Reworked ML logistic regression implementation, initial version
This commit is contained in:
@@ -571,8 +571,19 @@ public:
|
||||
/****************************************************************************************\
|
||||
* Logistic Regression *
|
||||
\****************************************************************************************/
|
||||
struct CV_EXPORTS LogisticRegressionParams
|
||||
|
||||
class CV_EXPORTS LogisticRegression : public StatModel
|
||||
{
|
||||
public:
|
||||
class CV_EXPORTS Params
|
||||
{
|
||||
public:
|
||||
Params(double learning_rate = 0.001,
|
||||
int iters = 1000,
|
||||
int method = LogisticRegression::BATCH,
|
||||
int normlization = LogisticRegression::REG_L2,
|
||||
int reg = 1,
|
||||
int batch_size = 1);
|
||||
double alpha;
|
||||
int num_iters;
|
||||
int norm;
|
||||
@@ -580,47 +591,23 @@ struct CV_EXPORTS LogisticRegressionParams
|
||||
int train_method;
|
||||
int mini_batch_size;
|
||||
cv::TermCriteria term_crit;
|
||||
|
||||
LogisticRegressionParams();
|
||||
LogisticRegressionParams(double learning_rate, int iters, int train_method, int normlization, int reg, int mini_batch_size);
|
||||
};
|
||||
|
||||
class CV_EXPORTS LogisticRegression
|
||||
{
|
||||
public:
|
||||
LogisticRegression( const LogisticRegressionParams& params = LogisticRegressionParams());
|
||||
LogisticRegression(cv::InputArray data_ip, cv::InputArray labels_ip, const LogisticRegressionParams& params);
|
||||
virtual ~LogisticRegression();
|
||||
|
||||
enum { REG_L1 = 0, REG_L2 = 1};
|
||||
enum { BATCH = 0, MINI_BATCH = 1};
|
||||
|
||||
virtual bool train(cv::InputArray data_ip, cv::InputArray label_ip);
|
||||
virtual void predict( cv::InputArray data, cv::OutputArray predicted_labels ) const;
|
||||
// Algorithm interface
|
||||
virtual void write( FileStorage &fs ) const = 0;
|
||||
virtual void read( const FileNode &fn ) = 0;
|
||||
|
||||
virtual void write(FileStorage& fs) const;
|
||||
virtual void read(const FileNode& fn);
|
||||
// StatModel interface
|
||||
virtual bool train( const Ptr<TrainData>& trainData, int flags=0 ) = 0;
|
||||
virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
|
||||
virtual void clear() = 0;
|
||||
|
||||
const cv::Mat get_learnt_thetas() const;
|
||||
virtual void clear();
|
||||
virtual Mat get_learnt_thetas() const = 0;
|
||||
|
||||
protected:
|
||||
|
||||
LogisticRegressionParams params;
|
||||
cv::Mat learnt_thetas;
|
||||
std::string default_model_name;
|
||||
std::map<int, int> forward_mapper;
|
||||
std::map<int, int> reverse_mapper;
|
||||
|
||||
cv::Mat labels_o;
|
||||
cv::Mat labels_n;
|
||||
|
||||
static cv::Mat calc_sigmoid(const cv::Mat& data);
|
||||
virtual double compute_cost(const cv::Mat& data, const cv::Mat& labels, const cv::Mat& init_theta);
|
||||
virtual cv::Mat compute_batch_gradient(const cv::Mat& data, const cv::Mat& labels, const cv::Mat& init_theta);
|
||||
virtual cv::Mat compute_mini_batch_gradient(const cv::Mat& data, const cv::Mat& labels, const cv::Mat& init_theta);
|
||||
virtual bool set_label_map(const cv::Mat& labels);
|
||||
static cv::Mat remap_labels(const cv::Mat& labels, const std::map<int, int>& lmap);
|
||||
static Ptr<LogisticRegression> create( const Params& params = Params() );
|
||||
};
|
||||
|
||||
/****************************************************************************************\
|
||||
|
@@ -55,55 +55,72 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::ml;
|
||||
using namespace std;
|
||||
|
