1 );
|
||||
mask = cvCreateImage( size, IPL_DEPTH_8U, 1 );
|
||||
}
|
||||
|
||||
cvCvtColor( img, buf[last], CV_BGR2GRAY ); // convert frame to grayscale
|
||||
|
||||
idx2 = (last + 1) % N; // index of (last - (N-1))th frame
|
||||
last = idx2;
|
||||
|
||||
silh = buf[idx2];
|
||||
cvAbsDiff( buf[idx1], buf[idx2], silh ); // get difference between frames
|
||||
|
||||
cvThreshold( silh, silh, diff_threshold, 1, CV_THRESH_BINARY ); // and threshold it
|
||||
cvUpdateMotionHistory( silh, mhi, timestamp, MHI_DURATION ); // update MHI
|
||||
|
||||
// convert MHI to blue 8u image
|
||||
cvCvtScale( mhi, mask, 255./MHI_DURATION,
|
||||
(MHI_DURATION - timestamp)*255./MHI_DURATION );
|
||||
cvZero( dst );
|
||||
cvMerge( mask, 0, 0, 0, dst );
|
||||
|
||||
// calculate motion gradient orientation and valid orientation mask
|
||||
cvCalcMotionGradient( mhi, mask, orient, MAX_TIME_DELTA, MIN_TIME_DELTA, 3 );
|
||||
|
||||
if( !storage )
|
||||
storage = cvCreateMemStorage(0);
|
||||
else
|
||||
cvClearMemStorage(storage);
|
||||
|
||||
// segment motion: get sequence of motion components
|
||||
// segmask is marked motion components map. It is not used further
|
||||
seq = cvSegmentMotion( mhi, segmask, storage, timestamp, MAX_TIME_DELTA );
|
||||
|
||||
// iterate through the motion components,
|
||||
// One more iteration (i == -1) corresponds to the whole image (global motion)
|
||||
for( i = -1; i < seq->total; i++ ) {
|
||||
|
||||
if( i < 0 ) { // case of the whole image
|
||||
comp_rect = cvRect( 0, 0, size.width, size.height );
|
||||
color = CV_RGB(255,255,255);
|
||||
magnitude = 100;
|
||||
}
|
||||
else { // i-th motion component
|
||||
comp_rect = ((CvConnectedComp*)cvGetSeqElem( seq, i ))->rect;
|
||||
if( comp_rect.width + comp_rect.height < 100 ) // reject very small components
|
||||
continue;
|
||||
color = CV_RGB(255,0,0);
|
||||
magnitude = 30;
|
||||
}
|
||||
|
||||
// select component ROI
|
||||
cvSetImageROI( silh, comp_rect );
|
||||
cvSetImageROI( mhi, comp_rect );
|
||||
cvSetImageROI( orient, comp_rect );
|
||||
cvSetImageROI( mask, comp_rect );
|
||||
|
||||
// calculate orientation
|
||||
angle = cvCalcGlobalOrientation( orient, mask, mhi, timestamp, MHI_DURATION);
|
||||
angle = 360.0 - angle; // adjust for images with top-left origin
|
||||
|
||||
count = cvNorm( silh, 0, CV_L1, 0 ); // calculate number of points within silhouette ROI
|
||||
|
||||
cvResetImageROI( mhi );
|
||||
cvResetImageROI( orient );
|
||||
cvResetImageROI( mask );
|
||||
cvResetImageROI( silh );
|
||||
|
||||
// check for the case of little motion
|
||||
if( count < comp_rect.width*comp_rect.height * 0.05 )
|
||||
continue;
|
||||
|
||||
// draw a clock with arrow indicating the direction
|
||||
center = cvPoint( (comp_rect.x + comp_rect.width/2),
|
||||
(comp_rect.y + comp_rect.height/2) );
|
||||
|
||||
cvCircle( dst, center, cvRound(magnitude*1.2), color, 3, CV_AA, 0 );
|
||||
cvLine( dst, center, cvPoint( cvRound( center.x + magnitude*cos(angle*CV_PI/180)),
|
||||
cvRound( center.y - magnitude*sin(angle*CV_PI/180))), color, 3, CV_AA, 0 );
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
IplImage* motion = 0;
|
||||
CvCapture* capture = 0;
|
||||
|
||||
help();
|
||||
|
||||
if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))
|
||||
capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 );
|
||||
else if( argc == 2 )
|
||||
capture = cvCaptureFromFile( argv[1] );
|
||||
|
||||
if( capture )
|
||||
{
|
||||
cvNamedWindow( "Motion", 1 );
|
||||
|
||||
for(;;)
|
||||
{
|
||||
IplImage* image = cvQueryFrame( capture );
|
||||
if( !image )
|
||||
break;
|
||||
|
||||
if( !motion )
|
||||
{
|
||||
motion = cvCreateImage( cvSize(image->width,image->height), 8, 3 );
|
||||
cvZero( motion );
|
||||
motion->origin = image->origin;
|
||||
}
|
||||
|
||||
update_mhi( image, motion, 30 );
|
||||
cvShowImage( "Motion", motion );
|
||||
|
||||
if( cvWaitKey(10) >= 0 )
|
||||
break;
|
||||
}
|
||||
cvReleaseCapture( &capture );
|
||||
cvDestroyWindow( "Motion" );
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef _EiC
|
||||
main(1,"motempl.c");
|
||||
#endif
|
@@ -1,322 +0,0 @@
|
||||
#include "opencv2/core/core_c.h"
|
||||
#include "opencv2/ml/ml.hpp"
|
||||
#include <stdio.h>
|
||||
|
||||
static void help()
|
||||
{
|
||||
printf("\nThis program demonstrated the use of OpenCV's decision tree function for learning and predicting data\n"
|
||||
"Usage :\n"
|
||||
"./mushroom <path to agaricus-lepiota.data>\n"
|
||||
"\n"
|
||||
"The sample demonstrates how to build a decision tree for classifying mushrooms.\n"
|
||||
"It uses the sample base agaricus-lepiota.data from UCI Repository, here is the link:\n"
|
||||
"\n"
|
||||
"Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).\n"
|
||||
"UCI Repository of machine learning databases\n"
|
||||
"[http://www.ics.uci.edu/~mlearn/MLRepository.html].\n"
|
||||
"Irvine, CA: University of California, Department of Information and Computer Science.\n"
|
||||
"\n"
|
||||
"// loads the mushroom database, which is a text file, containing\n"
|
||||
"// one training sample per row, all the input variables and the output variable are categorical,\n"
|
||||
"// the values are encoded by characters.\n\n");
|
||||
}
|
||||
|
||||
static int mushroom_read_database( const char* filename, CvMat** data, CvMat** missing, CvMat** responses )
|
||||
{
|
||||
const int M = 1024;
|
||||
FILE* f = fopen( filename, "rt" );
|
||||
CvMemStorage* storage;
|
||||
CvSeq* seq;
|
||||
char buf[M+2], *ptr;
|
||||
float* el_ptr;
|
||||
CvSeqReader reader;
|
||||
int i, j, var_count = 0;
|
||||
|
||||
if( !f )
|
||||
return 0;
|
||||
|
||||
// read the first line and determine the number of variables
|
||||
if( !fgets( buf, M, f ))
|
||||
{
|
||||
fclose(f);
|
||||
return 0;
|
||||
}
|
||||
|
||||
for( ptr = buf; *ptr != '\0'; ptr++ )
|
||||
var_count += *ptr == ',';
|
||||
assert( ptr - buf == (var_count+1)*2 );
|
||||
|
||||
// create temporary memory storage to store the whole database
|
||||
el_ptr = new float[var_count+1];
|
||||
storage = cvCreateMemStorage();
|
||||
seq = cvCreateSeq( 0, sizeof(*seq), (var_count+1)*sizeof(float), storage );
|
||||
|
||||
for(;;)
|
||||
{
|
||||
for( i = 0; i <= var_count; i++ )
|
||||
{
|
||||
int c = buf[i*2];
|
||||
el_ptr[i] = c == '?' ? -1.f : (float)c;
|
||||
}
|
||||
if( i != var_count+1 )
|
||||
break;
|
||||
cvSeqPush( seq, el_ptr );
|
||||
if( !fgets( buf, M, f ) || !strchr( buf, ',' ) )
|
||||
break;
|
||||
}
|
||||
fclose(f);
|
||||
|
||||
// allocate the output matrices and copy the base there
|
||||
*data = cvCreateMat( seq->total, var_count, CV_32F );
|
||||
*missing = cvCreateMat( seq->total, var_count, CV_8U );
|
||||
*responses = cvCreateMat( seq->total, 1, CV_32F );
|
||||
|
||||
cvStartReadSeq( seq, &reader );
|
||||
|
||||
for( i = 0; i < seq->total; i++ )
|
||||
{
|
||||
const float* sdata = (float*)reader.ptr + 1;
|
||||
float* ddata = data[0]->data.fl + var_count*i;
|
||||
float* dr = responses[0]->data.fl + i;
|
||||
uchar* dm = missing[0]->data.ptr + var_count*i;
|
||||
|
||||
for( j = 0; j < var_count; j++ )
|
||||
{
|
||||
ddata[j] = sdata[j];
|
||||
dm[j] = sdata[j] < 0;
|
||||
}
|
||||
*dr = sdata[-1];
|
||||
CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
|
||||
}
|
||||
|
||||
cvReleaseMemStorage( &storage );
|
||||
delete [] el_ptr;
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
static CvDTree* mushroom_create_dtree( const CvMat* data, const CvMat* missing,
|
||||
const CvMat* responses, float p_weight )
|
||||
{
|
||||
CvDTree* dtree;
|
||||
CvMat* var_type;
|
||||
int i, hr1 = 0, hr2 = 0, p_total = 0;
|
||||
float priors[] = { 1, p_weight };
|
||||
|
||||
var_type = cvCreateMat( data->cols + 1, 1, CV_8U );
|
||||
cvSet( var_type, cvScalarAll(CV_VAR_CATEGORICAL) ); // all the variables are categorical
|
||||
|
||||
dtree = new CvDTree;
|
||||
|
||||
dtree->train( data, CV_ROW_SAMPLE, responses, 0, 0, var_type, missing,
|
||||
CvDTreeParams( 8, // max depth
|
||||
10, // min sample count
|
||||
0, // regression accuracy: N/A here
|
||||
true, // compute surrogate split, as we have missing data
|
||||
15, // max number of categories (use sub-optimal algorithm for larger numbers)
|
||||
10, // the number of cross-validation folds
|
||||
true, // use 1SE rule => smaller tree
|
||||
true, // throw away the pruned tree branches
|
||||
priors // the array of priors, the bigger p_weight, the more attention
|
||||
// to the poisonous mushrooms
|
||||
// (a mushroom will be judjed to be poisonous with bigger chance)
|
||||
));
|
||||
|
||||
// compute hit-rate on the training database, demonstrates predict usage.
