first debug integration of newly trained cascade
This commit is contained in:
parent
dc0788c864
commit
3e7965a5a5
@ -47,18 +47,19 @@ namespace {
|
||||
struct Octave
|
||||
{
|
||||
Octave(const int i, const cv::Size& origObjSize, const cv::FileNode& fn)
|
||||
: index(i), scale((float)fn[SC_OCT_SCALE]), stages((int)fn[SC_OCT_STAGES]),
|
||||
size(cvRound(origObjSize.width * scale), cvRound(origObjSize.height * scale)),
|
||||
shrinkage((int)fn[SC_OCT_SHRINKAGE]) {}
|
||||
: index(i), weaks((int)fn[SC_OCT_WEAKS]), scale(pow(2,(float)fn[SC_OCT_SCALE])),
|
||||
size(cvRound(origObjSize.width * scale), cvRound(origObjSize.height * scale)) {}
|
||||
|
||||
int index;
|
||||
int weaks;
|
||||
|
||||
int index;
|
||||
float scale;
|
||||
int stages;
|
||||
|
||||
cv::Size size;
|
||||
int shrinkage;
|
||||
|
||||
static const char *const SC_OCT_SCALE;
|
||||
static const char *const SC_OCT_STAGES;
|
||||
static const char *const SC_OCT_WEAKS;
|
||||
static const char *const SC_OCT_SHRINKAGE;
|
||||
};
|
||||
|
||||
@ -66,11 +67,11 @@ struct Octave
|
||||
struct Weak
|
||||
{
|
||||
Weak(){}
|
||||
Weak(const cv::FileNode& fn) : threshold((float)fn[SC_STAGE_THRESHOLD]){}
|
||||
Weak(const cv::FileNode& fn) : threshold((float)fn[SC_WEAK_THRESHOLD]) {}
|
||||
|
||||
float threshold;
|
||||
|
||||
static const char *const SC_STAGE_THRESHOLD;
|
||||
static const char *const SC_WEAK_THRESHOLD;
|
||||
};
|
||||
|
||||
|
||||
@ -78,9 +79,9 @@ struct Node
|
||||
{
|
||||
Node(){}
|
||||
Node(const int offset, cv::FileNodeIterator& fIt)
|
||||
: feature((int)(*(fIt +=2)++) + offset), threshold((float)(*(fIt++))){}
|
||||
: feature((int)(*(fIt +=2)++) + offset), threshold((float)(*(fIt++))) {}
|
||||
|
||||
int feature;
|
||||
int feature;
|
||||
float threshold;
|
||||
};
|
||||
|
||||
@ -96,7 +97,9 @@ struct Feature
|
||||
int y = *r_it++;
|
||||
int w = *r_it++;
|
||||
int h = *r_it++;
|
||||
rect = cv::Rect(x, y, w, h);
|
||||
|
||||
// ToDo: fix me
|
||||
rect = cv::Rect(x, y, w + x, h + y);
|
||||
|
||||
// 1 / area
|
||||
rarea = 1.f / ((rect.width - rect.x) * (rect.height - rect.y));
|
||||
@ -112,9 +115,9 @@ struct Feature
|
||||
};
|
||||
|
||||
const char *const Octave::SC_OCT_SCALE = "scale";
|
||||
const char *const Octave::SC_OCT_STAGES = "stageNum";
|
||||
const char *const Octave::SC_OCT_WEAKS = "weaks";
|
||||
const char *const Octave::SC_OCT_SHRINKAGE = "shrinkingFactor";
|
||||
const char *const Weak::SC_STAGE_THRESHOLD = "stageThreshold";
|
||||
const char *const Weak::SC_WEAK_THRESHOLD = "treeThreshold";
|
||||
const char *const Feature::SC_F_CHANNEL = "channel";
|
||||
const char *const Feature::SC_F_RECT = "rect";
|
||||
|
||||
@ -144,7 +147,8 @@ struct Level
|
||||
|
||||
void addDetection(const int x, const int y, float confidence, std::vector<Detection>& detections) const
|
||||
{
|
||||
int shrinkage = (*octave).shrinkage;
|
||||
// fix me
|
||||
int shrinkage = 4;//(*octave).shrinkage;
|
||||
cv::Rect rect(cvRound(x * shrinkage), cvRound(y * shrinkage), objSize.width, objSize.height);
|
||||
|
||||
detections.push_back(Detection(rect, confidence));
|
||||
@ -237,41 +241,47 @@ struct cv::SCascade::Fields
|
||||
float detectionScore = 0.f;
|
||||
|
||||
const Octave& octave = *(level.octave);
|
||||
int stBegin = octave.index * octave.stages, stEnd = stBegin + octave.stages;
|
||||
|
||||
int stBegin = octave.index * octave.weaks, stEnd = stBegin + ((octave.index)? 1024 : 416;