||||
LogisticRegressionParams::LogisticRegressionParams()
|
||||
namespace cv {
|
||||
namespace ml {
|
||||
|
||||
LogisticRegression::Params::Params(double learning_rate,
|
||||
int iters,
|
||||
int method,
|
||||
int normlization,
|
||||
int reg,
|
||||
int batch_size)
|
||||
{
|
||||
term_crit = cv::TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 1000, 0.001);
|
||||
alpha = 0.001;
|
||||
num_iters = 1000;
|
||||
norm = LogisticRegression::REG_L2;
|
||||
regularized = 1;
|
||||
train_method = LogisticRegression::BATCH;
|
||||
mini_batch_size = 1;
|
||||
}
|
||||
LogisticRegressionParams::LogisticRegressionParams( double learning_rate, int iters, int train_algo = LogisticRegression::BATCH, int normlization = LogisticRegression::REG_L2, int reg = 1, int mb_size = 5)
|
||||
{
|
||||
term_crit = cv::TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, iters, learning_rate);
|
||||
alpha = learning_rate;
|
||||
num_iters = iters;
|
||||
norm = normlization;
|
||||
regularized = reg;
|
||||
train_method = train_algo;
|
||||
mini_batch_size = mb_size;
|
||||
train_method = method;
|
||||
mini_batch_size = batch_size;
|
||||
term_crit = cv::TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, num_iters, alpha);
|
||||
}
|
||||
|
||||
LogisticRegression::LogisticRegression(const LogisticRegressionParams& pms)
|
||||
class LogisticRegressionImpl : public LogisticRegression
|
||||
{
|
||||
default_model_name = "my_lr";
|
||||
this->params = pms;
|
||||
}
|
||||
|
||||
LogisticRegression::LogisticRegression(cv::InputArray data, cv::InputArray labels, const LogisticRegressionParams& pms)
|
||||
public:
|
||||
LogisticRegressionImpl(const Params& pms)
|
||||
: params(pms)
|
||||
{
|
||||
default_model_name = "my_lr";
|
||||
this->params = pms;
|
||||
train(data, labels);
|
||||
}
|
||||
virtual ~LogisticRegressionImpl() {}
|
||||
|
||||
virtual bool train( const Ptr<TrainData>& trainData, int=0 );
|
||||
virtual float predict(InputArray samples, OutputArray results, int) const;
|
||||
virtual void clear();
|
||||
virtual void write(FileStorage& fs) const;
|
||||
virtual void read(const FileNode& fn);
|
||||
virtual cv::Mat get_learnt_thetas() const;
|
||||
virtual int getVarCount() const { return learnt_thetas.cols; }
|
||||
virtual bool isTrained() const { return !learnt_thetas.empty(); }
|
||||
virtual bool isClassifier() const { return true; }
|
||||
virtual String getDefaultModelName() const { return "opencv_ml_lr"; }
|
||||
protected:
|
||||
cv::Mat calc_sigmoid(const cv::Mat& data) const;
|
||||
double compute_cost(const cv::Mat& _data, const cv::Mat& _labels, const cv::Mat& _init_theta);
|
||||
cv::Mat compute_batch_gradient(const cv::Mat& _data, const cv::Mat& _labels, const cv::Mat& _init_theta);
|
||||
cv::Mat compute_mini_batch_gradient(const cv::Mat& _data, const cv::Mat& _labels, const cv::Mat& _init_theta);
|
||||
bool set_label_map(const cv::Mat& _labels_i);
|
||||
cv::Mat remap_labels(const cv::Mat& _labels_i, const map<int, int>& lmap) const;
|
||||
protected:
|
||||
Params params;
|
||||
cv::Mat learnt_thetas;
|
||||
map<int, int> forward_mapper;
|
||||
map<int, int> reverse_mapper;
|
||||
cv::Mat labels_o;
|
||||
cv::Mat labels_n;
|
||||
};
|
||||
|
||||
Ptr<LogisticRegression> LogisticRegression::create(const Params& params)
|
||||
{
|
||||
return makePtr<LogisticRegressionImpl>(params);
|
||||
}
|
||||
|
||||
LogisticRegression::~LogisticRegression()
|
||||
bool LogisticRegressionImpl::train(const Ptr<TrainData>& trainData, int)