|
||||
for( i = 0; i < data->rows; i++ )
|
||||
{
|
||||
CvMat sample, mask;
|
||||
cvGetRow( data, &sample, i );
|
||||
cvGetRow( missing, &mask, i );
|
||||
double r = dtree->predict( &sample, &mask )->value;
|
||||
int d = fabs(r - responses->data.fl[i]) >= FLT_EPSILON;
|
||||
if( d )
|
||||
{
|
||||
if( r != 'p' )
|
||||
hr1++;
|
||||
else
|
||||
hr2++;
|
||||
}
|
||||
p_total += responses->data.fl[i] == 'p';
|
||||
}
|
||||
|
||||
printf( "Results on the training database:\n"
|
||||
"\tPoisonous mushrooms mis-predicted: %d (%g%%)\n"
|
||||
"\tFalse-alarms: %d (%g%%)\n", hr1, (double)hr1*100/p_total,
|
||||
hr2, (double)hr2*100/(data->rows - p_total) );
|
||||
|
||||
cvReleaseMat( &var_type );
|
||||
|
||||
return dtree;
|
||||
}
|
||||
|
||||
|
||||
static const char* var_desc[] =
|
||||
{
|
||||
"cap shape (bell=b,conical=c,convex=x,flat=f)",
|
||||
"cap surface (fibrous=f,grooves=g,scaly=y,smooth=s)",
|
||||
"cap color (brown=n,buff=b,cinnamon=c,gray=g,green=r,\n\tpink=p,purple=u,red=e,white=w,yellow=y)",
|
||||
"bruises? (bruises=t,no=f)",
|
||||
"odor (almond=a,anise=l,creosote=c,fishy=y,foul=f,\n\tmusty=m,none=n,pungent=p,spicy=s)",
|
||||
"gill attachment (attached=a,descending=d,free=f,notched=n)",
|
||||
"gill spacing (close=c,crowded=w,distant=d)",
|
||||
"gill size (broad=b,narrow=n)",
|
||||
"gill color (black=k,brown=n,buff=b,chocolate=h,gray=g,\n\tgreen=r,orange=o,pink=p,purple=u,red=e,white=w,yellow=y)",
|
||||
"stalk shape (enlarging=e,tapering=t)",
|
||||
"stalk root (bulbous=b,club=c,cup=u,equal=e,rhizomorphs=z,rooted=r)",
|
||||
"stalk surface above ring (ibrous=f,scaly=y,silky=k,smooth=s)",
|
||||
"stalk surface below ring (ibrous=f,scaly=y,silky=k,smooth=s)",
|
||||
"stalk color above ring (brown=n,buff=b,cinnamon=c,gray=g,orange=o,\n\tpink=p,red=e,white=w,yellow=y)",
|
||||
"stalk color below ring (brown=n,buff=b,cinnamon=c,gray=g,orange=o,\n\tpink=p,red=e,white=w,yellow=y)",
|
||||
"veil type (partial=p,universal=u)",
|
||||
"veil color (brown=n,orange=o,white=w,yellow=y)",
|
||||
"ring number (none=n,one=o,two=t)",
|
||||
"ring type (cobwebby=c,evanescent=e,flaring=f,large=l,\n\tnone=n,pendant=p,sheathing=s,zone=z)",
|
||||
"spore print color (black=k,brown=n,buff=b,chocolate=h,green=r,\n\torange=o,purple=u,white=w,yellow=y)",
|
||||
"population (abundant=a,clustered=c,numerous=n,\n\tscattered=s,several=v,solitary=y)",
|
||||
"habitat (grasses=g,leaves=l,meadows=m,paths=p\n\turban=u,waste=w,woods=d)",
|
||||
0
|
||||
};
|
||||
|
||||
|
||||
static void print_variable_importance( CvDTree* dtree )
|
||||
{
|
||||
const CvMat* var_importance = dtree->get_var_importance();
|
||||
int i;
|
||||
char input[1000];
|
||||
|
||||
if( !var_importance )
|
||||
{
|
||||
printf( "Error: Variable importance can not be retrieved\n" );
|
||||
return;
|
||||
}
|
||||
|
||||
printf( "Print variable importance information? (y/n) " );
|
||||
int values_read = scanf( "%1s", input );
|
||||
CV_Assert(values_read == 1);
|
||||
|
||||
if( input[0] != 'y' && input[0] != 'Y' )
|
||||
return;
|
||||
|
||||
for( i = 0; i < var_importance->cols*var_importance->rows; i++ )
|
||||
{
|
||||
double val = var_importance->data.db[i];
|
||||
char buf[100];
|
||||
int len = (int)(strchr( var_desc[i], '(' ) - var_desc[i] - 1);
|
||||
strncpy( buf, var_desc[i], len );
|
||||
buf[len] = '\0';
|
||||
printf( "%s", buf );
|
||||
printf( ": %g%%\n", val*100. );
|
||||
}
|
||||
}
|
||||
|
||||
static void interactive_classification( CvDTree* dtree )
|
||||
{
|
||||
char input[1000];
|
||||
const CvDTreeNode* root;
|
||||
CvDTreeTrainData* data;
|
||||
|
||||
if( !dtree )
|
||||
return;
|
||||
|
||||
root = dtree->get_root();
|
||||
data = dtree->get_data();
|
||||
|
||||
for(;;)
|
||||
{
|
||||
const CvDTreeNode* node;
|
||||
|
||||
printf( "Start/Proceed with interactive mushroom classification (y/n): " );
|
||||
int values_read = scanf( "%1s", input );
|
||||
CV_Assert(values_read == 1);
|
||||
|
||||
if( input[0] != 'y' && input[0] != 'Y' )
|
||||
break;
|
||||
printf( "Enter 1-letter answers, '?' for missing/unknown value...\n" );
|
||||
|
||||
// custom version of predict
|
||||
node = root;
|
||||
for(;;)
|
||||
{
|
||||
CvDTreeSplit* split = node->split;
|
||||
int dir = 0;
|
||||
|
||||
if( !node->left || node->Tn <= dtree->get_pruned_tree_idx() || !node->split )
|
||||
break;
|
||||
|
||||
for( ; split != 0; )
|
||||
{
|
||||
int vi = split->var_idx, j;
|
||||
int count = data->cat_count->data.i[vi];
|
||||
const int* map = data->cat_map->data.i + data->cat_ofs->data.i[vi];
|
||||
|
||||
printf( "%s: ", var_desc[vi] );
|
||||
values_read = scanf( "%1s", input );
|
||||
CV_Assert(values_read == 1);
|
||||
|
||||
if( input[0] == '?' )
|
||||
{
|
||||
split = split->next;
|
||||
continue;
|
||||
}
|
||||
|
||||
// convert the input character to the normalized value of the variable
|
||||
for( j = 0; j < count; j++ )
|
||||
if( map[j] == input[0] )
|
||||
break;
|
||||
if( j < count )
|
||||
{
|
||||
dir = (split->subset[j>>5] & (1 << (j&31))) ? -1 : 1;
|
||||
if( split->inversed )
|
||||
dir = -dir;
|
||||
break;
|
||||
}
|
||||
else
|
||||
printf( "Error: unrecognized value\n" );
|
||||
}
|
||||
|
||||
if( !dir )
|
||||
{
|
||||
printf( "Impossible to classify the sample\n");
|
||||
node = 0;
|
||||
break;
|
||||
}
|
||||
node = dir < 0 ? node->left : node->right;
|
||||
}
|
||||
|
||||
if( node )
|
||||
printf( "Prediction result: the mushroom is %s\n",
|
||||
node->class_idx == 0 ? "EDIBLE" : "POISONOUS" );
|
||||
printf( "\n-----------------------------\n" );
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
CvMat *data = 0, *missing = 0, *responses = 0;
|
||||
CvDTree* dtree;
|
||||
const char* base_path = argc >= 2 ? argv[1] : "agaricus-lepiota.data";
|
||||
|
||||
help();
|
||||
|
||||
if( !mushroom_read_database( base_path, &data, &missing, &responses ) )
|
||||
{
|
||||
printf( "\nUnable to load the training database\n\n");
|
||||
help();
|
||||
return -1;
|
||||
}
|
||||
|
||||
dtree = mushroom_create_dtree( data, missing, responses,
|
||||
10 // poisonous mushrooms will have 10x higher weight in the decision tree
|
||||
);
|
||||
cvReleaseMat( &data );
|
||||
cvReleaseMat( &missing );
|
||||
cvReleaseMat( &responses );
|
||||
|
||||
print_variable_importance( dtree );
|
||||
interactive_classification( dtree );
|
||||
delete dtree;
|
||||
|
||||
return 0;
|
||||
}
|
@@ -17,6 +17,7 @@
|
||||
#include <signal.h>
|
||||
#include "opencv2/photo.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/core.hpp"
|
||||
#include <iostream>
|
||||
|
@@ -1,3 +1,4 @@
|
||||
#include "opencv2/videoio/videoio.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
|
||||
|
@@ -43,6 +43,7 @@
|
||||
#include <sstream>
|
||||
|
||||
#include <opencv2/core/core.hpp>
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
using namespace cv;
|
||||
|
@@ -1,4 +1,5 @@
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/videoio/videoio.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
|
||||
|
@@ -12,6 +12,7 @@
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::ml;
|
||||
|
||||
const Scalar WHITE_COLOR = Scalar(255,255,255);
|
||||
const string winName = "points";
|
||||
@@ -22,18 +23,20 @@ RNG rng;
|
||||
|
||||
vector<Point> trainedPoints;
|
||||
vector<int> trainedPointsMarkers;
|
||||
vector<Scalar> classColors;
|
||||
const int MAX_CLASSES = 2;
|
||||
vector<Vec3b> classColors(MAX_CLASSES);
|
||||
int currentClass = 0;
|
||||
vector<int> classCounters(MAX_CLASSES);
|
||||
|
||||
#define _NBC_ 0 // normal Bayessian classifier
|
||||
#define _KNN_ 0 // k nearest neighbors classifier
|
||||
#define _SVM_ 0 // support vectors machine
|
||||
#define _NBC_ 1 // normal Bayessian classifier
|
||||
#define _KNN_ 1 // k nearest neighbors classifier
|
||||
#define _SVM_ 1 // support vectors machine
|
||||
#define _DT_ 1 // decision tree
|
||||
#define _BT_ 0 // ADA Boost
|
||||
#define _BT_ 1 // ADA Boost
|
||||
#define _GBT_ 0 // gradient boosted trees
|
||||
#define _RF_ 0 // random forest
|
||||
#define _ERT_ 0 // extremely randomized trees
|
||||
#define _ANN_ 0 // artificial neural networks
|
||||
#define _EM_ 0 // expectation-maximization
|
||||
#define _RF_ 1 // random forest
|
||||
#define _ANN_ 1 // artificial neural networks
|
||||
#define _EM_ 1 // expectation-maximization
|
||||
|
||||
static void on_mouse( int event, int x, int y, int /*flags*/, void* )
|
||||
{
|
||||
@@ -44,76 +47,43 @@ static void on_mouse( int event, int x, int y, int /*flags*/, void* )
|
||||
|
||||
if( event == EVENT_LBUTTONUP )
|
||||
{
|
||||
if( classColors.empty() )
|
||||
return;
|
||||
|
||||
trainedPoints.push_back( Point(x,y) );
|
||||
trainedPointsMarkers.push_back( (int)(classColors.size()-1) );
|
||||
trainedPointsMarkers.push_back( currentClass );
|
||||
classCounters[currentClass]++;
|
||||
updateFlag = true;
|
||||
}
|
||||
else if( event == EVENT_RBUTTONUP )
|
||||
{
|
||||
#if _BT_
|
||||
if( classColors.size() < 2 )
|
||||
{
|
||||
