Update for non Eigen users
This commit is contained in:
parent
56704b5e95
commit
3e2a57ff35
@ -12,15 +12,12 @@
|
||||
# include "opencv2/core/eigen.hpp"
|
||||
#endif
|
||||
|
||||
|
||||
//#include <Eigen/Eigenvalues>
|
||||
//#include <Eigen/Core>
|
||||
|
||||
using namespace std;
|
||||
|
||||
dls::dls(const cv::Mat& opoints, const cv::Mat& ipoints)
|
||||
{
|
||||
|
||||
|
||||
N = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
|
||||
p = cv::Mat(3, N, CV_64F);
|
||||
z = cv::Mat(3, N, CV_64F);
|
||||
@ -136,8 +133,6 @@ void dls::run_kernel(const cv::Mat& pp)
|
||||
int count = 0;
|
||||
for (int k = 0; k < 27; ++k)
|
||||
{
|
||||
// TODO: solve implementation for complex numbers
|
||||
|
||||
// V(:,k) = V(:,k)/V(1,k);
|
||||
cv::Mat V_kA = eigenvec_r.col(k); // 27x1
|
||||
cv::Mat V_kB = cv::Mat(1, 1, z.depth(), V_kA.at<double>(0)); // 1x1
|
||||
@ -145,9 +140,11 @@ void dls::run_kernel(const cv::Mat& pp)
|
||||
cv::Mat( V_k.t()).copyTo( eigenvec_r.col(k) );
|
||||
|
||||
//if (imag(V(2,k)) == 0)
|
||||
#ifdef HAVE_EIGEN
|
||||
const double epsilon = 1e-4;
|
||||
if( eigenval_i.at<double>(k,0) >= -epsilon && eigenval_i.at<double>(k,0) <= epsilon )
|
||||
{ // it should work without checking imaginari part
|
||||
#endif
|
||||
{
|
||||
|
||||
double stmp[3];
|
||||
stmp[0] = eigenvec_r.at<double>(9, k);
|
||||
@ -282,8 +279,6 @@ void dls::build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D)
|
||||
void dls::compute_eigenvec(const cv::Mat& Mtilde, cv::Mat& eigenval_real, cv::Mat& eigenval_imag,
|
||||
cv::Mat& eigenvec_real, cv::Mat& eigenvec_imag)
|
||||
{
|
||||
// EIGENVALUES AND EIGENVECTORS
|
||||
|
||||
#ifdef HAVE_EIGEN
|
||||
Eigen::MatrixXd Mtilde_eig, zeros_eig;
|
||||
cv::cv2eigen(Mtilde, Mtilde_eig);
|
||||
@ -305,6 +300,10 @@ void dls::compute_eigenvec(const cv::Mat& Mtilde, cv::Mat& eigenval_real, cv::Ma
|
||||
cv::eigen2cv(eigval_imag, eigenval_imag);
|
||||
cv::eigen2cv(eigvec_real, eigenvec_real);
|
||||
cv::eigen2cv(eigvec_imag, eigenvec_imag);
|
||||
#else
|
||||
EigenvalueDecomposition es(Mtilde);
|
||||
eigenval_real = es.eigenvalues();
|
||||
eigenvec_real = es.eigenvectors();
|
||||
#endif
|
||||
|
||||
}
|
||||
|
@ -4,7 +4,7 @@
|
||||
#include "precomp.hpp"
|
||||
|
||||
using namespace std;
|
||||
|
||||
using namespace cv;
|
||||
|
||||
class dls
|
||||
{
|
||||
@ -66,4 +66,696 @@ private:
|
||||
double cost__; // optimal found solution
|
||||
};
|
||||
|
||||
|
||||
class EigenvalueDecomposition {
|
||||
private:
|
||||
|
||||
// Holds the data dimension.
|
||||
int n;
|
||||
|
||||
// Stores real/imag part of a complex division.