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
bool LogisticRegression::train(cv::InputArray data_ip, cv::InputArray labels_ip)
|
||||
{
|
||||
clear();
|
||||
cv::Mat _data_i = data_ip.getMat();
|
||||
cv::Mat _labels_i = labels_ip.getMat();
|
||||
cv::Mat _data_i = trainData->getSamples();
|
||||
cv::Mat _labels_i = trainData->getResponses();
|
||||
|
||||
CV_Assert( !_labels_i.empty() && !_data_i.empty());
|
||||
|
||||
@@ -194,13 +211,12 @@ bool LogisticRegression::train(cv::InputArray data_ip, cv::InputArray labels_ip)
|
||||
return ok;
|
||||
}
|
||||
|
||||
|
||||
void LogisticRegression::predict( cv::InputArray _ip_data, cv::OutputArray _output_predicted_labels ) const
|
||||
float LogisticRegressionImpl::predict(InputArray samples, OutputArray results, int) const
|
||||
{
|
||||
/* returns a class of the predicted class
|
||||
class names can be 1,2,3,4, .... etc */
|
||||
cv::Mat thetas, data, pred_labs;
|
||||
data = _ip_data.getMat();
|
||||
data = samples.getMat();
|
||||
|
||||
// check if learnt_mats array is populated
|
||||
if(this->learnt_thetas.total()<=0)
|
||||
@@ -266,19 +282,20 @@ void LogisticRegression::predict( cv::InputArray _ip_data, cv::OutputArray _outp
|
||||
pred_labs = remap_labels(labels_c, this->reverse_mapper);
|
||||
// convert pred_labs to integer type
|
||||
pred_labs.convertTo(pred_labs, CV_32S);
|
||||
pred_labs.copyTo(_output_predicted_labels);
|
||||
pred_labs.copyTo(results);
|
||||
// TODO: determine
|
||||
return 0;
|
||||
}
|
||||
|
||||
cv::Mat LogisticRegression::calc_sigmoid(const Mat& data)
|
||||
cv::Mat LogisticRegressionImpl::calc_sigmoid(const cv::Mat& data) const
|
||||
{
|
||||
cv::Mat dest;
|
||||
cv::exp(-data, dest);
|
||||
return 1.0/(1.0+dest);
|
||||
}
|
||||
|
||||
double LogisticRegression::compute_cost(const cv::Mat& _data, const cv::Mat& _labels, const cv::Mat& _init_theta)
|
||||
double LogisticRegressionImpl::compute_cost(const cv::Mat& _data, const cv::Mat& _labels, const cv::Mat& _init_theta)
|
||||
{
|
||||
|
||||
int llambda = 0;
|
||||
int m;
|
||||
int n;
|
||||
@@ -328,7 +345,7 @@ double LogisticRegression::compute_cost(const cv::Mat& _data, const cv::Mat& _la
|
||||
return cost;
|
||||
}
|
||||
|
||||
cv::Mat LogisticRegression::compute_batch_gradient(const cv::Mat& _data, const cv::Mat& _labels, const cv::Mat& _init_theta)
|
||||
cv::Mat LogisticRegressionImpl::compute_batch_gradient(const cv::Mat& _data, const cv::Mat& _labels, const cv::Mat& _init_theta)
|
||||
{
|
||||
// implements batch gradient descent
|
||||
if(this->params.alpha<=0)
|
||||
@@ -397,7 +414,7 @@ cv::Mat LogisticRegression::compute_batch_gradient(const cv::Mat& _data, const c
|
||||
return theta_p;
|
||||
}
|
||||
|
||||
cv::Mat LogisticRegression::compute_mini_batch_gradient(const cv::Mat& _data, const cv::Mat& _labels, const cv::Mat& _init_theta)
|
||||
cv::Mat LogisticRegressionImpl::compute_mini_batch_gradient(const cv::Mat& _data, const cv::Mat& _labels, const cv::Mat& _init_theta)
|
||||
{
|
||||
// implements batch gradient descent
|
||||
int lambda_l = 0;
|
||||
@@ -488,7 +505,7 @@ cv::Mat LogisticRegression::compute_mini_batch_gradient(const cv::Mat& _data, co
|
||||
return theta_p;
|
||||
}
|
||||
|
||||
bool LogisticRegression::set_label_map(const cv::Mat& _labels_i)
|
||||
bool LogisticRegressionImpl::set_label_map(const cv::Mat &_labels_i)
|
||||
{
|
||||
// this function creates two maps to map user defined labels to program friendly labels two ways.