#endif
|
||||
classColors.push_back( Scalar((uchar)rng(256), (uchar)rng(256), (uchar)rng(256)) );
|
||||
updateFlag = true;
|
||||
#if _BT_
|
||||
}
|
||||
else
|
||||
cout << "New class can not be added, because CvBoost can only be used for 2-class classification" << endl;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
//draw
|
||||
if( updateFlag )
|
||||
{
|
||||
img = Scalar::all(0);
|
||||
|
||||
// put the text
|
||||
stringstream text;
|
||||
text << "current class " << classColors.size()-1;
|
||||
putText( img, text.str(), Point(10,25), FONT_HERSHEY_SIMPLEX, 0.8f, WHITE_COLOR, 2 );
|
||||
|
||||
text.str("");
|
||||
text << "total classes " << classColors.size();
|
||||
putText( img, text.str(), Point(10,50), FONT_HERSHEY_SIMPLEX, 0.8f, WHITE_COLOR, 2 );
|
||||
|
||||
text.str("");
|
||||
text << "total points " << trainedPoints.size();
|
||||
putText(img, text.str(), Point(10,75), FONT_HERSHEY_SIMPLEX, 0.8f, WHITE_COLOR, 2 );
|
||||
|
||||
// draw points
|
||||
for( size_t i = 0; i < trainedPoints.size(); i++ )
|
||||
circle( img, trainedPoints[i], 5, classColors[trainedPointsMarkers[i]], -1 );
|
||||
{
|
||||
Vec3b c = classColors[trainedPointsMarkers[i]];
|
||||
circle( img, trainedPoints[i], 5, Scalar(c), -1 );
|
||||
}
|
||||
|
||||
imshow( winName, img );
|
||||
}
|
||||
}
|
||||
|
||||
static void prepare_train_data( Mat& samples, Mat& classes )
|
||||
static Mat prepare_train_samples(const vector<Point>& pts)
|
||||
{
|
||||
Mat( trainedPoints ).copyTo( samples );
|
||||
Mat( trainedPointsMarkers ).copyTo( classes );
|
||||
|
||||
// reshape trainData and change its type
|
||||
samples = samples.reshape( 1, samples.rows );
|
||||
samples.convertTo( samples, CV_32FC1 );
|
||||
Mat samples;
|
||||
Mat(pts).reshape(1, (int)pts.size()).convertTo(samples, CV_32F);
|
||||
return samples;
|
||||
}
|
||||
|
||||
#if _NBC_
|
||||
static void find_decision_boundary_NBC()
|
||||
static Ptr<TrainData> prepare_train_data()
|
||||
{
|
||||
img.copyTo( imgDst );
|
||||
|
||||
Mat trainSamples, trainClasses;
|
||||
prepare_train_data( trainSamples, trainClasses );
|
||||
|
||||
// learn classifier
|
||||
CvNormalBayesClassifier normalBayesClassifier( trainSamples, trainClasses );
|
||||
Mat samples = prepare_train_samples(trainedPoints);
|
||||
return TrainData::create(samples, ROW_SAMPLE, Mat(trainedPointsMarkers));
|
||||
}
|
||||
|
||||
static void predict_and_paint(const Ptr<StatModel>& model, Mat& dst)
|
||||
{
|
||||
Mat testSample( 1, 2, CV_32FC1 );
|
||||
for( int y = 0; y < img.rows; y += testStep )
|
||||
{
|
||||
@@ -122,378 +92,171 @@ static void find_decision_boundary_NBC()
|
||||
testSample.at<float>(0) = (float)x;
|
||||
testSample.at<float>(1) = (float)y;
|
||||
|
||||
int response = (int)normalBayesClassifier.predict( testSample );
|
||||
circle( imgDst, Point(x,y), 1, classColors[response] );
|
||||
int response = (int)model->predict( testSample );
|
||||
dst.at<Vec3b>(y, x) = classColors[response];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if _NBC_
|
||||
static void find_decision_boundary_NBC()
|
||||
{
|
||||
// learn classifier
|
||||
Ptr<NormalBayesClassifier> normalBayesClassifier = StatModel::train<NormalBayesClassifier>(prepare_train_data(), NormalBayesClassifier::Params());
|
||||
|
||||
predict_and_paint(normalBayesClassifier, imgDst);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#if _KNN_
|
||||
static void find_decision_boundary_KNN( int K )
|
||||
{
|
||||
img.copyTo( imgDst );
|
||||
|
||||
Mat trainSamples, trainClasses;
|
||||
prepare_train_data( trainSamples, trainClasses );
|
||||
|
||||
// learn classifier
|
||||
#if defined HAVE_OPENCV_OCL && _OCL_KNN_
|
||||
cv::ocl::KNearestNeighbour knnClassifier;
|
||||
Mat temp, result;
|
||||
knnClassifier.train(trainSamples, trainClasses, temp, false, K);
|
||||
cv::ocl::oclMat testSample_ocl, reslut_ocl;
|
||||
#else
|
||||
CvKNearest knnClassifier( trainSamples, trainClasses, Mat(), false, K );
|
||||
#endif
|
||||
|
||||
Mat testSample( 1, 2, CV_32FC1 );
|
||||
for( int y = 0; y < img.rows; y += testStep )
|
||||
{
|
||||
for( int x = 0; x < img.cols; x += testStep )
|
||||
{
|
||||
testSample.at<float>(0) = (float)x;
|
||||
testSample.at<float>(1) = (float)y;
|
||||
#if defined HAVE_OPENCV_OCL && _OCL_KNN_
|
||||
testSample_ocl.upload(testSample);
|
||||
|
||||
knnClassifier.find_nearest(testSample_ocl, K, reslut_ocl);
|
||||
|
||||
reslut_ocl.download(result);
|
||||
int response = saturate_cast<int>(result.at<float>(0));
|
||||
circle(imgDst, Point(x, y), 1, classColors[response]);
|
||||
#else
|
||||
|
||||
int response = (int)knnClassifier.find_nearest( testSample, K );
|
||||
circle( imgDst, Point(x,y), 1, classColors[response] );
|
||||
#endif
|
||||
}
|
||||
}
|
||||
Ptr<KNearest> knn = StatModel::train<KNearest>(prepare_train_data(), KNearest::Params(K, true));
|
||||
predict_and_paint(knn, imgDst);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if _SVM_
|
||||
static void find_decision_boundary_SVM( CvSVMParams params )
|
||||
static void find_decision_boundary_SVM( SVM::Params params )
|
||||
{
|
||||
img.copyTo( imgDst );
|
||||
Ptr<SVM> svm = StatModel::train<SVM>(prepare_train_data(), params);
|
||||
predict_and_paint(svm, imgDst);
|
||||
|
||||
Mat trainSamples, trainClasses;
|
||||
prepare_train_data( trainSamples, trainClasses );
|
||||
|
||||
// learn classifier
|
||||
#if defined HAVE_OPENCV_OCL && _OCL_SVM_
|
||||
cv::ocl::CvSVM_OCL svmClassifier(trainSamples, trainClasses, Mat(), Mat(), params);
|
||||
#else
|
||||
CvSVM svmClassifier( trainSamples, trainClasses, Mat(), Mat(), params );
|
||||
#endif
|
||||
|
||||
Mat testSample( 1, 2, CV_32FC1 );
|
||||
for( int y = 0; y < img.rows; y += testStep )
|
||||
Mat sv = svm->getSupportVectors();
|
||||
for( int i = 0; i < sv.rows; i++ )
|
||||
{
|
||||
for( int x = 0; x < img.cols; x += testStep )
|
||||
{
|
||||
testSample.at<float>(0) = (float)x;
|
||||
testSample.at<float>(1) = (float)y;
|
||||
|
||||
int response = (int)svmClassifier.predict( testSample );
|
||||
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
|
||||
}
|
||||
const float* supportVector = sv.ptr<float>(i);
|
||||
circle( imgDst, Point(saturate_cast<int>(supportVector[0]),saturate_cast<int>(supportVector[1])), 5, Scalar(255,255,255), -1 );
|
||||
}
|
||||
|
||||
|
||||
for( int i = 0; i < svmClassifier.get_support_vector_count(); i++ )
|
||||
{
|
||||
const float* supportVector = svmClassifier.get_support_vector(i);
|
||||
circle( imgDst, Point(saturate_cast<int>(supportVector[0]),saturate_cast<int>(supportVector[1])), 5, CV_RGB(255,255,255), -1 );
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
#if _DT_
|
||||
static void find_decision_boundary_DT()
|
||||
{
|
||||
img.copyTo( imgDst );
|
||||
DTrees::Params params;
|
||||
params.maxDepth = 8;
|
||||
params.minSampleCount = 2;
|
||||
params.useSurrogates = false;
|
||||
params.CVFolds = 0; // the number of cross-validation folds
|
||||
params.use1SERule = false;
|
||||
params.truncatePrunedTree = false;
|
||||
|
||||
Mat trainSamples, trainClasses;
|
||||
prepare_train_data( trainSamples, trainClasses );
|
||||
Ptr<DTrees> dtree = StatModel::train<DTrees>(prepare_train_data(), params);
|
||||
|
||||
// learn classifier
|
||||
CvDTree dtree;
|
||||
|
||||
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) );
|
||||
var_types.at<uchar>( trainSamples.cols ) = CV_VAR_CATEGORICAL;
|
||||
|
||||
CvDTreeParams params;
|
||||
params.max_depth = 8;
|
||||
params.min_sample_count = 2;
|
||||
params.use_surrogates = false;
|
||||
params.cv_folds = 0; // the number of cross-validation folds
|
||||
params.use_1se_rule = false;
|
||||
params.truncate_pruned_tree = false;
|
||||
|
||||
dtree.train( trainSamples, CV_ROW_SAMPLE, trainClasses,
|
||||
Mat(), Mat(), var_types, Mat(), params );
|
||||
|
||||
Mat testSample(1, 2, CV_32FC1 );
|
||||
for( int y = 0; y < img.rows; y += testStep )
|
||||
{
|
||||
for( int x = 0; x < img.cols; x += testStep )
|
||||
{
|
||||
testSample.at<float>(0) = (float)x;
|
||||
testSample.at<float>(1) = (float)y;
|
||||
|
||||
int response = (int)dtree.predict( testSample )->value;
|
||||
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
|
||||
}
|
||||
}
|
||||
predict_and_paint(dtree, imgDst);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if _BT_
|
||||
void find_decision_boundary_BT()
|
||||
static void find_decision_boundary_BT()
|
||||
{
|
||||
img.copyTo( imgDst );
|
||||
Boost::Params params( Boost::DISCRETE, // boost_type
|
||||
100, // weak_count
|
||||
0.95, // weight_trim_rate
|
||||
2, // max_depth
|
||||
false, //use_surrogates
|
||||
Mat() // priors
|
||||
);
|
||||
|
||||
Mat trainSamples, trainClasses;
|
||||
prepare_train_data( trainSamples, trainClasses );
|
||||
|
||||
// learn classifier
|
||||
CvBoost boost;
|
||||
|
||||
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) );
|
||||
var_types.at<uchar>( trainSamples.cols ) = CV_VAR_CATEGORICAL;
|
||||
|
||||