|
||||
double cdivr, cdivi;
|
||||
|
||||
// Pointer to internal memory.
|
||||
double *d, *e, *ort;
|
||||
double **V, **H;
|
||||
|
||||
// Holds the computed eigenvalues.
|
||||
Mat _eigenvalues;
|
||||
|
||||
// Holds the computed eigenvectors.
|
||||
Mat _eigenvectors;
|
||||
|
||||
// Allocates memory.
|
||||
template<typename _Tp>
|
||||
_Tp *alloc_1d(int m) {
|
||||
return new _Tp[m];
|
||||
}
|
||||
|
||||
// Allocates memory.
|
||||
template<typename _Tp>
|
||||
_Tp *alloc_1d(int m, _Tp val) {
|
||||
_Tp *arr = alloc_1d<_Tp> (m);
|
||||
for (int i = 0; i < m; i++)
|
||||
arr[i] = val;
|
||||
return arr;
|
||||
}
|
||||
|
||||
// Allocates memory.
|
||||
template<typename _Tp>
|
||||
_Tp **alloc_2d(int m, int _n) {
|
||||
_Tp **arr = new _Tp*[m];
|
||||
for (int i = 0; i < m; i++)
|
||||
arr[i] = new _Tp[_n];
|
||||
return arr;
|
||||
}
|
||||
|
||||
// Allocates memory.
|
||||
template<typename _Tp>
|
||||
_Tp **alloc_2d(int m, int _n, _Tp val) {
|
||||
_Tp **arr = alloc_2d<_Tp> (m, _n);
|
||||
for (int i = 0; i < m; i++) {
|
||||
for (int j = 0; j < _n; j++) {
|
||||
arr[i][j] = val;
|
||||
}
|
||||
}
|
||||
return arr;
|
||||
}
|
||||
|
||||
void cdiv(double xr, double xi, double yr, double yi) {
|
||||
double r, dv;
|
||||
if (std::abs(yr) > std::abs(yi)) {
|
||||
r = yi / yr;
|
||||
dv = yr + r * yi;
|
||||
cdivr = (xr + r * xi) / dv;
|
||||
cdivi = (xi - r * xr) / dv;
|
||||
} else {
|
||||
r = yr / yi;
|
||||
dv = yi + r * yr;
|
||||
cdivr = (r * xr + xi) / dv;
|
||||
cdivi = (r * xi - xr) / dv;
|
||||
}
|
||||
}
|
||||
|
||||
// Nonsymmetric reduction from Hessenberg to real Schur form.
|
||||
|
||||
void hqr2() {
|
||||
|
||||
// This is derived from the Algol procedure hqr2,
|
||||
// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
||||
// Vol.ii-Linear Algebra, and the corresponding
|
||||
// Fortran subroutine in EISPACK.