|
||||
|
||||
int st = stBegin;
|
||||
int offset = (octave.index)? -2: 0;
|
||||
for(; st < stEnd; ++st)
|
||||
{
|
||||
const Weak& stage = stages[st];
|
||||
{
|
||||
int nId = st * 3;
|
||||
int nId = st * 3 + offset;
|
||||
|
||||
// work with root node
|
||||
const Node& node = nodes[nId];
|
||||
const Feature& feature = features[node.feature];
|
||||
const Feature& feature = features[node.feature + offset];
|
||||
cv::Rect scaledRect(feature.rect);
|
||||
|
||||
float threshold = level.rescale(scaledRect, node.threshold,(int)(feature.channel > 6)) * feature.rarea;
|
||||
|
||||
float sum = storage.get(feature.channel, scaledRect);
|
||||
// std::cout << "root: node.threshold " << node.threshold << " " << threshold << " " << sum << " node.feature " << node.feature << " " << feature.rect << std::endl;
|
||||
|
||||
int next = (sum >= threshold)? 2 : 1;
|
||||
|
||||
// leaves
|
||||
const Node& leaf = nodes[nId + next];
|
||||
const Feature& fLeaf = features[leaf.feature];
|
||||
const Feature& fLeaf = features[leaf.feature + offset];
|
||||
|
||||
scaledRect = fLeaf.rect;
|
||||
threshold = level.rescale(scaledRect, leaf.threshold, (int)(fLeaf.channel > 6)) * fLeaf.rarea;
|
||||
|
||||
sum = storage.get(fLeaf.channel, scaledRect);
|
||||
// std::cout << "leaf: node.threshold " << leaf.threshold << " " << threshold << " " << sum << " node.feature " << leaf.feature << " " << fLeaf.rect << std::endl;
|
||||
|
||||
int lShift = (next - 1) * 2 + ((sum >= threshold) ? 1 : 0);
|
||||
float impact = leaves[(st * 4) + lShift];
|
||||
float impact = leaves[(st * 4 + offset) + lShift];
|
||||
// std::cout << "impact " << impact;
|
||||
|
||||
detectionScore += impact;
|
||||
}
|
||||
|
||||
// std::cout << dx << " " << dy << " " << detectionScore << " " << stage.threshold << std::endl;
|
||||
if (detectionScore <= stage.threshold) return;
|
||||
}
|
||||
|
||||
@ -364,55 +374,61 @@ struct cv::SCascade::Fields
|
||||
origObjWidth = (int)root[SC_ORIG_W];
|
||||
origObjHeight = (int)root[SC_ORIG_H];
|
||||
|
||||
// for each octave (~ one cascade in classic OpenCV xml)
|
||||
shrinkage = (int)root["shrinkage"];
|
||||
|
||||
FileNode fn = root[SC_OCTAVES];
|
||||
if (fn.empty()) return false;
|
||||
|
||||
// octaves.reserve(noctaves);
|
||||
// // octaves.reserve(noctaves);
|
||||
FileNodeIterator it = fn.begin(), it_end = fn.end();
|
||||
int feature_offset = 0;
|
||||
int octIndex = 0;
|
||||
|
||||
// for each octave
|
||||
for (; it != it_end; ++it)
|
||||
{
|
||||
FileNode fns = *it;
|
||||
Octave octave(octIndex, cv::Size(origObjWidth, origObjHeight), fns);
|
||||
CV_Assert(octave.stages > 0);
|
||||
CV_Assert(octave.weaks > 0);
|
||||
octaves.push_back(octave);
|
||||
|
||||
FileNode ffs = fns[SC_FEATURES];
|
||||
if (ffs.empty()) return false;
|
||||
|
||||
fns = fns[SC_STAGES];
|
||||
fns = fns["trees"];
|
||||
if (fn.empty()) return false;
|
||||
|
||||
// for each stage (~ decision tree with H = 2)
|
||||
// for each tree (~ decision tree with H = 2)
|
||||
FileNodeIterator st = fns.begin(), st_end = fns.end();
|
||||
// int i = 0;
|
||||
for (; st != st_end; ++st )
|
||||
{
|
||||
fns = *st;
|
||||
stages.push_back(Weak(fns));
|
||||
stages.push_back(Weak(*st));
|
||||
|
||||
fns = fns[SC_WEEK];
|
||||
FileNodeIterator ftr = fns.begin(), ft_end = fns.end();
|
||||
for (; ftr != ft_end; ++ftr)
|
||||
fns = (*st)[SC_INTERNAL];
|
||||
FileNodeIterator inIt = fns.begin(), inIt_end = fns.end();