CvBoostParams params( CvBoost::DISCRETE, // boost_type
|
||||
100, // weak_count
|
||||
0.95, // weight_trim_rate
|
||||
2, // max_depth
|
||||
false, //use_surrogates
|
||||
0 // priors
|
||||
);
|
||||
|
||||
boost.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params );
|
||||
|
||||
Mat testSample(1, 2, CV_32FC1 );
|
||||
for( int y = 0; y < img.rows; y += testStep )
|
||||
{
|
||||
for( int x = 0; x < img.cols; x += testStep )
|
||||
{
|
||||
testSample.at<float>(0) = (float)x;
|
||||
testSample.at<float>(1) = (float)y;
|
||||
|
||||
int response = (int)boost.predict( testSample );
|
||||
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
|
||||
}
|
||||
}
|
||||
Ptr<Boost> boost = StatModel::train<Boost>(prepare_train_data(), params);
|
||||
predict_and_paint(boost, imgDst);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if _GBT_
|
||||
void find_decision_boundary_GBT()
|
||||
static void find_decision_boundary_GBT()
|
||||
{
|
||||
img.copyTo( imgDst );
|
||||
GBTrees::Params params( GBTrees::DEVIANCE_LOSS, // loss_function_type
|
||||
100, // weak_count
|
||||
0.1f, // shrinkage
|
||||
1.0f, // subsample_portion
|
||||
2, // max_depth
|
||||
false // use_surrogates )
|
||||
);
|
||||
|
||||
Mat trainSamples, trainClasses;
|
||||
prepare_train_data( trainSamples, trainClasses );
|
||||
|
||||
// learn classifier
|
||||
CvGBTrees gbtrees;
|
||||
|
||||
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) );
|
||||
var_types.at<uchar>( trainSamples.cols ) = CV_VAR_CATEGORICAL;
|
||||
|
||||
CvGBTreesParams params( CvGBTrees::DEVIANCE_LOSS, // loss_function_type
|
||||
100, // weak_count
|
||||
0.1f, // shrinkage
|
||||
1.0f, // subsample_portion
|
||||
2, // max_depth
|
||||
false // use_surrogates )
|
||||
);
|
||||
|
||||
gbtrees.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params );
|
||||
|
||||
Mat testSample(1, 2, CV_32FC1 );
|
||||
for( int y = 0; y < img.rows; y += testStep )
|
||||
{
|
||||
for( int x = 0; x < img.cols; x += testStep )
|
||||
{
|
||||
testSample.at<float>(0) = (float)x;
|
||||
testSample.at<float>(1) = (float)y;
|
||||
|
||||
int response = (int)gbtrees.predict( testSample );
|
||||
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
|
||||
}
|
||||
}
|
||||
Ptr<GBTrees> gbtrees = StatModel::train<GBTrees>(prepare_train_data(), params);
|
||||
predict_and_paint(gbtrees, imgDst);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if _RF_
|
||||
void find_decision_boundary_RF()
|
||||
static void find_decision_boundary_RF()
|
||||
{
|
||||
img.copyTo( imgDst );
|
||||
|
||||
Mat trainSamples, trainClasses;
|
||||
prepare_train_data( trainSamples, trainClasses );
|
||||
|
||||
// learn classifier
|
||||
CvRTrees rtrees;
|
||||
CvRTParams params( 4, // max_depth,
|
||||
RTrees::Params params( 4, // max_depth,
|
||||
2, // min_sample_count,
|
||||
0.f, // regression_accuracy,
|
||||
false, // use_surrogates,
|
||||
16, // max_categories,
|
||||
0, // priors,
|
||||
Mat(), // priors,
|
||||
false, // calc_var_importance,
|
||||
1, // nactive_vars,
|
||||
5, // max_num_of_trees_in_the_forest,
|
||||
0, // forest_accuracy,
|
||||
CV_TERMCRIT_ITER // termcrit_type
|
||||
TermCriteria(TermCriteria::MAX_ITER, 5, 0) // max_num_of_trees_in_the_forest,
|
||||
);
|
||||
|
||||
rtrees.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), Mat(), Mat(), params );
|
||||
|
||||
Mat testSample(1, 2, CV_32FC1 );
|
||||
for( int y = 0; y < img.rows; y += testStep )
|
||||
{
|
||||
for( int x = 0; x < img.cols; x += testStep )
|
||||
{
|
||||
testSample.at<float>(0) = (float)x;
|
||||
testSample.at<float>(1) = (float)y;
|
||||
|
||||
int response = (int)rtrees.predict( testSample );
|
||||
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
|
||||
}
|
||||
}
|
||||
Ptr<RTrees> rtrees = StatModel::train<RTrees>(prepare_train_data(), params);
|
||||
predict_and_paint(rtrees, imgDst);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if _ERT_
|
||||
void find_decision_boundary_ERT()
|
||||
{
|
||||
img.copyTo( imgDst );
|
||||
|
||||
Mat trainSamples, trainClasses;
|
||||
prepare_train_data( trainSamples, trainClasses );
|
||||
|
||||
// learn classifier
|
||||
CvERTrees ertrees;
|
||||
|
||||
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) );
|
||||
var_types.at<uchar>( trainSamples.cols ) = CV_VAR_CATEGORICAL;
|
||||
|
||||
CvRTParams params( 4, // max_depth,
|
||||
2, // min_sample_count,
|
||||
0.f, // regression_accuracy,
|
||||
false, // use_surrogates,
|
||||
16, // max_categories,
|
||||
0, // priors,
|
||||
false, // calc_var_importance,
|
||||
1, // nactive_vars,
|
||||
5, // max_num_of_trees_in_the_forest,
|
||||
0, // forest_accuracy,
|
||||
CV_TERMCRIT_ITER // termcrit_type
|
||||
);
|
||||
|
||||
ertrees.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params );
|
||||
|
||||
Mat testSample(1, 2, CV_32FC1 );
|
||||
for( int y = 0; y < img.rows; y += testStep )
|
||||
{
|
||||
for( int x = 0; x < img.cols; x += testStep )
|
||||
{
|
||||
testSample.at<float>(0) = (float)x;
|
||||
testSample.at<float>(1) = (float)y;
|
||||
|
||||
int response = (int)ertrees.predict( testSample );
|
||||
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if _ANN_
|
||||
void find_decision_boundary_ANN( const Mat& layer_sizes )
|
||||
static void find_decision_boundary_ANN( const Mat& layer_sizes )
|
||||
{
|
||||
img.copyTo( imgDst );
|
||||
ANN_MLP::Params params(layer_sizes, ANN_MLP::SIGMOID_SYM, 1, 1, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 300, FLT_EPSILON),
|
||||
ANN_MLP::Params::BACKPROP, 0.001);
|
||||
|
||||
Mat trainSamples, trainClasses;
|
||||
prepare_train_data( trainSamples, trainClasses );
|
||||
|
||||
// prerare trainClasses
|
||||
trainClasses.create( trainedPoints.size(), classColors.size(), CV_32FC1 );
|
||||
for( int i = 0; i < trainClasses.rows; i++ )
|
||||
Mat trainClasses = Mat::zeros( (int)trainedPoints.size(), (int)classColors.size(), CV_32FC1 );
|
||||
for( int i = 0; i < trainClasses.rows; i++ )
|
||||
{
|
||||
for( int k = 0; k < trainClasses.cols; k++ )
|
||||
{
|
||||
if( k == trainedPointsMarkers[i] )
|
||||
trainClasses.at<float>(i,k) = 1;
|
||||
else
|
||||
trainClasses.at<float>(i,k) = 0;
|
||||
}
|
||||
trainClasses.at<float>(i, trainedPointsMarkers[i]) = 1.f;
|
||||
}
|
||||
|
||||
Mat weights( 1, trainedPoints.size(), CV_32FC1, Scalar::all(1) );
|
||||
Mat samples = prepare_train_samples(trainedPoints);
|
||||
Ptr<TrainData> tdata = TrainData::create(samples, ROW_SAMPLE, trainClasses);
|
||||
|
||||
// learn classifier
|
||||
CvANN_MLP ann( layer_sizes, CvANN_MLP::SIGMOID_SYM, 1, 1 );
|
||||
ann.train( trainSamples, trainClasses, weights );
|
||||
|
||||
Mat testSample( 1, 2, CV_32FC1 );
|
||||
for( int y = 0; y < img.rows; y += testStep )
|
||||
{
|
||||
for( int x = 0; x < img.cols; x += testStep )
|
||||
{
|
||||
testSample.at<float>(0) = (float)x;
|
||||
testSample.at<float>(1) = (float)y;
|
||||
|
||||
Mat outputs( 1, classColors.size(), CV_32FC1, testSample.data );
|
||||
ann.predict( testSample, outputs );
|
||||
Point maxLoc;
|
||||
minMaxLoc( outputs, 0, 0, 0, &maxLoc );
|
||||
circle( imgDst, Point(x,y), 2, classColors[maxLoc.x], 1 );
|
||||
}
|
||||
}
|
||||
Ptr<ANN_MLP> ann = StatModel::train<ANN_MLP>(tdata, params);
|
||||
predict_and_paint(ann, imgDst);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if _EM_
|
||||
void find_decision_boundary_EM()
|
||||
static void find_decision_boundary_EM()
|
||||
{
|
||||
img.copyTo( imgDst );
|
||||
|
||||
Mat trainSamples, trainClasses;
|
||||
prepare_train_data( trainSamples, trainClasses );
|
||||
Mat samples = prepare_train_samples(trainedPoints);
|
||||
|
||||
vector<cv::EM> em_models(classColors.size());
|
||||
int i, j, nmodels = (int)classColors.size();
|
||||
vector<Ptr<EM> > em_models(nmodels);
|
||||
Mat modelSamples;
|
||||
|
||||
CV_Assert((int)trainClasses.total() == trainSamples.rows);
|
||||
CV_Assert((int)trainClasses.type() == CV_32SC1);
|
||||
|
||||
for(size_t modelIndex = 0; modelIndex < em_models.size(); modelIndex++)
|
||||
for( i = 0; i < nmodels; i++ )
|
||||
{
|
||||
const int componentCount = 3;
|
||||
em_models[modelIndex] = EM(componentCount, cv::EM::COV_MAT_DIAGONAL);
|
||||
|
||||
Mat modelSamples;
|
||||
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
|
||||
modelSamples.release();
|
||||
for( j = 0; j < samples.rows; j++ )
|
||||
{
|
||||
if(trainClasses.at<int>(sampleIndex) == (int)modelIndex)
|
||||
modelSamples.push_back(trainSamples.row(sampleIndex));
|
||||
if( trainedPointsMarkers[j] == i )
|
||||
modelSamples.push_back(samples.row(j));
|
||||
}
|
||||
|
||||
// learn models
|
||||
if(!modelSamples.empty())
|
||||
em_models[modelIndex].train(modelSamples);
|
||||
if( !modelSamples.empty() )
|
||||
{
|
||||
em_models[i] = EM::train(modelSamples, noArray(), noArray(), noArray(),
|
||||
EM::Params(componentCount, EM::COV_MAT_DIAGONAL));
|
||||
}
|
||||
}
|
||||
|
||||
// classify coordinate plane points using the bayes classifier, i.e.