|
||||
|
||||
// Initialize
|
||||
int nn = this->n;
|
||||
int n1 = nn - 1;
|
||||
int low = 0;
|
||||
int high = nn - 1;
|
||||
double eps = std::pow(2.0, -52.0);
|
||||
double exshift = 0.0;
|
||||
double p = 0, q = 0, r = 0, s = 0, z = 0, t, w, x, y;
|
||||
|
||||
// Store roots isolated by balanc and compute matrix norm
|
||||
|
||||
double norm = 0.0;
|
||||
for (int i = 0; i < nn; i++) {
|
||||
if (i < low || i > high) {
|
||||
d[i] = H[i][i];
|
||||
e[i] = 0.0;
|
||||
}
|
||||
for (int j = std::max(i - 1, 0); j < nn; j++) {
|
||||
norm = norm + std::abs(H[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
// Outer loop over eigenvalue index
|
||||
int iter = 0;
|
||||
while (n1 >= low) {
|
||||
|
||||
// Look for single small sub-diagonal element
|
||||
int l = n1;
|
||||
while (l > low) {
|
||||
s = std::abs(H[l - 1][l - 1]) + std::abs(H[l][l]);
|
||||
if (s == 0.0) {
|
||||
s = norm;
|
||||
}
|
||||
if (std::abs(H[l][l - 1]) < eps * s) {
|
||||
break;
|
||||
}
|
||||
l--;
|
||||
}
|
||||
|
||||
// Check for convergence
|
||||
// One root found
|
||||
|
||||
if (l == n1) {
|
||||
H[n1][n1] = H[n1][n1] + exshift;
|
||||
d[n1] = H[n1][n1];
|
||||
e[n1] = 0.0;
|
||||
n1--;
|
||||
iter = 0;
|
||||
|
||||
// Two roots found
|
||||
|
||||
} else if (l == n1 - 1) {
|
||||
w = H[n1][n1 - 1] * H[n1 - 1][n1];
|
||||
p = (H[n1 - 1][n1 - 1] - H[n1][n1]) / 2.0;
|
||||
q = p * p + w;
|
||||
z = std::sqrt(std::abs(q));
|
||||
H[n1][n1] = H[n1][n1] + exshift;
|
||||
H[n1 - 1][n1 - 1] = H[n1 - 1][n1 - 1] + exshift;
|
||||
x = H[n1][n1];
|
||||
|
||||
// Real pair
|
||||
|
||||
if (q >= 0) {
|
||||
if (p >= 0) {
|
||||
z = p + z;
|
||||
} else {
|
||||
z = p - z;
|
||||
}
|
||||
d[n1 - 1] = x + z;
|
||||
d[n1] = d[n1 - 1];
|
||||
if (z != 0.0) {
|
||||
d[n1] = x - w / z;
|
||||
}
|
||||
e[n1 - 1] = 0.0;
|
||||
e[n1] = 0.0;
|
||||
x = H[n1][n1 - 1];
|
||||
s = std::abs(x) + std::abs(z);
|
||||
p = x / s;
|
||||
q = z / s;
|
||||
r = std::sqrt(p * p + q * q);
|
||||
p = p / r;
|
||||
q = q / r;
|
||||
|
||||
// Row modification
|
||||
|
||||
for (int j = n1 - 1; j < nn; j++) {
|
||||
z = H[n1 - 1][j];
|
||||
H[n1 - 1][j] = q * z + p * H[n1][j];
|
||||
H[n1][j] = q * H[n1][j] - p * z;
|
||||
}
|
||||
|
||||
// Column modification
|
||||
|
||||
for (int i = 0; i <= n1; i++) {
|
||||
z = H[i][n1 - 1];
|
||||
H[i][n1 - 1] = q * z + p * H[i][n1];
|
||||
H[i][n1] = q * H[i][n1] - p * z;
|
||||
}
|
||||
|
||||
// Accumulate transformations
|
||||
|
||||
for (int i = low; i <= high; i++) {
|
||||
z = V[i][n1 - 1];
|
||||
V[i][n1 - 1] = q * z + p * V[i][n1];
|
||||
V[i][n1] = q * V[i][n1] - p * z;
|
||||
}
|
||||
|
||||
// Complex pair
|
||||
|
||||
} else {
|
||||
d[n1 - 1] = x + p;
|
||||
d[n1] = x + p;
|
||||
e[n1 - 1] = z;
|
||||
e[n1] = -z;
|
||||
}
|
||||
n1 = n1 - 2;
|
||||
iter = 0;
|
||||
|
||||
// No convergence yet
|
||||
|
||||
} else {
|
||||
|
||||
// Form shift
|
||||
|
||||
x = H[n1][n1];
|
||||
y = 0.0;
|
||||
w = 0.0;
|
||||
if (l < n1) {
|
||||
y = H[n1 - 1][n1 - 1];
|
||||
w = H[n1][n1 - 1] * H[n1 - 1][n1];
|
||||
}
|
||||
|
||||
// Wilkinson's original ad hoc shift
|
||||
|
||||
if (iter == 10) {
|
||||
exshift += x;
|
||||
for (int i = low; i <= n1; i++) {
|
||||
H[i][i] -= x;
|
||||
}
|
||||
s = std::abs(H[n1][n1 - 1]) + std::abs(H[n1 - 1][n1 - 2]);
|
||||
x = y = 0.75 * s;
|
||||
w = -0.4375 * s * s;
|
||||
}
|
||||
|
||||
// MATLAB's new ad hoc shift
|
||||
|
||||
if (iter == 30) {
|
||||
s = (y - x) / 2.0;
|
||||
s = s * s + w;
|
||||
if (s > 0) {
|
||||
s = std::sqrt(s);
|
||||
if (y < x) {
|
||||
s = -s;
|
||||
}
|
||||
s = x - w / ((y - x) / 2.0 + s);
|
||||
for (int i = low; i <= n1; i++) {
|
||||
H[i][i] -= s;
|
||||
}
|
||||
exshift += s;
|
||||
x = y = w = 0.964;
|
||||
}
|
||||
}
|
||||
|
||||
iter = iter + 1; // (Could check iteration count here.)