|
||||
int ii = 0;
|
||||
@@ -522,7 +539,7 @@ bool LogisticRegression::set_label_map(const cv::Mat& _labels_i)
|
||||
return ok;
|
||||
}
|
||||
|
||||
cv::Mat LogisticRegression::remap_labels(const Mat& _labels_i, const std::map<int, int>& lmap)
|
||||
cv::Mat LogisticRegressionImpl::remap_labels(const cv::Mat& _labels_i, const map<int, int>& lmap) const
|
||||
{
|
||||
cv::Mat labels;
|
||||
_labels_i.convertTo(labels, CV_32S);
|
||||
@@ -538,14 +555,14 @@ cv::Mat LogisticRegression::remap_labels(const Mat& _labels_i, const std::map<in
|
||||
return new_labels;
|
||||
}
|
||||
|
||||
void LogisticRegression::clear()
|
||||
void LogisticRegressionImpl::clear()
|
||||
{
|
||||
this->learnt_thetas.release();
|
||||
this->labels_o.release();
|
||||
this->labels_n.release();
|
||||
}
|
||||
|
||||
void LogisticRegression::write(FileStorage& fs) const
|
||||
void LogisticRegressionImpl::write(FileStorage& fs) const
|
||||
{
|
||||
// check if open
|
||||
if(fs.isOpened() == 0)
|
||||
@@ -568,7 +585,7 @@ void LogisticRegression::write(FileStorage& fs) const
|
||||
fs<<"o_labels"<<this->labels_o;
|
||||
}
|
||||
|
||||
void LogisticRegression::read(const FileNode& fn )
|
||||
void LogisticRegressionImpl::read(const FileNode& fn)
|
||||
{
|
||||
// check if empty
|
||||
if(fn.empty())
|
||||
@@ -598,8 +615,12 @@ void LogisticRegression::read(const FileNode& fn )
|
||||
}
|
||||
}
|
||||
|
||||
const cv::Mat LogisticRegression::get_learnt_thetas() const
|
||||
cv::Mat LogisticRegressionImpl::get_learnt_thetas() const
|
||||
{
|
||||
return this->learnt_thetas;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@@ -92,78 +92,29 @@ protected:
|
||||
void CV_LRTest::run( int /*start_from*/ )
|
||||
{
|
||||
// initialize varibles from the popular Iris Dataset
|
||||
Mat data = (Mat_<double>(150, 4)<<
|
||||
5.1,3.5,1.4,0.2, 4.9,3.0,1.4,0.2, 4.7,3.2,1.3,0.2, 4.6,3.1,1.5,0.2,
|
||||
5.0,3.6,1.4,0.2, 5.4,3.9,1.7,0.4, 4.6,3.4,1.4,0.3, 5.0,3.4,1.5,0.2,
|
||||
4.4,2.9,1.4,0.2, 4.9,3.1,1.5,0.1, 5.4,3.7,1.5,0.2, 4.8,3.4,1.6,0.2,
|
||||
4.8,3.0,1.4,0.1, 4.3,3.0,1.1,0.1, 5.8,4.0,1.2,0.2, 5.7,4.4,1.5,0.4,
|
||||
5.4,3.9,1.3,0.4, 5.1,3.5,1.4,0.3, 5.7,3.8,1.7,0.3, 5.1,3.8,1.5,0.3,
|
||||
5.4,3.4,1.7,0.2, 5.1,3.7,1.5,0.4, 4.6,3.6,1.0,0.2, 5.1,3.3,1.7,0.5,
|
||||
4.8,3.4,1.9,0.2, 5.0,3.0,1.6,0.2, 5.0,3.4,1.6,0.4, 5.2,3.5,1.5,0.2,