|
||||
// y(x) = arg max_i=1_modelsCount likelihoods_i(x)
|
||||
Mat testSample(1, 2, CV_32FC1 );
|
||||
Mat logLikelihoods(1, nmodels, CV_64FC1, Scalar(-DBL_MAX));
|
||||
|
||||
for( int y = 0; y < img.rows; y += testStep )
|
||||
{
|
||||
for( int x = 0; x < img.cols; x += testStep )
|
||||
@@ -501,17 +264,14 @@ void find_decision_boundary_EM()
|
||||
testSample.at<float>(0) = (float)x;
|
||||
testSample.at<float>(1) = (float)y;
|
||||
|
||||
Mat logLikelihoods(1, em_models.size(), CV_64FC1, Scalar(-DBL_MAX));
|
||||
for(size_t modelIndex = 0; modelIndex < em_models.size(); modelIndex++)
|
||||
for( i = 0; i < nmodels; i++ )
|
||||
{
|
||||
if(em_models[modelIndex].isTrained())
|
||||
logLikelihoods.at<double>(modelIndex) = em_models[modelIndex].predict(testSample)[0];
|
||||
if( !em_models[i].empty() )
|
||||
logLikelihoods.at<double>(i) = em_models[i]->predict2(testSample, noArray())[0];
|
||||
}
|
||||
Point maxLoc;
|
||||
minMaxLoc(logLikelihoods, 0, 0, 0, &maxLoc);
|
||||
|
||||
int response = maxLoc.x;
|
||||
circle( imgDst, Point(x,y), 2, classColors[response], 1 );
|
||||
imgDst.at<Vec3b>(y, x) = classColors[maxLoc.x];
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -520,7 +280,7 @@ void find_decision_boundary_EM()
|
||||
int main()
|
||||
{
|
||||
cout << "Use:" << endl
|
||||
<< " right mouse button - to add new class;" << endl
|
||||
<< " key '0' .. '1' - switch to class #n" << endl
|
||||
<< " left mouse button - to add new point;" << endl
|
||||
<< " key 'r' - to run the ML model;" << endl
|
||||
<< " key 'i' - to init (clear) the data." << endl << endl;
|
||||
@@ -532,6 +292,9 @@ int main()
|
||||
imshow( "points", img );
|
||||
setMouseCallback( "points", on_mouse );
|
||||
|
||||
classColors[0] = Vec3b(0, 255, 0);
|
||||
classColors[1] = Vec3b(0, 0, 255);
|
||||
|
||||
for(;;)
|
||||
{
|
||||
uchar key = (uchar)waitKey();
|
||||
@@ -542,98 +305,94 @@ int main()
|
||||
{
|
||||
img = Scalar::all(0);
|
||||
|
||||
classColors.clear();
|
||||
trainedPoints.clear();
|
||||
trainedPointsMarkers.clear();
|
||||
classCounters.assign(MAX_CLASSES, 0);
|
||||
|
||||
imshow( winName, img );
|
||||
}
|
||||
|
||||
if( key == '0' || key == '1' )
|
||||
{
|
||||
currentClass = key - '0';
|
||||
}
|
||||
|
||||
if( key == 'r' ) // run
|
||||
{
|
||||
double minVal = 0;
|
||||
minMaxLoc(classCounters, &minVal, 0, 0, 0);
|
||||
if( minVal == 0 )
|
||||
{
|
||||
printf("each class should have at least 1 point\n");
|
||||
continue;
|
||||
}
|
||||
img.copyTo( imgDst );
|
||||
#if _NBC_
|
||||
find_decision_boundary_NBC();
|
||||
namedWindow( "NormalBayesClassifier", WINDOW_AUTOSIZE );
|
||||
imshow( "NormalBayesClassifier", imgDst );
|
||||
#endif
|
||||
#if _KNN_
|
||||
int K = 3;
|
||||
find_decision_boundary_KNN( K );
|
||||
namedWindow( "kNN", WINDOW_AUTOSIZE );
|
||||
imshow( "kNN", imgDst );
|
||||
|
||||
K = 15;
|
||||
find_decision_boundary_KNN( K );
|
||||
namedWindow( "kNN2", WINDOW_AUTOSIZE );
|
||||
imshow( "kNN2", imgDst );
|
||||
#endif
|
||||
|
||||
#if _SVM_
|
||||
//(1)-(2)separable and not sets
|
||||
CvSVMParams params;
|
||||
params.svm_type = CvSVM::C_SVC;
|
||||
params.kernel_type = CvSVM::POLY; //CvSVM::LINEAR;
|
||||
SVM::Params params;
|
||||
params.svmType = SVM::C_SVC;
|
||||
params.kernelType = SVM::POLY; //CvSVM::LINEAR;
|
||||
params.degree = 0.5;
|
||||
params.gamma = 1;
|
||||
params.coef0 = 1;
|
||||
params.C = 1;
|
||||
params.nu = 0.5;
|
||||
params.p = 0;
|
||||
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, 0.01);
|
||||
params.termCrit = TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 1000, 0.01);
|
||||
|
||||
find_decision_boundary_SVM( params );
|
||||
namedWindow( "classificationSVM1", WINDOW_AUTOSIZE );
|
||||
imshow( "classificationSVM1", imgDst );
|
||||
|
||||
params.C = 10;
|
||||
find_decision_boundary_SVM( params );
|
||||
namedWindow( "classificationSVM2", WINDOW_AUTOSIZE );
|
||||
imshow( "classificationSVM2", imgDst );
|
||||
#endif
|
||||
|
||||
#if _DT_
|
||||
find_decision_boundary_DT();
|
||||
namedWindow( "DT", WINDOW_AUTOSIZE );
|
||||
imshow( "DT", imgDst );
|
||||
#endif
|
||||
|
||||
#if _BT_
|
||||
find_decision_boundary_BT();
|
||||
namedWindow( "BT", WINDOW_AUTOSIZE );
|
||||
imshow( "BT", imgDst);
|
||||
#endif
|
||||
|
||||
#if _GBT_
|
||||
find_decision_boundary_GBT();
|
||||
namedWindow( "GBT", WINDOW_AUTOSIZE );
|
||||
imshow( "GBT", imgDst);
|
||||
#endif
|
||||
|
||||
#if _RF_
|
||||
find_decision_boundary_RF();
|
||||
namedWindow( "RF", WINDOW_AUTOSIZE );
|
||||
imshow( "RF", imgDst);
|
||||
#endif
|
||||
|
||||
#if _ERT_
|
||||
find_decision_boundary_ERT();
|
||||
namedWindow( "ERT", WINDOW_AUTOSIZE );
|
||||
imshow( "ERT", imgDst);
|
||||
#endif
|
||||
|
||||
#if _ANN_
|
||||
Mat layer_sizes1( 1, 3, CV_32SC1 );
|
||||
layer_sizes1.at<int>(0) = 2;
|
||||
layer_sizes1.at<int>(1) = 5;
|
||||
layer_sizes1.at<int>(2) = classColors.size();
|
||||
layer_sizes1.at<int>(2) = (int)classColors.size();
|
||||
find_decision_boundary_ANN( layer_sizes1 );
|
||||
namedWindow( "ANN", WINDOW_AUTOSIZE );
|
||||
imshow( "ANN", imgDst );
|
||||
#endif
|
||||
|
||||
#if _EM_
|
||||
find_decision_boundary_EM();
|
||||
namedWindow( "EM", WINDOW_AUTOSIZE );
|
||||
imshow( "EM", imgDst );
|
||||
#endif
|
||||
}
|
||||
|
@@ -1,4 +1,5 @@
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
#include "opencv2/videoio/videoio_c.h"
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
|
||||
#include <ctype.h>
|
||||
|
Before Width: | Height: | Size: 95 KiB |
Before Width: | Height: | Size: 93 KiB |
Before Width: | Height: | Size: 59 KiB |
Before Width: | Height: | Size: 97 KiB |
Before Width: | Height: | Size: 111 KiB |
Before Width: | Height: | Size: 69 KiB |
@@ -1,4 +1,5 @@
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/videoio/videoio.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/video/background_segm.hpp"
|
||||
#include <stdio.h>
|
||||
@@ -87,8 +88,8 @@ int main(int argc, char** argv)
|
||||
namedWindow("video", 1);
|
||||
namedWindow("segmented", 1);
|
||||
|
||||
Ptr<BackgroundSubtractorMOG> bgsubtractor=createBackgroundSubtractorMOG();
|
||||
bgsubtractor->setNoiseSigma(10);
|
||||
Ptr<BackgroundSubtractorMOG2> bgsubtractor=createBackgroundSubtractorMOG2();
|
||||
bgsubtractor->setVarThreshold(10);
|
||||
|
||||
for(;;)
|
||||
{
|
||||
|
@@ -12,6 +12,8 @@
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/calib3d.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/videoio.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
#include <ctype.h>
|
||||
|
@@ -3,6 +3,7 @@
|
||||
*/
|
||||
|
||||
#include "opencv2/shape.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <opencv2/core/utility.hpp>
|
||||
|
@@ -1,74 +0,0 @@
|
||||
/*
|
||||
* shape_context.cpp -- Shape context demo for shape matching
|
||||
*/
|
||||
|
||||
#include "opencv2/shape.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/features2d/features2d.hpp"
|
||||
#include "opencv2/nonfree/nonfree.hpp"
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
static void help()
|
||||
{
|
||||
printf("\nThis program demonstrates how to use common interface for shape transformers\n"
|
||||
"Call\n"
|
||||
"shape_transformation [image1] [image2]\n");
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
help();
|
||||
Mat img1 = imread(argv[1], IMREAD_GRAYSCALE);
|
||||
Mat img2 = imread(argv[2], IMREAD_GRAYSCALE);
|
||||
if(img1.empty() || img2.empty() || argc<2)
|
||||
{
|
||||
printf("Can't read one of the images\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
// detecting keypoints
|
||||
SurfFeatureDetector detector(5000);
|
||||
vector<KeyPoint> keypoints1, keypoints2;
|
||||
detector.detect(img1, keypoints1);
|
||||
detector.detect(img2, keypoints2);
|
||||
|
||||
// computing descriptors
|
||||
SurfDescriptorExtractor extractor;
|
||||
Mat descriptors1, descriptors2;
|
||||
extractor.compute(img1, keypoints1, descriptors1);
|
||||
extractor.compute(img2, keypoints2, descriptors2);
|
||||
|
||||
// matching descriptors
|
||||
BFMatcher matcher(extractor.defaultNorm());
|
||||
vector<DMatch> matches;
|
||||
matcher.match(descriptors1, descriptors2, matches);
|
||||
|
||||
// drawing the results
|
||||
namedWindow("matches", 1);
|
||||
Mat img_matches;
|
||||
drawMatches(img1, keypoints1, img2, keypoints2, matches, img_matches);
|
||||
imshow("matches", img_matches);
|
||||
|
||||
// extract points
|
||||
vector<Point2f> pts1, pts2;
|
||||
for (size_t ii=0; ii<keypoints1.size(); ii++)
|
||||
pts1.push_back( keypoints1[ii].pt );
|
||||
for (size_t ii=0; ii<keypoints2.size(); ii++)
|
||||
pts2.push_back( keypoints2[ii].pt );
|
||||
|
||||
// Apply TPS
|
||||
Ptr<ThinPlateSplineShapeTransformer> mytps = createThinPlateSplineShapeTransformer(25000); //TPS with a relaxed constraint
|
||||
mytps->estimateTransformation(pts1, pts2, matches);
|
||||
mytps->warpImage(img2, img2);
|
||||
|
||||
imshow("Tranformed", img2);
|
||||
waitKey(0);
|
||||
|
||||
return 0;
|
||||
}
|
@@ -1,220 +0,0 @@
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
#include <cstdio>
|
||||
#include <iostream>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
#define APP_NAME "simpleflow_demo : "
|
||||
|
||||
static void help()
|
||||
{
|
||||
// print a welcome message, and the OpenCV version
|
||||
printf("This is a demo of SimpleFlow optical flow algorithm,\n"
|
||||
"Using OpenCV version %s\n\n", CV_VERSION);
|
||||
|
||||
printf("Usage: simpleflow_demo frame1 frame2 output_flow"
|
||||
"\nApplication will write estimated flow "
|
||||
"\nbetween 'frame1' and 'frame2' in binary format"
|
||||
"\ninto file 'output_flow'"
|
||||
"\nThen one can use code from http://vision.middlebury.edu/flow/data/"
|
||||
"\nto convert flow in binary file to image\n");
|
||||
}
|
||||
|
||||
// binary file format for flow data specified here:
|
||||
// http://vision.middlebury.edu/flow/data/
|
||||
static void writeOpticalFlowToFile(const Mat& flow, FILE* file) {
|
||||
int cols = flow.cols;
|
||||
int rows = flow.rows;
|
||||
|
||||
fprintf(file, "PIEH");
|
||||
|
||||
if (fwrite(&cols, sizeof(int), 1, file) != 1 ||
|
||||
fwrite(&rows, sizeof(int), 1, file) != 1) {
|
||||
printf(APP_NAME "writeOpticalFlowToFile : problem writing header\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
for (int i= 0; i < rows; ++i) {
|
||||
for (int j = 0; j < cols; ++j) {
|
||||
Vec2f flow_at_point = flow.at<Vec2f>(i, j);
|
||||
|
||||
if (fwrite(&(flow_at_point[0]), sizeof(float), 1, file) != 1 ||
|
||||
fwrite(&(flow_at_point[1]), sizeof(float), 1, file) != 1) {
|
||||
printf(APP_NAME "writeOpticalFlowToFile : problem writing data\n");
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void run(int argc, char** argv) {
|
||||
if (argc < 3) {
|
||||