|
||||
|
||||
// Look for two consecutive small sub-diagonal elements
|
||||
int m = n1 - 2;
|
||||
while (m >= l) {
|
||||
z = H[m][m];
|
||||
r = x - z;
|
||||
s = y - z;
|
||||
p = (r * s - w) / H[m + 1][m] + H[m][m + 1];
|
||||
q = H[m + 1][m + 1] - z - r - s;
|
||||
r = H[m + 2][m + 1];
|
||||
s = std::abs(p) + std::abs(q) + std::abs(r);
|
||||
p = p / s;
|
||||
q = q / s;
|
||||
r = r / s;
|
||||
if (m == l) {
|
||||
break;
|
||||
}
|
||||
if (std::abs(H[m][m - 1]) * (std::abs(q) + std::abs(r)) < eps * (std::abs(p)
|
||||
* (std::abs(H[m - 1][m - 1]) + std::abs(z) + std::abs(
|
||||
H[m + 1][m + 1])))) {
|
||||
break;
|
||||
}
|
||||
m--;
|
||||
}
|
||||
|
||||
for (int i = m + 2; i <= n1; i++) {
|
||||
H[i][i - 2] = 0.0;
|
||||
if (i > m + 2) {
|
||||
H[i][i - 3] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Double QR step involving rows l:n and columns m:n
|
||||
|
||||
for (int k = m; k <= n1 - 1; k++) {
|
||||
bool notlast = (k != n1 - 1);
|
||||
if (k != m) {
|
||||
p = H[k][k - 1];
|
||||
q = H[k + 1][k - 1];
|
||||
r = (notlast ? H[k + 2][k - 1] : 0.0);
|
||||
x = std::abs(p) + std::abs(q) + std::abs(r);
|
||||
if (x != 0.0) {
|
||||
p = p / x;
|
||||
q = q / x;
|
||||
r = r / x;
|
||||
}
|
||||
}
|
||||
if (x == 0.0) {
|
||||
break;
|
||||
}
|
||||
s = std::sqrt(p * p + q * q + r * r);
|
||||
if (p < 0) {
|
||||
s = -s;
|
||||
}
|
||||
if (s != 0) {
|
||||
if (k != m) {
|
||||
H[k][k - 1] = -s * x;
|
||||
} else if (l != m) {
|
||||
H[k][k - 1] = -H[k][k - 1];
|
||||
}
|
||||
p = p + s;
|
||||
x = p / s;
|
||||
y = q / s;
|
||||
z = r / s;
|
||||
q = q / p;
|
||||
r = r / p;
|
||||
|
||||
// Row modification
|
||||
|
||||
for (int j = k; j < nn; j++) {
|
||||
p = H[k][j] + q * H[k + 1][j];
|
||||
if (notlast) {
|
||||
p = p + r * H[k + 2][j];
|
||||
H[k + 2][j] = H[k + 2][j] - p * z;
|
||||
}
|
||||
H[k][j] = H[k][j] - p * x;
|
||||
H[k + 1][j] = H[k + 1][j] - p * y;
|
||||
}
|
||||
|
||||
// Column modification
|
||||
|
||||
for (int i = 0; i <= std::min(n1, k + 3); i++) {
|
||||
p = x * H[i][k] + y * H[i][k + 1];
|
||||
if (notlast) {
|
||||
p = p + z * H[i][k + 2];
|
||||
H[i][k + 2] = H[i][k + 2] - p * r;
|
||||
}
|
||||
H[i][k] = H[i][k] - p;
|
||||
H[i][k + 1] = H[i][k + 1] - p * q;
|
||||
}
|
||||
|
||||
// Accumulate transformations
|
||||
|
||||
for (int i = low; i <= high; i++) {