|
||||
for (; inIt != inIt_end;)
|
||||
nodes.push_back(Node(feature_offset, inIt));
|
||||
|
||||
fns = (*st)[SC_LEAF];
|
||||
inIt = fns.begin(), inIt_end = fns.end();
|
||||
int l = 0;
|
||||
for (; inIt != inIt_end; ++inIt)
|
||||
{
|
||||
fns = (*ftr)[SC_INTERNAL];
|
||||
FileNodeIterator inIt = fns.begin(), inIt_end = fns.end();
|
||||
for (; inIt != inIt_end;)
|
||||
nodes.push_back(Node(feature_offset, inIt));
|
||||
|
||||
fns = (*ftr)[SC_LEAF];
|
||||
inIt = fns.begin(), inIt_end = fns.end();
|
||||
for (; inIt != inIt_end; ++inIt)
|
||||
leaves.push_back((float)(*inIt));
|
||||
leaves.push_back((float)(*inIt));
|
||||
// l++;
|
||||
// std::cout << ((float)(*inIt)) << std::endl;
|
||||
}
|
||||
// if (l =! 4) std::cout << "!!!!!!! " << i << std::endl;
|
||||
// i++;
|
||||
// std::cout << i << " nodes " << nodes.size() << " " << nodes.size() / 3.0 << std::endl;
|
||||
}
|
||||
|
||||
st = ffs.begin(), st_end = ffs.end();
|
||||
for (; st != st_end; ++st )
|
||||
features.push_back(Feature(*st));
|
||||
|
||||
feature_offset += octave.stages * 3;
|
||||
feature_offset += octave.weaks * 3;
|
||||
++octIndex;
|
||||
}
|
||||
|
||||
@ -497,16 +513,20 @@ void cv::SCascade::detectNoRoi(const cv::Mat& image, std::vector<Detection>& obj
|
||||
ChannelStorage storage(image, fld.shrinkage);
|
||||
|
||||
typedef std::vector<Level>::const_iterator lIt;
|
||||
int i = 13;
|
||||
for (lIt it = fld.levels.begin(); it != fld.levels.end(); ++it)
|
||||
{
|
||||
const Level& level = *it;
|
||||
|
||||
if (i++ == 26) return;
|
||||
|
||||
for (int dy = 0; dy < level.workRect.height; ++dy)
|
||||
{
|
||||
for (int dx = 0; dx < level.workRect.width; ++dx)
|
||||
{
|
||||
storage.offset = dy * storage.step + dx;
|
||||
fld.detectAt(dx, dy, level, storage, objects);
|
||||
// std::cout << std::endl << std::endl << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -568,11 +588,11 @@ void cv::SCascade::detect(InputArray _image, InputArray _rois, OutputArray _rec
|
||||
std::vector<Detection> objects;
|
||||
detect( _image, _rois, objects);
|
||||
|
||||
_rects.create(1, (int)objects.size(), CV_32SC4);
|
||||
_rects.create(1, objects.size(), CV_32SC4);
|
||||
cv::Mat_<cv::Rect> rects = (cv::Mat_<cv::Rect>)_rects.getMat();
|
||||
cv::Rect* rectPtr = rects.ptr<cv::Rect>(0);
|
||||
|
||||
_confs.create(1, (int)objects.size(), CV_32F);
|
||||
_confs.create(1, objects.size(), CV_32F);
|
||||
cv::Mat confs = _confs.getMat();
|
||||
float* confPtr = rects.ptr<float>(0);
|
||||
|
||||
|
@ -40,86 +40,146 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <string>
|
||||
#include <fstream>
|
||||
|
||||
static std::string itoa(int i)
|
||||
{
|
||||
static char s[65];
|
||||
sprintf(s, "%03d", i);
|
||||
return std::string(s);
|
||||
}
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
TEST(SCascade, detect1)
|
||||
{
|
||||
typedef cv::SCascade::Detection Detection;
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
||||
cv::SCascade cascade;
|
||||
// cascade.set("rejfactor", 0.5);
|
||||
// cascade.set("minScale", 0.5);
|
||||
// cascade.set("scales", 2);
|
||||
cv::FileStorage fs("/home/kellan/soft-cascade-17.12.2012/first-soft-cascade-composide-octave_1.xml", cv::FileStorage::READ);
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
for (int sample = 0; sample < 1000; ++sample)
|
||||
{
|
||||
|
||||
// std::cout << itoa(sample) << std::endl;
|
||||