printf(APP_NAME "Wrong number of command line arguments for mode `run`: %d (expected %d)\n",
|
||||
argc, 3);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
Mat frame1 = imread(argv[0]);
|
||||
Mat frame2 = imread(argv[1]);
|
||||
|
||||
if (frame1.empty()) {
|
||||
printf(APP_NAME "Image #1 : %s cannot be read\n", argv[0]);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (frame2.empty()) {
|
||||
printf(APP_NAME "Image #2 : %s cannot be read\n", argv[1]);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (frame1.rows != frame2.rows && frame1.cols != frame2.cols) {
|
||||
printf(APP_NAME "Images should be of equal sizes\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (frame1.type() != 16 || frame2.type() != 16) {
|
||||
printf(APP_NAME "Images should be of equal type CV_8UC3\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
printf(APP_NAME "Read two images of size [rows = %d, cols = %d]\n",
|
||||
frame1.rows, frame1.cols);
|
||||
|
||||
Mat flow;
|
||||
|
||||
float start = (float)getTickCount();
|
||||
calcOpticalFlowSF(frame1, frame2,
|
||||
flow,
|
||||
3, 2, 4, 4.1, 25.5, 18, 55.0, 25.5, 0.35, 18, 55.0, 25.5, 10);
|
||||
printf(APP_NAME "calcOpticalFlowSF : %lf sec\n", (getTickCount() - start) / getTickFrequency());
|
||||
|
||||
FILE* file = fopen(argv[2], "wb");
|
||||
if (file == NULL) {
|
||||
printf(APP_NAME "Unable to open file '%s' for writing\n", argv[2]);
|
||||
exit(1);
|
||||
}
|
||||
printf(APP_NAME "Writing to file\n");
|
||||
writeOpticalFlowToFile(flow, file);
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
static bool readOpticalFlowFromFile(FILE* file, Mat& flow) {
|
||||
char header[5];
|
||||
if (fread(header, 1, 4, file) < 4 && (string)header != "PIEH") {
|
||||
return false;
|
||||
}
|
||||
|
||||
int cols, rows;
|
||||
if (fread(&cols, sizeof(int), 1, file) != 1||
|
||||
fread(&rows, sizeof(int), 1, file) != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
flow = Mat::zeros(rows, cols, CV_32FC2);
|
||||
|
||||
for (int i = 0; i < rows; ++i) {
|
||||
for (int j = 0; j < cols; ++j) {
|
||||
Vec2f flow_at_point;
|
||||
if (fread(&(flow_at_point[0]), sizeof(float), 1, file) != 1 ||
|
||||
fread(&(flow_at_point[1]), sizeof(float), 1, file) != 1) {
|
||||
return false;
|
||||
}
|
||||
flow.at<Vec2f>(i, j) = flow_at_point;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool isFlowCorrect(float u) {
|
||||
return !cvIsNaN(u) && (fabs(u) < 1e9);
|
||||
}
|
||||
|
||||
static float calc_rmse(Mat flow1, Mat flow2) {
|
||||
float sum = 0;
|
||||
int counter = 0;
|
||||
const int rows = flow1.rows;
|
||||
const int cols = flow1.cols;
|
||||
|
||||
for (int y = 0; y < rows; ++y) {
|
||||
for (int x = 0; x < cols; ++x) {
|
||||
Vec2f flow1_at_point = flow1.at<Vec2f>(y, x);
|
||||
Vec2f flow2_at_point = flow2.at<Vec2f>(y, x);
|
||||
|
||||
float u1 = flow1_at_point[0];
|
||||
float v1 = flow1_at_point[1];
|
||||
float u2 = flow2_at_point[0];
|
||||
float v2 = flow2_at_point[1];
|
||||
|
||||
if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2)) {
|
||||
sum += (u1-u2)*(u1-u2) + (v1-v2)*(v1-v2);
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
}
|
||||
return (float)sqrt(sum / (1e-9 + counter));
|
||||
}
|
||||
|
||||
static void eval(int argc, char** argv) {
|
||||
if (argc < 2) {
|
||||
printf(APP_NAME "Wrong number of command line arguments for mode `eval` : %d (expected %d)\n",
|
||||
argc, 2);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
Mat flow1, flow2;
|
||||
|
||||
FILE* flow_file_1 = fopen(argv[0], "rb");
|
||||
if (flow_file_1 == NULL) {
|
||||
printf(APP_NAME "Cannot open file with first flow : %s\n", argv[0]);
|
||||
exit(1);
|
||||
}
|
||||
if (!readOpticalFlowFromFile(flow_file_1, flow1)) {
|
||||
printf(APP_NAME "Cannot read flow data from file %s\n", argv[0]);
|
||||
exit(1);
|
||||
}
|
||||
fclose(flow_file_1);
|
||||
|
||||
FILE* flow_file_2 = fopen(argv[1], "rb");
|
||||
if (flow_file_2 == NULL) {
|
||||
printf(APP_NAME "Cannot open file with first flow : %s\n", argv[1]);
|
||||
exit(1);
|
||||
}
|
||||
if (!readOpticalFlowFromFile(flow_file_2, flow2)) {
|
||||
printf(APP_NAME "Cannot read flow data from file %s\n", argv[1]);
|
||||
exit(1);
|
||||
}
|
||||
fclose(flow_file_2);
|
||||
|
||||
float rmse = calc_rmse(flow1, flow2);
|
||||
printf("%lf\n", rmse);
|
||||
}
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
if (argc < 2) {
|
||||
printf(APP_NAME "Mode is not specified\n");
|
||||
help();
|
||||
exit(1);
|
||||
}
|
||||
string mode = (string)argv[1];
|
||||
int new_argc = argc - 2;
|
||||
char** new_argv = &argv[2];
|
||||
|
||||
if ("run" == mode) {
|
||||
run(new_argc, new_argv);
|
||||
} else if ("eval" == mode) {
|
||||
eval(new_argc, new_argv);
|
||||
} else if ("help" == mode)
|
||||
help();
|
||||
else {
|
||||
printf(APP_NAME "Unknown mode : %s\n", argv[1]);
|
||||
help();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
@@ -3,6 +3,7 @@
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/core/utility.hpp"
|
||||
|
||||
#include "opencv2/videoio/videoio_c.h"
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
|
||||
#include <cctype>
|
||||
|
@@ -4,6 +4,7 @@
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
@@ -8,6 +8,7 @@
|
||||
* that was generated with imagelist_creator.cpp
|
||||
* easy as CV_PI right?
|
||||
*/
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
@@ -11,6 +11,8 @@
|
||||
* easy as CV_PI right?
|
||||
*/
|
||||
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
#include <opencv2/videoio/videoio.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
#include <iostream>
|
||||
|
@@ -23,6 +23,7 @@
|
||||
************************************************** */
|
||||
|
||||
#include "opencv2/calib3d/calib3d.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
|
||||
|
@@ -9,6 +9,7 @@
|
||||
|
||||
#include "opencv2/calib3d/calib3d.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/core/utility.hpp"
|
||||
|
||||
|
@@ -42,6 +42,7 @@
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/stitching.hpp"
|
||||
|
||||
|
@@ -46,9 +46,11 @@
|
||||
#include <string>
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/stitching/detail/autocalib.hpp"
|
||||
#include "opencv2/stitching/detail/blenders.hpp"
|
||||
#include "opencv2/stitching/detail/timelapsers.hpp"
|
||||
#include "opencv2/stitching/detail/camera.hpp"
|
||||
#include "opencv2/stitching/detail/exposure_compensate.hpp"
|
||||
#include "opencv2/stitching/detail/matchers.hpp"
|
||||
@@ -116,7 +118,9 @@ static void printUsage()
|
||||
" --blend_strength <float>\n"
|
||||
" Blending strength from [0,100] range. The default is 5.\n"
|
||||
" --output <result_img>\n"
|
||||
" The default is 'result.jpg'.\n";
|
||||
" The default is 'result.jpg'.\n"
|
||||
" --timelapse (as_is|crop) (range_width)\n"
|
||||
" Output warped images separately as frames of a time lapse movie, with 'fixed_' prepended to input file names.\n";
|
||||
}
|
||||
|
||||
|
||||
@@ -140,8 +144,12 @@ int expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
|
||||
float match_conf = 0.3f;
|
||||
string seam_find_type = "gc_color";
|
||||
int blend_type = Blender::MULTI_BAND;
|
||||
int timelapse_type = Timelapser::AS_IS;
|
||||
float blend_strength = 5;
|
||||
string result_name = "result.jpg";
|
||||
bool timelapse = false;
|
||||
int timelapse_range = 5;
|
||||
|
||||
|
||||
static int parseCmdArgs(int argc, char** argv)
|
||||
{
|
||||
@@ -304,6 +312,24 @@ static int parseCmdArgs(int argc, char** argv)
|
||||
}
|
||||
i++;
|
||||
}
|
||||
else if (string(argv[i]) == "--timelapse")
|
||||
{
|
||||
timelapse = true;
|
||||
|
||||
if (string(argv[i + 1]) == "as_is")
|
||||
timelapse_type = Timelapser::AS_IS;
|
||||
else if (string(argv[i + 1]) == "crop")
|
||||
timelapse_type = Timelapser::CROP;
|
||||
else
|
||||
{
|
||||
cout << "Bad timelapse method\n";
|
||||
return -1;
|
||||
}
|
||||
i++;
|
||||
|
||||
timelapse_range = atoi(argv[i + 1]);
|
||||
i++;
|
||||
}
|
||||
else if (string(argv[i]) == "--blend_strength")
|
||||
{
|
||||
blend_strength = static_cast<float>(atof(argv[i + 1]));
|
||||
@@ -432,9 +458,19 @@ int main(int argc, char* argv[])
|
||||
t = getTickCount();
|
||||
#endif
|
||||
vector<MatchesInfo> pairwise_matches;
|
||||
BestOf2NearestMatcher matcher(try_cuda, match_conf);
|
||||
matcher(features, pairwise_matches);
|
||||
matcher.collectGarbage();
|
||||
if (!timelapse)
|
||||
{
|
||||
BestOf2NearestMatcher matcher(try_cuda, match_conf);
|
||||
matcher(features, pairwise_matches);
|
||||
matcher.collectGarbage();
|
||||
}
|
||||
else
|
||||
{
|
||||
BestOf2NearestRangeMatcher matcher(timelapse_range, try_cuda, match_conf);
|
||||
matcher(features, pairwise_matches);
|
||||
matcher.collectGarbage();
|
||||
}
|
||||
|
||||
LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
|
||||
|
||||
// Check if we should save matches graph
|
||||
@@ -527,7 +563,7 @@ int main(int argc, char* argv[])
|
||||
{
|
||||
vector<Mat> rmats;
|
||||
for (size_t i = 0; i < cameras.size(); ++i)
|
||||
rmats.push_back(cameras[i].R);
|
||||
rmats.push_back(cameras[i].R.clone());
|
||||
waveCorrect(rmats, wave_correct);
|
||||
for (size_t i = 0; i < cameras.size(); ++i)
|
||||
cameras[i].R = rmats[i];
|
||||
@@ -679,6 +715,7 @@ int main(int argc, char* argv[])
|
||||
Mat img_warped, img_warped_s;
|
||||
Mat dilated_mask, seam_mask, mask, mask_warped;
|
||||
Ptr<Blender> blender;
|
||||
Ptr<Timelapser> timelapser;
|
||||
//double compose_seam_aspect = 1;
|
||||
double compose_work_aspect = 1;
|
||||
|
||||
@@ -755,7 +792,7 @@ int main(int argc, char* argv[])
|
||||
resize(dilated_mask, seam_mask, mask_warped.size());
|
||||
mask_warped = seam_mask & mask_warped;
|
||||
|
||||
if (!blender)
|
||||
if (!blender && !timelapse)
|
||||
{
|
||||
blender = Blender::createDefault(blend_type, try_cuda);
|
||||
Size dst_sz = resultRoi(corners, sizes).size();
|
||||
@@ -776,17 +813,35 @@ int main(int argc, char* argv[])
|
||||
}
|
||||
blender->prepare(corners, sizes);
|
||||
}
|
||||
else if (!timelapser)
|
||||
{
|
||||
CV_Assert(timelapse);
|
||||
timelapser = Timelapser::createDefault(timelapse_type);
|
||||
timelapser->initialize(corners, sizes);
|
||||
}
|
||||
|
||||
// Blend the current image
|
||||
blender->feed(img_warped_s, mask_warped, corners[img_idx]);
|
||||
if (timelapse)
|
||||
{
|
||||
timelapser->process(img_warped_s, Mat::ones(img_warped_s.size(), CV_8UC1), corners[img_idx]);
|
||||
|
||||
imwrite("fixed_" + img_names[img_idx], timelapser->getDst());
|
||||
}
|
||||
else
|
||||
{
|
||||
blender->feed(img_warped_s, mask_warped, corners[img_idx]);
|
||||
}
|
||||
}
|
||||
|
||||
Mat result, result_mask;
|
||||
blender->blend(result, result_mask);
|
||||
if (!timelapse)
|
||||
{
|
||||
Mat result, result_mask;