|
||||
p = x * V[i][k] + y * V[i][k + 1];
|
||||
if (notlast) {
|
||||
p = p + z * V[i][k + 2];
|
||||
V[i][k + 2] = V[i][k + 2] - p * r;
|
||||
}
|
||||
V[i][k] = V[i][k] - p;
|
||||
V[i][k + 1] = V[i][k + 1] - p * q;
|
||||
}
|
||||
} // (s != 0)
|
||||
} // k loop
|
||||
} // check convergence
|
||||
} // while (n1 >= low)
|
||||
|
||||
// Backsubstitute to find vectors of upper triangular form
|
||||
|
||||
if (norm == 0.0) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (n1 = nn - 1; n1 >= 0; n1--) {
|
||||
p = d[n1];
|
||||
q = e[n1];
|
||||
|
||||
// Real vector
|
||||
|
||||
if (q == 0) {
|
||||
int l = n1;
|
||||
H[n1][n1] = 1.0;
|
||||
for (int i = n1 - 1; i >= 0; i--) {
|
||||
w = H[i][i] - p;
|
||||
r = 0.0;
|
||||
for (int j = l; j <= n1; j++) {
|
||||
r = r + H[i][j] * H[j][n1];
|
||||
}
|
||||
if (e[i] < 0.0) {
|
||||
z = w;
|
||||
s = r;
|
||||
} else {
|
||||
l = i;
|
||||
if (e[i] == 0.0) {
|
||||
if (w != 0.0) {
|
||||
H[i][n1] = -r / w;
|
||||
} else {
|
||||
H[i][n1] = -r / (eps * norm);
|
||||
}
|
||||
|
||||
// Solve real equations
|
||||
|
||||
} else {
|
||||
x = H[i][i + 1];
|
||||
y = H[i + 1][i];
|
||||
q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
|
||||
t = (x * s - z * r) / q;
|
||||
H[i][n1] = t;
|
||||
if (std::abs(x) > std::abs(z)) {
|
||||
H[i + 1][n1] = (-r - w * t) / x;
|
||||
} else {
|
||||
H[i + 1][n1] = (-s - y * t) / z;
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow control
|
||||
|
||||
t = std::abs(H[i][n1]);
|
||||
if ((eps * t) * t > 1) {
|
||||
for (int j = i; j <= n1; j++) {
|
||||
H[j][n1] = H[j][n1] / t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// Complex vector
|
||||
} else if (q < 0) {
|
||||
int l = n1 - 1;
|
||||
|
||||
// Last vector component imaginary so matrix is triangular
|
||||
|
||||
if (std::abs(H[n1][n1 - 1]) > std::abs(H[n1 - 1][n1])) {
|
||||
H[n1 - 1][n1 - 1] = q / H[n1][n1 - 1];
|
||||
H[n1 - 1][n1] = -(H[n1][n1] - p) / H[n1][n1 - 1];
|
||||
} else {
|
||||
cdiv(0.0, -H[n1 - 1][n1], H[n1 - 1][n1 - 1] - p, q);
|
||||
H[n1 - 1][n1 - 1] = cdivr;
|
||||
H[n1 - 1][n1] = cdivi;
|
||||
}
|
||||
H[n1][n1 - 1] = 0.0;
|
||||
H[n1][n1] = 1.0;
|
||||
for (int i = n1 - 2; i >= 0; i--) {
|
||||
double ra, sa, vr, vi;
|
||||
ra = 0.0;
|
||||
sa = 0.0;
|
||||
for (int j = l; j <= n1; j++) {
|
||||