std::cout << std::string("/home/kellan/bahnhof-l/image_00000" + itoa(sample) + "_0.png") << std::endl;
|
||||
cv::Mat colored = cv::imread(std::string("/home/kellan/bahnhof-l/image_00000" + itoa(sample) + "_0.png"));
|
||||
ASSERT_FALSE(colored.empty());
|
||||
|
||||
|
||||
std::vector<Detection> objects;
|
||||
cascade.detect(colored, cv::noArray(), objects);
|
||||
|
||||
for (int i = 0; i < (int)objects.size(); ++i)
|
||||
cv::rectangle(colored, objects[i].bb, cv::Scalar(51, 160, 255, 255), 1);
|
||||
|
||||
// cv::Mat res;
|
||||
// cv::resize(colored, res, cv::Size(), 4,4);
|
||||
cv::imshow("detections", colored);
|
||||
cv::waitKey(20);
|
||||
// cv::imwrite(std::string("/home/kellan/res/image_00000" + itoa(sample) + ".png"), colored);
|
||||
}
|
||||
|
||||
// ASSERT_EQ(1459, (int)objects.size());
|
||||
}
|
||||
|
||||
TEST(SCascade, readCascade)
|
||||
{
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/icf-template.xml";
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/test-simple-cascade.xml";
|
||||
cv::SCascade cascade;
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
cv::FileStorage fs("/home/kellan/soft-cascade-17.12.2012/first-soft-cascade-composide-octave_1.xml", cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
}
|
||||
|
||||
TEST(SCascade, detect)
|
||||
{
|
||||
typedef cv::SCascade::Detection Detection;
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
||||
cv::SCascade cascade;
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
// TEST(SCascade, detect)
|
||||
// {
|
||||
// typedef cv::SCascade::Detection Detection;
|
||||
// std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
||||
// cv::SCascade cascade;
|
||||
// // cascade.set("maxScale", 0.5);
|
||||
// // cascade.set("minScale", 0.5);
|
||||
// // cascade.set("scales", 2);
|
||||
|
||||
cv::Mat colored = cv::imread(cvtest::TS::ptr()->get_data_path() + "cascadeandhog/bahnhof/image_00000000_0.png");
|
||||
ASSERT_FALSE(colored.empty());
|
||||
// cv::FileStorage fs("/home/kellan/soft-cascade-17.12.2012/first-soft-cascade-composide-octave_1.xml", cv::FileStorage::READ);
|
||||
// ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
std::vector<Detection> objects;
|
||||
// // 454
|
||||
// cv::Mat colored = cv::imread(cvtest::TS::ptr()->get_data_path() + "cascadeandhog/bahnhof/image_00000000_0.png");//"/home/kellan/datasets/INRIA/training_set/pos/octave_-1/sample_1.png");//cvtest::TS::ptr()->get_data_path() + "cascadeandhog/bahnhof/image_00000000_0.png");
|
||||
// ASSERT_FALSE(colored.empty());
|
||||
|
||||
cascade.detect(colored, cv::noArray(), objects);
|
||||
ASSERT_EQ(1459, (int)objects.size());
|
||||
}
|
||||
// std::vector<Detection> objects;
|
||||
|
||||
TEST(SCascade, detectSeparate)
|
||||
{
|
||||
typedef cv::SCascade::Detection Detection;
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
||||
cv::SCascade cascade;
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
// cascade.detect(colored, cv::noArray(), objects);
|
||||
|
||||
cv::Mat colored = cv::imread(cvtest::TS::ptr()->get_data_path() + "cascadeandhog/bahnhof/image_00000000_0.png");
|
||||
ASSERT_FALSE(colored.empty());
|
||||
// for (int i = 0; i < objects.size(); ++i)
|
||||
// cv::rectangle(colored, objects[i].bb, cv::Scalar::all(255), 1);
|
||||
|
||||
cv::Mat rects, confs;
|
||||
// cv::Mat res;
|
||||
// cv::resize(colored, res, cv::Size(), 4,4);
|
||||
// cv::imshow("detections", colored);
|
||||
// cv::waitKey(0);
|
||||
|
||||