|
||||
5.2,3.4,1.4,0.2, 4.7,3.2,1.6,0.2, 4.8,3.1,1.6,0.2, 5.4,3.4,1.5,0.4,
|
||||
5.2,4.1,1.5,0.1, 5.5,4.2,1.4,0.2, 4.9,3.1,1.5,0.1, 5.0,3.2,1.2,0.2,
|
||||
5.5,3.5,1.3,0.2, 4.9,3.1,1.5,0.1, 4.4,3.0,1.3,0.2, 5.1,3.4,1.5,0.2,
|
||||
5.0,3.5,1.3,0.3, 4.5,2.3,1.3,0.3, 4.4,3.2,1.3,0.2, 5.0,3.5,1.6,0.6,
|
||||
5.1,3.8,1.9,0.4, 4.8,3.0,1.4,0.3, 5.1,3.8,1.6,0.2, 4.6,3.2,1.4,0.2,
|
||||
5.3,3.7,1.5,0.2, 5.0,3.3,1.4,0.2, 7.0,3.2,4.7,1.4, 6.4,3.2,4.5,1.5,
|
||||
6.9,3.1,4.9,1.5, 5.5,2.3,4.0,1.3, 6.5,2.8,4.6,1.5, 5.7,2.8,4.5,1.3,
|
||||
6.3,3.3,4.7,1.6, 4.9,2.4,3.3,1.0, 6.6,2.9,4.6,1.3, 5.2,2.7,3.9,1.4,
|
||||
5.0,2.0,3.5,1.0, 5.9,3.0,4.2,1.5, 6.0,2.2,4.0,1.0, 6.1,2.9,4.7,1.4,
|
||||
5.6,2.9,3.6,1.3, 6.7,3.1,4.4,1.4, 5.6,3.0,4.5,1.5, 5.8,2.7,4.1,1.0,
|
||||
6.2,2.2,4.5,1.5, 5.6,2.5,3.9,1.1, 5.9,3.2,4.8,1.8, 6.1,2.8,4.0,1.3,
|
||||
6.3,2.5,4.9,1.5, 6.1,2.8,4.7,1.2, 6.4,2.9,4.3,1.3, 6.6,3.0,4.4,1.4,
|
||||
6.8,2.8,4.8,1.4, 6.7,3.0,5.0,1.7, 6.0,2.9,4.5,1.5, 5.7,2.6,3.5,1.0,
|
||||
5.5,2.4,3.8,1.1, 5.5,2.4,3.7,1.0, 5.8,2.7,3.9,1.2, 6.0,2.7,5.1,1.6,
|
||||
5.4,3.0,4.5,1.5, 6.0,3.4,4.5,1.6, 6.7,3.1,4.7,1.5, 6.3,2.3,4.4,1.3,
|
||||
5.6,3.0,4.1,1.3, 5.5,2.5,4.0,1.3, 5.5,2.6,4.4,1.2, 6.1,3.0,4.6,1.4,
|
||||
5.8,2.6,4.0,1.2, 5.0,2.3,3.3,1.0, 5.6,2.7,4.2,1.3, 5.7,3.0,4.2,1.2,
|
||||
5.7,2.9,4.2,1.3, 6.2,2.9,4.3,1.3, 5.1,2.5,3.0,1.1, 5.7,2.8,4.1,1.3,
|
||||
6.3,3.3,6.0,2.5, 5.8,2.7,5.1,1.9, 7.1,3.0,5.9,2.1, 6.3,2.9,5.6,1.8,
|
||||
6.5,3.0,5.8,2.2, 7.6,3.0,6.6,2.1, 4.9,2.5,4.5,1.7, 7.3,2.9,6.3,1.8,
|
||||
6.7,2.5,5.8,1.8, 7.2,3.6,6.1,2.5, 6.5,3.2,5.1,2.0, 6.4,2.7,5.3,1.9,
|
||||
6.8,3.0,5.5,2.1, 5.7,2.5,5.0,2.0, 5.8,2.8,5.1,2.4, 6.4,3.2,5.3,2.3,
|
||||
6.5,3.0,5.5,1.8, 7.7,3.8,6.7,2.2, 7.7,2.6,6.9,2.3, 6.0,2.2,5.0,1.5,
|
||||
6.9,3.2,5.7,2.3, 5.6,2.8,4.9,2.0, 7.7,2.8,6.7,2.0, 6.3,2.7,4.9,1.8,
|
||||
6.7,3.3,5.7,2.1, 7.2,3.2,6.0,1.8, 6.2,2.8,4.8,1.8, 6.1,3.0,4.9,1.8,
|
||||
6.4,2.8,5.6,2.1, 7.2,3.0,5.8,1.6, 7.4,2.8,6.1,1.9, 7.9,3.8,6.4,2.0,
|
||||
6.4,2.8,5.6,2.2, 6.3,2.8,5.1,1.5, 6.1,2.6,5.6,1.4, 7.7,3.0,6.1,2.3,
|
||||
6.3,3.4,5.6,2.4, 6.4,3.1,5.5,1.8, 6.0,3.0,4.8,1.8, 6.9,3.1,5.4,2.1,
|
||||
6.7,3.1,5.6,2.4, 6.9,3.1,5.1,2.3, 5.8,2.7,5.1,1.9, 6.8,3.2,5.9,2.3,
|
||||
6.7,3.3,5.7,2.5, 6.7,3.0,5.2,2.3, 6.3,2.5,5.0,1.9, 6.5,3.0,5.2,2.0,
|
||||
6.2,3.4,5.4,2.3, 5.9,3.0,5.1,1.8);
|
||||
string dataFileName = ts->get_data_path() + "iris.data";