ra = ra + H[i][j] * H[j][n1 - 1];
|
||||
sa = sa + H[i][j] * H[j][n1];
|
||||
}
|
||||
w = H[i][i] - p;
|
||||
|
||||
if (e[i] < 0.0) {
|
||||
z = w;
|
||||
r = ra;
|
||||
s = sa;
|
||||
} else {
|
||||
l = i;
|
||||
if (e[i] == 0) {
|
||||
cdiv(-ra, -sa, w, q);
|
||||
H[i][n1 - 1] = cdivr;
|
||||
H[i][n1] = cdivi;
|
||||
} else {
|
||||
|
||||
// Solve complex equations
|
||||
|
||||
x = H[i][i + 1];
|
||||
y = H[i + 1][i];
|
||||
vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
|
||||
vi = (d[i] - p) * 2.0 * q;
|
||||
if (vr == 0.0 && vi == 0.0) {
|
||||
vr = eps * norm * (std::abs(w) + std::abs(q) + std::abs(x)
|
||||
+ std::abs(y) + std::abs(z));
|
||||
}
|
||||
cdiv(x * r - z * ra + q * sa,
|
||||
x * s - z * sa - q * ra, vr, vi);
|
||||
H[i][n1 - 1] = cdivr;
|
||||
H[i][n1] = cdivi;
|
||||
if (std::abs(x) > (std::abs(z) + std::abs(q))) {
|
||||
H[i + 1][n1 - 1] = (-ra - w * H[i][n1 - 1] + q
|
||||
* H[i][n1]) / x;
|
||||
H[i + 1][n1] = (-sa - w * H[i][n1] - q * H[i][n1
|
||||
- 1]) / x;
|
||||
} else {
|
||||
cdiv(-r - y * H[i][n1 - 1], -s - y * H[i][n1], z,
|
||||
q);
|
||||
H[i + 1][n1 - 1] = cdivr;
|
||||
H[i + 1][n1] = cdivi;
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow control
|
||||
|
||||
t = std::max(std::abs(H[i][n1 - 1]), std::abs(H[i][n1]));
|
||||
if ((eps * t) * t > 1) {
|
||||
for (int j = i; j <= n1; j++) {
|
||||
H[j][n1 - 1] = H[j][n1 - 1] / t;
|
||||
H[j][n1] = H[j][n1] / t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Vectors of isolated roots
|
||||
|
||||
for (int i = 0; i < nn; i++) {
|
||||
if (i < low || i > high) {
|
||||
for (int j = i; j < nn; j++) {
|
||||
V[i][j] = H[i][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Back transformation to get eigenvectors of original matrix
|
||||
|
||||
for (int j = nn - 1; j >= low; j--) {
|
||||
for (int i = low; i <= high; i++) {
|
||||
z = 0.0;
|
||||
for (int k = low; k <= std::min(j, high); k++) {
|
||||
z = z + V[i][k] * H[k][j];
|
||||
}
|
||||
V[i][j] = z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Nonsymmetric reduction to Hessenberg form.
|
||||
void orthes() {
|
||||
// This is derived from the Algol procedures orthes and ortran,
|
||||
// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
||||
// Vol.ii-Linear Algebra, and the corresponding
|
||||
// Fortran subroutines in EISPACK.