|
||||
blender->blend(result, result_mask);
|
||||
|
||||
LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
|
||||
LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
|
||||
|
||||
imwrite(result_name, result);
|
||||
imwrite(result_name, result);
|
||||
}
|
||||
|
||||
LOGLN("Finished, total time: " << ((getTickCount() - app_start_time) / getTickFrequency()) << " sec");
|
||||
return 0;
|
||||
|
@@ -1,127 +0,0 @@
|
||||
/*
|
||||
* textdetection.cpp
|
||||
*
|
||||
* A demo program of the Extremal Region Filter algorithm described in
|
||||
* Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012
|
||||
*
|
||||
* Created on: Sep 23, 2013
|
||||
* Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es>
|
||||
*/
|
||||
|
||||
#include "opencv2/opencv.hpp"
|
||||
#include "opencv2/objdetect.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
void show_help_and_exit(const char *cmd);
|
||||
void groups_draw(Mat &src, vector<Rect> &groups);
|
||||
void er_show(vector<Mat> &channels, vector<vector<ERStat> > ®ions);
|
||||
|
||||
int main(int argc, const char * argv[])
|
||||
{
|
||||
cout << endl << argv[0] << endl << endl;
|
||||
cout << "Demo program of the Extremal Region Filter algorithm described in " << endl;
|
||||
cout << "Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012" << endl << endl;
|
||||
|
||||
if (argc < 2) show_help_and_exit(argv[0]);
|
||||
|
||||
Mat src = imread(argv[1]);
|
||||
|
||||
// Extract channels to be processed individually
|
||||
vector<Mat> channels;
|
||||
computeNMChannels(src, channels);
|
||||
|
||||
int cn = (int)channels.size();
|
||||
// Append negative channels to detect ER- (bright regions over dark background)
|
||||
for (int c = 0; c < cn-1; c++)
|
||||
channels.push_back(255-channels[c]);
|
||||
|
||||
// Create ERFilter objects with the 1st and 2nd stage default classifiers
|
||||
Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),16,0.00015f,0.13f,0.2f,true,0.1f);
|
||||
Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5);
|
||||
|
||||
vector<vector<ERStat> > regions(channels.size());
|
||||
// Apply the default cascade classifier to each independent channel (could be done in parallel)
|
||||
cout << "Extracting Class Specific Extremal Regions from " << (int)channels.size() << " channels ..." << endl;
|
||||
cout << " (...) this may take a while (...)" << endl << endl;
|
||||
for (int c=0; c<(int)channels.size(); c++)
|
||||
{
|
||||
er_filter1->run(channels[c], regions[c]);
|
||||
er_filter2->run(channels[c], regions[c]);
|
||||
}
|
||||
|
||||
// Detect character groups
|
||||
cout << "Grouping extracted ERs ... ";
|
||||
vector<Rect> groups;
|
||||
erGrouping(channels, regions, "trained_classifier_erGrouping.xml", 0.5, groups);
|
||||
|
||||
// draw groups
|
||||
groups_draw(src, groups);
|
||||
imshow("grouping",src);
|
||||
|
||||
cout << "Done!" << endl << endl;
|
||||
cout << "Press 'e' to show the extracted Extremal Regions, any other key to exit." << endl << endl;
|
||||
if( waitKey (-1) == 101)
|
||||
er_show(channels,regions);
|
||||
|
||||
// memory clean-up
|
||||
er_filter1.release();
|
||||
er_filter2.release();
|
||||
regions.clear();
|
||||
if (!groups.empty())
|
||||
{
|
||||
groups.clear();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// helper functions
|
||||
|
||||
void show_help_and_exit(const char *cmd)
|
||||
{
|
||||
cout << " Usage: " << cmd << " <input_image> " << endl;
|
||||
cout << " Default classifier files (trained_classifierNM*.xml) must be in current directory" << endl << endl;
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
void groups_draw(Mat &src, vector<Rect> &groups)
|
||||
{
|
||||
for (int i=(int)groups.size()-1; i>=0; i--)
|
||||
{
|
||||
if (src.type() == CV_8UC3)
|
||||
rectangle(src,groups.at(i).tl(),groups.at(i).br(),Scalar( 0, 255, 255 ), 3, 8 );
|
||||
else
|
||||
rectangle(src,groups.at(i).tl(),groups.at(i).br(),Scalar( 255 ), 3, 8 );
|
||||
}
|
||||
}
|
||||
|
||||
void er_show(vector<Mat> &channels, vector<vector<ERStat> > ®ions)
|
||||
{
|
||||
for (int c=0; c<(int)channels.size(); c++)
|
||||
{
|
||||
Mat dst = Mat::zeros(channels[0].rows+2,channels[0].cols+2,CV_8UC1);
|
||||
for (int r=0; r<(int)regions[c].size(); r++)
|
||||
{
|
||||
ERStat er = regions[c][r];
|
||||
if (er.parent != NULL) // deprecate the root region
|
||||
{
|
||||
int newMaskVal = 255;
|
||||
int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
|
||||
floodFill(channels[c],dst,Point(er.pixel%channels[c].cols,er.pixel/channels[c].cols),
|
||||
Scalar(255),0,Scalar(er.level),Scalar(0),flags);
|
||||
}
|
||||
}
|
||||
char buff[10]; char *buff_ptr = buff;
|
||||
sprintf(buff, "channel %d", c);
|
||||
imshow(buff_ptr, dst);
|
||||
}
|
||||
waitKey(-1);
|
||||
}
|
@@ -8,9 +8,10 @@
|
||||
#include <time.h>
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::ml;
|
||||
using namespace std;
|
||||
|
||||
void get_svm_detector(const SVM& svm, vector< float > & hog_detector );
|
||||
void get_svm_detector(const Ptr<SVM>& svm, vector< float > & hog_detector );
|
||||
void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData );
|
||||
void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst );
|
||||
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size );
|
||||
@@ -20,49 +21,24 @@ void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels
|
||||
void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color );
|
||||
void test_it( const Size & size );
|
||||
|
||||
void get_svm_detector(const SVM& svm, vector< float > & hog_detector )
|
||||
void get_svm_detector(const Ptr<SVM>& svm, vector< float > & hog_detector )
|
||||
{
|
||||
// get the number of variables
|
||||
const int var_all = svm.get_var_count();
|
||||
// get the number of support vectors
|
||||
const int sv_total = svm.get_support_vector_count();
|
||||
// get the decision function
|
||||
const CvSVMDecisionFunc* decision_func = svm.get_decision_function();
|
||||
// get the support vectors
|
||||
const float** sv = new const float*[ sv_total ];
|
||||
for( int i = 0 ; i < sv_total ; ++i )
|
||||
sv[ i ] = svm.get_support_vector(i);
|
||||
Mat sv = svm->getSupportVectors();
|
||||
const int sv_total = sv.rows;
|
||||
// get the decision function
|
||||
Mat alpha, svidx;
|
||||
double rho = svm->getDecisionFunction(0, alpha, svidx);
|
||||
|
||||
CV_Assert( var_all > 0 &&
|
||||
sv_total > 0 &&
|
||||
decision_func != 0 &&
|
||||
decision_func->alpha != 0 &&
|
||||
decision_func->sv_count == sv_total );
|
||||
CV_Assert( alpha.total() == 1 && svidx.total() == 1 && sv_total == 1 );
|
||||
CV_Assert( (alpha.type() == CV_64F && alpha.at<double>(0) == 1.) ||
|
||||
(alpha.type() == CV_32F && alpha.at<float>(0) == 1.f) );
|
||||
CV_Assert( sv.type() == CV_32F );
|
||||
hog_detector.clear();
|
||||
|
||||
float svi = 0.f;
|
||||
|
||||
hog_detector.clear(); //clear stuff in vector.
|
||||
hog_detector.reserve( var_all + 1 ); //reserve place for memory efficiency.
|
||||
|
||||
/**
|
||||
* hog_detector^i = \sum_j support_vector_j^i * \alpha_j
|
||||
* hog_detector^dim = -\rho
|
||||
*/
|
||||
for( int i = 0 ; i < var_all ; ++i )
|
||||
{
|
||||
svi = 0.f;
|
||||
for( int j = 0 ; j < sv_total ; ++j )
|
||||
{
|
||||
if( decision_func->sv_index != NULL ) // sometime the sv_index isn't store on YML/XML.
|
||||
svi += (float)( sv[decision_func->sv_index[j]][i] * decision_func->alpha[ j ] );
|
||||
else
|
||||
svi += (float)( sv[j][i] * decision_func->alpha[ j ] );
|
||||
}
|
||||
hog_detector.push_back( svi );
|
||||
}
|
||||
hog_detector.push_back( (float)-decision_func->rho );
|
||||
|
||||
delete[] sv;
|
||||
hog_detector.resize(sv.cols + 1);
|
||||
memcpy(&hog_detector[0], sv.data, sv.cols*sizeof(hog_detector[0]));
|
||||
hog_detector[sv.cols] = (float)-rho;
|
||||
}
|
||||
|
||||
|
||||
@@ -263,7 +239,7 @@ Mat get_hogdescriptor_visu(const Mat& color_origImg, vector<float>& descriptorVa
|
||||
int mx = drawX + cellSize/2;
|
||||
int my = drawY + cellSize/2;
|
||||
|
||||
rectangle(visu, Point((int)(drawX*zoomFac), (int)(drawY*zoomFac)), Point((int)((drawX+cellSize)*zoomFac), (int)((drawY+cellSize)*zoomFac)), CV_RGB(100,100,100), 1);
|
||||
rectangle(visu, Point((int)(drawX*zoomFac), (int)(drawY*zoomFac)), Point((int)((drawX+cellSize)*zoomFac), (int)((drawY+cellSize)*zoomFac)), Scalar(100,100,100), 1);
|
||||
|
||||
// draw in each cell all 9 gradient strengths
|
||||
for (int bin=0; bin<gradientBinSize; bin++)
|
||||
@@ -288,7 +264,7 @@ Mat get_hogdescriptor_visu(const Mat& color_origImg, vector<float>& descriptorVa
|
||||
float y2 = my + dirVecY * currentGradStrength * maxVecLen * scale;
|
||||
|
||||
// draw gradient visualization
|
||||
line(visu, Point((int)(x1*zoomFac),(int)(y1*zoomFac)), Point((int)(x2*zoomFac),(int)(y2*zoomFac)), CV_RGB(0,255,0), 1);
|
||||
line(visu, Point((int)(x1*zoomFac),(int)(y1*zoomFac)), Point((int)(x2*zoomFac),(int)(y2*zoomFac)), Scalar(0,255,0), 1);
|
||||
|
||||
} // for (all bins)
|
||||
|
||||
@@ -337,28 +313,26 @@ void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, c
|
||||
|
||||
void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels )
|
||||
{
|
||||
SVM svm;
|
||||
|
||||
/* Default values to train SVM */
|
||||
SVMParams params;
|
||||
SVM::Params params;
|
||||
params.coef0 = 0.0;
|
||||
params.degree = 3;
|
||||
params.term_crit.epsilon = 1e-3;
|
||||
params.termCrit.epsilon = 1e-3;
|
||||
params.gamma = 0;
|
||||
params.kernel_type = SVM::LINEAR;
|
||||
params.kernelType = SVM::LINEAR;
|
||||
params.nu = 0.5;
|
||||
params.p = 0.1; // for EPSILON_SVR, epsilon in loss function?
|
||||
params.C = 0.01; // From paper, soft classifier
|
||||
params.svm_type = SVM::EPS_SVR; // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task
|
||||
params.svmType = SVM::EPS_SVR; // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task
|
||||
|
||||
Mat train_data;
|
||||
convert_to_ml( gradient_lst, train_data );
|
||||
|
||||
clog << "Start training...";
|
||||
svm.train( train_data, Mat( labels ), Mat(), Mat(), params );
|
||||
Ptr<SVM> svm = StatModel::train<SVM>(train_data, ROW_SAMPLE, Mat(labels), params);
|
||||
clog << "...[done]" << endl;
|
||||
|
||||
svm.save( "my_people_detector.yml" );
|
||||
svm->save( "my_people_detector.yml" );
|
||||
}
|
||||
|
||||
void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color )
|
||||
@@ -380,7 +354,7 @@ void test_it( const Size & size )
|
||||
Scalar reference( 0, 255, 0 );
|
||||
Scalar trained( 0, 0, 255 );
|
||||
Mat img, draw;
|
||||
SVM svm;
|
||||
Ptr<SVM> svm;
|
||||
HOGDescriptor hog;
|
||||
HOGDescriptor my_hog;
|
||||
my_hog.winSize = size;
|
||||
@@ -388,7 +362,7 @@ void test_it( const Size & size )
|
||||
vector< Rect > locations;
|
||||
|
||||
// Load the trained SVM.