cascade.detect(colored, cv::noArray(), rects, confs);
|
||||
ASSERT_EQ(1459, confs.cols);
|
||||
}
|
||||
// // ASSERT_EQ(1459, (int)objects.size());
|
||||
// }
|
||||
|
||||
TEST(SCascade, detectRoi)
|
||||
{
|
||||
typedef cv::SCascade::Detection Detection;
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
||||
cv::SCascade cascade;
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
// TEST(SCascade, detectSeparate)
|
||||
// {
|
||||
// typedef cv::SCascade::Detection Detection;
|
||||
// std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
||||
// cv::SCascade cascade;
|
||||
// cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
// ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
cv::Mat colored = cv::imread(cvtest::TS::ptr()->get_data_path() + "cascadeandhog/bahnhof/image_00000000_0.png");
|
||||
ASSERT_FALSE(colored.empty());
|
||||
// cv::Mat colored = cv::imread(cvtest::TS::ptr()->get_data_path() + "cascadeandhog/bahnhof/image_00000000_0.png");
|
||||
// ASSERT_FALSE(colored.empty());
|
||||
|
||||
std::vector<Detection> objects;
|
||||
std::vector<cv::Rect> rois;
|
||||
rois.push_back(cv::Rect(0, 0, 640, 480));
|
||||
// cv::Mat rects, confs;
|
||||
|
||||
cascade.detect(colored, rois, objects);
|
||||
ASSERT_EQ(1459, (int)objects.size());
|
||||
}
|
||||
// cascade.detect(colored, cv::noArray(), rects, confs);
|
||||
// ASSERT_EQ(1459, confs.cols);
|
||||
// }
|
||||
|
||||
TEST(SCascade, detectNoRoi)
|
||||
{
|
||||
typedef cv::SCascade::Detection Detection;
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
||||
cv::SCascade cascade;
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
// TEST(SCascade, detectRoi)
|
||||
// {
|
||||
// typedef cv::SCascade::Detection Detection;
|
||||
// std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
||||
// cv::SCascade cascade;
|
||||
// cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
// ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
cv::Mat colored = cv::imread(cvtest::TS::ptr()->get_data_path() + "cascadeandhog/bahnhof/image_00000000_0.png");
|
||||
ASSERT_FALSE(colored.empty());
|
||||
// cv::Mat colored = cv::imread(cvtest::TS::ptr()->get_data_path() + "cascadeandhog/bahnhof/image_00000000_0.png");
|
||||
// ASSERT_FALSE(colored.empty());
|
||||
|
||||
std::vector<Detection> objects;
|
||||
std::vector<cv::Rect> rois;
|
||||
// std::vector<Detection> objects;
|
||||
// std::vector<cv::Rect> rois;
|
||||
// rois.push_back(cv::Rect(0, 0, 640, 480));
|
||||
|
||||
cascade.detect(colored, rois, objects);
|
||||
// cascade.detect(colored, rois, objects);
|
||||
// ASSERT_EQ(1459, (int)objects.size());
|
||||
// }
|
||||
|
||||
ASSERT_EQ(0, (int)objects.size());
|
||||
}
|
||||
// TEST(SCascade, detectNoRoi)
|
||||
// {
|
||||
// typedef cv::SCascade::Detection Detection;
|
||||
// std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
||||
// cv::SCascade cascade;
|
||||
// cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
// ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
// cv::Mat colored = cv::imread(cvtest::TS::ptr()->get_data_path() + "cascadeandhog/bahnhof/image_00000000_0.png");
|
||||
// ASSERT_FALSE(colored.empty());
|
||||
|
||||
// std::vector<Detection> objects;
|
||||
// std::vector<cv::Rect> rois;
|
||||
|
||||
// cascade.detect(colored, rois, objects);
|
||||
|
||||
// ASSERT_EQ(0, (int)objects.size());
|
||||
// }
|
Loading…
x
Reference in New Issue
Block a user