|
||||
int low = 0;
|
||||
int high = n - 1;
|
||||
|
||||
for (int m = low + 1; m <= high - 1; m++) {
|
||||
|
||||
// Scale column.
|
||||
|
||||
double scale = 0.0;
|
||||
for (int i = m; i <= high; i++) {
|
||||
scale = scale + std::abs(H[i][m - 1]);
|
||||
}
|
||||
if (scale != 0.0) {
|
||||
|
||||
// Compute Householder transformation.
|
||||
|
||||
double h = 0.0;
|
||||
for (int i = high; i >= m; i--) {
|
||||
ort[i] = H[i][m - 1] / scale;
|
||||
h += ort[i] * ort[i];
|
||||
}
|
||||
double g = std::sqrt(h);
|
||||
if (ort[m] > 0) {
|
||||
g = -g;
|
||||
}
|
||||
h = h - ort[m] * g;
|
||||
ort[m] = ort[m] - g;
|
||||
|
||||
// Apply Householder similarity transformation
|
||||
// H = (I-u*u'/h)*H*(I-u*u')/h)
|
||||
|
||||
for (int j = m; j < n; j++) {
|
||||
double f = 0.0;
|
||||
for (int i = high; i >= m; i--) {
|
||||
f += ort[i] * H[i][j];
|
||||
}
|
||||
f = f / h;
|
||||
for (int i = m; i <= high; i++) {
|
||||
H[i][j] -= f * ort[i];
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i <= high; i++) {
|
||||
double f = 0.0;
|
||||
for (int j = high; j >= m; j--) {
|
||||
f += ort[j] * H[i][j];
|
||||
}
|
||||
f = f / h;
|
||||
for (int j = m; j <= high; j++) {
|
||||
H[i][j] -= f * ort[j];
|
||||
}
|
||||
}
|
||||
ort[m] = scale * ort[m];
|
||||
H[m][m - 1] = scale * g;
|
||||
}
|
||||
}
|
||||
|
||||
// Accumulate transformations (Algol's ortran).
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
V[i][j] = (i == j ? 1.0 : 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
for (int m = high - 1; m >= low + 1; m--) {
|
||||
if (H[m][m - 1] != 0.0) {
|
||||
for (int i = m + 1; i <= high; i++) {
|
||||
ort[i] = H[i][m - 1];
|
||||
}
|
||||
for (int j = m; j <= high; j++) {
|
||||
double g = 0.0;
|
||||
for (int i = m; i <= high; i++) {
|
||||
g += ort[i] * V[i][j];
|
||||
}
|
||||
// Double division avoids possible underflow
|
||||
g = (g / ort[m]) / H[m][m - 1];
|
||||
for (int i = m; i <= high; i++) {
|
||||
V[i][j] += g * ort[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Releases all internal working memory.
|
||||
void release() {
|
||||
// releases the working data
|
||||
delete[] d;
|
||||
delete[] e;
|
||||
delete[] ort;
|
||||
for (int i = 0; i < n; i++) {
|
||||
delete[] H[i];
|
||||
delete[] V[i];
|
||||
}
|
||||
delete[] H;
|
||||
delete[] V;
|
||||
}
|
||||
|
||||
// Computes the Eigenvalue Decomposition for a matrix given in H.
|
||||
void compute() {
|
||||
// Allocate memory for the working data.
|
||||
V = alloc_2d<double> (n, n, 0.0);
|
||||
d = alloc_1d<double> (n);
|
||||
e = alloc_1d<double> (n);
|
||||
ort = alloc_1d<double> (n);
|
||||
// Reduce to Hessenberg form.
|
||||
orthes();
|
||||
// Reduce Hessenberg to real Schur form.
|
||||
hqr2();
|
||||
// Copy eigenvalues to OpenCV Matrix.
|
||||
_eigenvalues.create(1, n, CV_64FC1);
|
||||
for (int i = 0; i < n; i++) {
|
||||
_eigenvalues.at<double> (0, i) = d[i];
|
||||
}
|
||||
// Copy eigenvectors to OpenCV Matrix.