|
||||
Ptr<TrainData> tdata = TrainData::loadFromCSV(dataFileName, 0);
|
||||
|
||||
Mat labels = (Mat_<int>(150, 1)<< 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||||
3, 3, 3, 3, 3);
|
||||
|
||||
Mat responses1, responses2;
|
||||
float error = 0.0f;
|
||||
|
||||
LogisticRegressionParams params1 = LogisticRegressionParams();
|
||||
|
||||
params1.alpha = 1.0;
|
||||
params1.num_iters = 10001;
|
||||
params1.norm = LogisticRegression::REG_L2;
|
||||
params1.regularized = 1;
|
||||
params1.train_method = LogisticRegression::BATCH;
|
||||
params1.mini_batch_size = 10;
|
||||
LogisticRegression::Params params = LogisticRegression::Params();
|
||||
params.alpha = 1.0;
|
||||
params.num_iters = 10001;
|
||||
params.norm = LogisticRegression::REG_L2;
|
||||
params.regularized = 1;
|
||||
params.train_method = LogisticRegression::BATCH;
|
||||
params.mini_batch_size = 10;
|
||||
|
||||
// run LR classifier train classifier
|
||||
data.convertTo(data, CV_32FC1);
|
||||
labels.convertTo(labels, CV_32FC1);
|
||||
LogisticRegression lr1(data, labels, params1);
|
||||
Ptr<LogisticRegression> p = LogisticRegression::create(params);
|
||||
p->train(tdata);
|
||||
|
||||
// predict using the same data
|
||||
lr1.predict(data, responses1);
|
||||
|
||||
int test_code = cvtest::TS::OK;
|
||||
Mat responses;
|
||||
p->predict(tdata->getSamples(), responses);
|
||||
|
||||
// calculate error
|
||||
if(!calculateError(responses1, labels, error))
|
||||
int test_code = cvtest::TS::OK;
|
||||
float error = 0.0f;
|
||||
if(!calculateError(responses, tdata->getResponses(), error))
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Bad prediction labels\n" );
|
||||
test_code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
@@ -174,6 +125,14 @@ void CV_LRTest::run( int /*start_from*/ )
|
||||
test_code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
}
|
||||
|
||||
{
|
||||
FileStorage s("debug.xml", FileStorage::WRITE);
|
||||
s << "original" << tdata->getResponses();
|
||||
s << "predicted1" << responses;
|
||||
s << "learnt" << p->get_learnt_thetas();
|
||||
s << "error" << error;
|
||||
s.release();
|
||||
}
|
||||
ts->set_failed_test_info(test_code);
|
||||
}
|
||||
|
||||
@@ -189,69 +148,16 @@ protected:
|
||||
|
||||
void CV_LRTest_SaveLoad::run( int /*start_from*/ )
|