|
||||
svm.load( "my_people_detector.yml" );
|
||||
svm = StatModel::load<SVM>( "my_people_detector.yml" );
|
||||
// Set the trained svm to my_hog
|
||||
vector< float > hog_detector;
|
||||
get_svm_detector( svm, hog_detector );
|
||||
|
@@ -1,63 +1,35 @@
|
||||
#include "opencv2/ml/ml.hpp"
|
||||
#include "opencv2/core/core_c.h"
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/core/utility.hpp"
|
||||
#include <stdio.h>
|
||||
#include <string>
|
||||
#include <map>
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::ml;
|
||||
|
||||
static void help()
|
||||
{
|
||||
printf(
|
||||
"\nThis sample demonstrates how to use different decision trees and forests including boosting and random trees:\n"
|
||||
"CvDTree dtree;\n"
|
||||
"CvBoost boost;\n"
|
||||
"CvRTrees rtrees;\n"
|
||||
"CvERTrees ertrees;\n"
|
||||
"CvGBTrees gbtrees;\n"
|
||||
"Call:\n\t./tree_engine [-r <response_column>] [-c] <csv filename>\n"
|
||||
"\nThis sample demonstrates how to use different decision trees and forests including boosting and random trees.\n"
|
||||
"Usage:\n\t./tree_engine [-r <response_column>] [-ts type_spec] <csv filename>\n"
|
||||
"where -r <response_column> specified the 0-based index of the response (0 by default)\n"
|
||||
"-c specifies that the response is categorical (it's ordered by default) and\n"
|
||||
"-ts specifies the var type spec in the form ord[n1,n2-n3,n4-n5,...]cat[m1-m2,m3,m4-m5,...]\n"
|
||||
"<csv filename> is the name of training data file in comma-separated value format\n\n");
|
||||
}
|
||||
|
||||
|
||||
static int count_classes(CvMLData& data)
|
||||
static void train_and_print_errs(Ptr<StatModel> model, const Ptr<TrainData>& data)
|
||||
{
|
||||
cv::Mat r = cv::cvarrToMat(data.get_responses());
|
||||
std::map<int, int> rmap;
|
||||
int i, n = (int)r.total();
|
||||
for( i = 0; i < n; i++ )
|
||||
bool ok = model->train(data);
|
||||
if( !ok )
|
||||
{
|
||||
float val = r.at<float>(i);
|
||||
int ival = cvRound(val);
|
||||
if( ival != val )
|
||||
return -1;
|
||||
rmap[ival] = 1;
|
||||
printf("Training failed\n");
|
||||
}
|
||||
return (int)rmap.size();
|
||||
}
|
||||
|
||||
static void print_result(float train_err, float test_err, const CvMat* _var_imp)
|
||||
{
|
||||
printf( "train error %f\n", train_err );
|
||||
printf( "test error %f\n\n", test_err );
|
||||
|
||||
if (_var_imp)
|
||||
else
|
||||
{
|
||||
cv::Mat var_imp = cv::cvarrToMat(_var_imp), sorted_idx;
|
||||
cv::sortIdx(var_imp, sorted_idx, CV_SORT_EVERY_ROW + CV_SORT_DESCENDING);
|
||||
|
||||
printf( "variable importance:\n" );
|
||||
int i, n = (int)var_imp.total();
|
||||
int type = var_imp.type();
|
||||
CV_Assert(type == CV_32F || type == CV_64F);
|
||||
|
||||
for( i = 0; i < n; i++)
|
||||
{
|
||||
int k = sorted_idx.at<int>(i);
|
||||
printf( "%d\t%f\n", k, type == CV_32F ? var_imp.at<float>(k) : var_imp.at<double>(k));
|
||||
}
|
||||
printf( "train error: %f\n", model->calcError(data, false, noArray()) );
|
||||
printf( "test error: %f\n\n", model->calcError(data, true, noArray()) );
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
@@ -69,14 +41,14 @@ int main(int argc, char** argv)
|
||||
}
|
||||
const char* filename = 0;
|
||||
int response_idx = 0;
|
||||
bool categorical_response = false;
|
||||
std::string typespec;
|
||||
|
||||
for(int i = 1; i < argc; i++)
|
||||
{
|
||||
if(strcmp(argv[i], "-r") == 0)
|
||||
sscanf(argv[++i], "%d", &response_idx);
|
||||
else if(strcmp(argv[i], "-c") == 0)
|
||||
categorical_response = true;
|
||||
else if(strcmp(argv[i], "-ts") == 0)
|
||||
typespec = argv[++i];
|
||||
else if(argv[i][0] != '-' )
|
||||
filename = argv[i];
|
||||
else
|
||||
@@ -88,52 +60,32 @@ int main(int argc, char** argv)
|
||||
}
|
||||
|
||||
printf("\nReading in %s...\n\n",filename);
|
||||
CvDTree dtree;
|
||||
CvBoost boost;
|
||||
CvRTrees rtrees;
|
||||
CvERTrees ertrees;
|
||||
CvGBTrees gbtrees;
|
||||
const double train_test_split_ratio = 0.5;
|
||||
|
||||
CvMLData data;
|
||||
Ptr<TrainData> data = TrainData::loadFromCSV(filename, 0, response_idx, response_idx+1, typespec);
|
||||
|
||||
|
||||
CvTrainTestSplit spl( 0.5f );
|
||||
|
||||
if ( data.read_csv( filename ) == 0)
|
||||
if( data.empty() )
|
||||
{
|
||||
data.set_response_idx( response_idx );
|
||||
if(categorical_response)
|
||||
data.change_var_type( response_idx, CV_VAR_CATEGORICAL );
|
||||
data.set_train_test_split( &spl );
|
||||
|
||||
printf("======DTREE=====\n");
|
||||
dtree.train( &data, CvDTreeParams( 10, 2, 0, false, 16, 0, false, false, 0 ));
|
||||
print_result( dtree.calc_error( &data, CV_TRAIN_ERROR), dtree.calc_error( &data, CV_TEST_ERROR ), dtree.get_var_importance() );
|
||||
|
||||
if( categorical_response && count_classes(data) == 2 )
|
||||
{
|
||||
printf("======BOOST=====\n");
|
||||
boost.train( &data, CvBoostParams(CvBoost::DISCRETE, 100, 0.95, 2, false, 0));
|
||||
print_result( boost.calc_error( &data, CV_TRAIN_ERROR ), boost.calc_error( &data, CV_TEST_ERROR ), 0 ); //doesn't compute importance
|
||||
}
|
||||
|
||||
printf("======RTREES=====\n");
|
||||
rtrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER ));
|
||||
print_result( rtrees.calc_error( &data, CV_TRAIN_ERROR), rtrees.calc_error( &data, CV_TEST_ERROR ), rtrees.get_var_importance() );
|
||||
|
||||
printf("======ERTREES=====\n");
|
||||
ertrees.train( &data, CvRTParams( 18, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER ));
|
||||
print_result( ertrees.calc_error( &data, CV_TRAIN_ERROR), ertrees.calc_error( &data, CV_TEST_ERROR ), ertrees.get_var_importance() );
|
||||
|
||||
printf("======GBTREES=====\n");
|
||||
if (categorical_response)
|
||||
gbtrees.train( &data, CvGBTreesParams(CvGBTrees::DEVIANCE_LOSS, 100, 0.1f, 0.8f, 5, false));
|
||||
else
|
||||
gbtrees.train( &data, CvGBTreesParams(CvGBTrees::SQUARED_LOSS, 100, 0.1f, 0.8f, 5, false));
|
||||
print_result( gbtrees.calc_error( &data, CV_TRAIN_ERROR), gbtrees.calc_error( &data, CV_TEST_ERROR ), 0 ); //doesn't compute importance
|
||||
printf("ERROR: File %s can not be read\n", filename);
|
||||
return 0;
|
||||
}
|
||||
else
|
||||
printf("File can not be read");
|
||||
|
||||
data->setTrainTestSplitRatio(train_test_split_ratio);
|
||||
|
||||
printf("======DTREE=====\n");
|
||||
Ptr<DTrees> dtree = DTrees::create(DTrees::Params( 10, 2, 0, false, 16, 0, false, false, Mat() ));
|
||||
train_and_print_errs(dtree, data);
|
||||
|
||||
if( (int)data->getClassLabels().total() <= 2 ) // regression or 2-class classification problem
|
||||
{
|
||||
printf("======BOOST=====\n");
|
||||
Ptr<Boost> boost = Boost::create(Boost::Params(Boost::GENTLE, 100, 0.95, 2, false, Mat()));
|
||||
train_and_print_errs(boost, data);
|
||||
}
|
||||
|
||||
printf("======RTREES=====\n");
|
||||
Ptr<RTrees> rtrees = RTrees::create(RTrees::Params(10, 2, 0, false, 16, Mat(), false, 0, TermCriteria(TermCriteria::MAX_ITER, 100, 0)));
|
||||
train_and_print_errs(rtrees, data);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@@ -4,6 +4,7 @@
|
||||
* @author OpenCV team
|
||||
*/
|
||||
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <stdio.h>
|
||||
|
||||
|
@@ -5,6 +5,7 @@
|
||||
* @author OpenCV team
|
||||
*/
|
||||
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
using namespace cv;
|
||||
|
@@ -5,6 +5,7 @@
|
||||
|
||||
#include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar)
|
||||
#include <opencv2/imgproc/imgproc.hpp> // Gaussian Blur
|
||||
#include <opencv2/videoio/videoio.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp> // OpenCV window I/O
|
||||
|
||||
using namespace std;
|
||||
|
@@ -2,7 +2,7 @@
|
||||
#include <string> // for strings
|
||||
|
||||
#include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat)
|
||||
#include <opencv2/highgui/highgui.hpp> // Video write
|
||||
#include <opencv2/videoio/videoio.hpp> // Video write
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
@@ -4,6 +4,7 @@
|
||||
* @author OpenCV team
|
||||
*/
|
||||
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include <iostream>
|
||||
|
@@ -4,6 +4,7 @@
|
||||
* @author OpenCV team
|
||||
*/
|
||||
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include <iostream>
|
||||
|
@@ -5,6 +5,7 @@
|
||||
*/
|
||||
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
@@ -5,6 +5,7 @@
|
||||
*/
|
||||
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
@@ -5,6 +5,7 @@
|
||||
*/
|
||||
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
|
@@ -4,6 +4,7 @@
|
||||
* @author OpenCV team
|
||||
*/
|
||||
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include <iostream>
|
||||
|
@@ -4,6 +4,7 @@
|
||||
* @author OpenCV team
|
||||
*/
|
||||
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <iostream>
|
||||
|
||||
|
@@ -4,6 +4,7 @@
|
||||
* @author OpenCV team
|
||||
*/
|
||||
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <iostream>
|
||||
|
||||
|
@@ -5,6 +5,7 @@
|
||||
*/
|
||||
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
@@ -5,6 +5,7 @@
|
||||
*/
|
||||
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
@@ -5,6 +5,7 @@
|
||||
*/
|
||||
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
|
@@ -7,6 +7,7 @@
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/features2d/features2d.hpp"
|
||||
|
||||
|
@@ -5,6 +5,7 @@
|
||||
*/
|
||||
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
@@ -5,6 +5,7 @@
|
||||
*/
|
||||
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
@@ -4,6 +4,7 @@
|
||||
* @author OpenCV team
|
||||
*/
|
||||
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include <iostream>
|
||||
|
@@ -4,6 +4,7 @@
|
||||
* @author OpenCV team
|
||||
*/
|
||||
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include <iostream>
|
||||
|
@@ -4,6 +4,7 @@
|
||||
* @author OpenCV team
|
||||
*/
|
||||
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include <iostream>
|
||||
|
@@ -5,6 +5,7 @@
|
||||
*/
|
||||
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
@@ -4,6 +4,7 @@
|
||||
* @author Ana Huaman
|
||||
*/
|
||||
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include <iostream>
|
||||
|
@@ -5,6 +5,7 @@
|
||||
*/
|
||||
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
@@ -5,6 +5,7 @@
|
||||
*/
|
||||
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
@@ -5,6 +5,7 @@
|
||||
*/
|
||||
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|