|
||||
_eigenvectors.create(n, n, CV_64FC1);
|
||||
for (int i = 0; i < n; i++)
|
||||
for (int j = 0; j < n; j++)
|
||||
_eigenvectors.at<double> (i, j) = V[i][j];
|
||||
// Deallocate the memory by releasing all internal working data.
|
||||
release();
|
||||
}
|
||||
|
||||
public:
|
||||
EigenvalueDecomposition()
|
||||
: n(0) { }
|
||||
|
||||
// Initializes & computes the Eigenvalue Decomposition for a general matrix
|
||||
// given in src. This function is a port of the EigenvalueSolver in JAMA,
|
||||
// which has been released to public domain by The MathWorks and the
|
||||
// National Institute of Standards and Technology (NIST).
|
||||
EigenvalueDecomposition(InputArray src) {
|
||||
compute(src);
|
||||
}
|
||||
|
||||
// This function computes the Eigenvalue Decomposition for a general matrix
|
||||
// given in src. This function is a port of the EigenvalueSolver in JAMA,
|
||||
// which has been released to public domain by The MathWorks and the
|
||||
// National Institute of Standards and Technology (NIST).
|
||||
void compute(InputArray src)
|
||||
{
|
||||
/*if(isSymmetric(src)) {
|
||||
// Fall back to OpenCV for a symmetric matrix!
|
||||
cv::eigen(src, _eigenvalues, _eigenvectors);
|
||||
} else {*/
|
||||
Mat tmp;
|
||||
// Convert the given input matrix to double. Is there any way to
|
||||
// prevent allocating the temporary memory? Only used for copying
|
||||
// into working memory and deallocated after.
|
||||
src.getMat().convertTo(tmp, CV_64FC1);
|
||||
// Get dimension of the matrix.
|
||||
this->n = tmp.cols;
|
||||
// Allocate the matrix data to work on.
|
||||
this->H = alloc_2d<double> (n, n);
|
||||
// Now safely copy the data.
|
||||
for (int i = 0; i < tmp.rows; i++) {
|
||||
for (int j = 0; j < tmp.cols; j++) {
|
||||
this->H[i][j] = tmp.at<double>(i, j);
|
||||
}
|
||||
}
|
||||
// Deallocates the temporary matrix before computing.
|
||||
tmp.release();
|
||||
// Performs the eigenvalue decomposition of H.
|
||||
compute();
|
||||
// }
|
||||
}
|
||||
|
||||
~EigenvalueDecomposition() {}
|
||||
|
||||
// Returns the eigenvalues of the Eigenvalue Decomposition.
|
||||
Mat eigenvalues() { return _eigenvalues; }
|
||||
// Returns the eigenvectors of the Eigenvalue Decomposition.
|
||||
Mat eigenvectors() { return _eigenvectors; }
|
||||
};
|
||||
|
||||
#endif // DLS_H
|
||||
|
@ -96,21 +96,15 @@ bool cv::solvePnP( InputArray _opoints, InputArray _ipoints,
|
||||
}
|
||||
else if (flags == DLS)
|
||||
{
|
||||
bool result = false;
|
||||
#ifdef HAVE_EIGEN
|
||||
|
||||
cv::Mat undistortedPoints;
|
||||
cv::undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
|
||||
|
||||
dls PnP(opoints, undistortedPoints);
|
||||
|
||||
cv::Mat R, rvec = _rvec.getMat(), tvec = _tvec.getMat();
|
||||
result = PnP.compute_pose(R, tvec);
|
||||
bool result = PnP.compute_pose(R, tvec);
|
||||
if (result)
|
||||
cv::Rodrigues(R, rvec);
|
||||
#else
|
||||
std::cout << "EIGEN library needed for DLS" << std::endl;
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
else
|
||||
|
Loading…
x
Reference in New Issue
Block a user