||||
{
|
||||
|
||||
int code = cvtest::TS::OK;
|
||||
|
||||
// initialize varibles from the popular Iris Dataset
|
||||
Mat data = (Mat_<double>(150, 4)<<
|
||||
5.1,3.5,1.4,0.2, 4.9,3.0,1.4,0.2, 4.7,3.2,1.3,0.2, 4.6,3.1,1.5,0.2,
|
||||
5.0,3.6,1.4,0.2, 5.4,3.9,1.7,0.4, 4.6,3.4,1.4,0.3, 5.0,3.4,1.5,0.2,
|
||||
4.4,2.9,1.4,0.2, 4.9,3.1,1.5,0.1, 5.4,3.7,1.5,0.2, 4.8,3.4,1.6,0.2,
|
||||
4.8,3.0,1.4,0.1, 4.3,3.0,1.1,0.1, 5.8,4.0,1.2,0.2, 5.7,4.4,1.5,0.4,
|
||||
5.4,3.9,1.3,0.4, 5.1,3.5,1.4,0.3, 5.7,3.8,1.7,0.3, 5.1,3.8,1.5,0.3,
|
||||
5.4,3.4,1.7,0.2, 5.1,3.7,1.5,0.4, 4.6,3.6,1.0,0.2, 5.1,3.3,1.7,0.5,
|
||||
4.8,3.4,1.9,0.2, 5.0,3.0,1.6,0.2, 5.0,3.4,1.6,0.4, 5.2,3.5,1.5,0.2,
|
||||
5.2,3.4,1.4,0.2, 4.7,3.2,1.6,0.2, 4.8,3.1,1.6,0.2, 5.4,3.4,1.5,0.4,
|
||||
5.2,4.1,1.5,0.1, 5.5,4.2,1.4,0.2, 4.9,3.1,1.5,0.1, 5.0,3.2,1.2,0.2,
|
||||
5.5,3.5,1.3,0.2, 4.9,3.1,1.5,0.1, 4.4,3.0,1.3,0.2, 5.1,3.4,1.5,0.2,
|
||||
5.0,3.5,1.3,0.3, 4.5,2.3,1.3,0.3, 4.4,3.2,1.3,0.2, 5.0,3.5,1.6,0.6,
|
||||
5.1,3.8,1.9,0.4, 4.8,3.0,1.4,0.3, 5.1,3.8,1.6,0.2, 4.6,3.2,1.4,0.2,
|
||||
5.3,3.7,1.5,0.2, 5.0,3.3,1.4,0.2, 7.0,3.2,4.7,1.4, 6.4,3.2,4.5,1.5,
|
||||
6.9,3.1,4.9,1.5, 5.5,2.3,4.0,1.3, 6.5,2.8,4.6,1.5, 5.7,2.8,4.5,1.3,
|
||||
6.3,3.3,4.7,1.6, 4.9,2.4,3.3,1.0, 6.6,2.9,4.6,1.3, 5.2,2.7,3.9,1.4,
|
||||
5.0,2.0,3.5,1.0, 5.9,3.0,4.2,1.5, 6.0,2.2,4.0,1.0, 6.1,2.9,4.7,1.4,
|
||||
5.6,2.9,3.6,1.3, 6.7,3.1,4.4,1.4, 5.6,3.0,4.5,1.5, 5.8,2.7,4.1,1.0,
|
||||
6.2,2.2,4.5,1.5, 5.6,2.5,3.9,1.1, 5.9,3.2,4.8,1.8, 6.1,2.8,4.0,1.3,
|
||||
6.3,2.5,4.9,1.5, 6.1,2.8,4.7,1.2, 6.4,2.9,4.3,1.3, 6.6,3.0,4.4,1.4,
|
||||
6.8,2.8,4.8,1.4, 6.7,3.0,5.0,1.7, 6.0,2.9,4.5,1.5, 5.7,2.6,3.5,1.0,
|
||||
5.5,2.4,3.8,1.1, 5.5,2.4,3.7,1.0, 5.8,2.7,3.9,1.2, 6.0,2.7,5.1,1.6,
|
||||
5.4,3.0,4.5,1.5, 6.0,3.4,4.5,1.6, 6.7,3.1,4.7,1.5, 6.3,2.3,4.4,1.3,
|
||||
5.6,3.0,4.1,1.3, 5.5,2.5,4.0,1.3, 5.5,2.6,4.4,1.2, 6.1,3.0,4.6,1.4,
|
||||
5.8,2.6,4.0,1.2, 5.0,2.3,3.3,1.0, 5.6,2.7,4.2,1.3, 5.7,3.0,4.2,1.2,
|
||||
5.7,2.9,4.2,1.3, 6.2,2.9,4.3,1.3, 5.1,2.5,3.0,1.1, 5.7,2.8,4.1,1.3,
|
||||
6.3,3.3,6.0,2.5, 5.8,2.7,5.1,1.9, 7.1,3.0,5.9,2.1, 6.3,2.9,5.6,1.8,
|
||||
6.5,3.0,5.8,2.2, 7.6,3.0,6.6,2.1, 4.9,2.5,4.5,1.7, 7.3,2.9,6.3,1.8,
|
||||
6.7,2.5,5.8,1.8, 7.2,3.6,6.1,2.5, 6.5,3.2,5.1,2.0, 6.4,2.7,5.3,1.9,
|
||||
6.8,3.0,5.5,2.1, 5.7,2.5,5.0,2.0, 5.8,2.8,5.1,2.4, 6.4,3.2,5.3,2.3,
|
||||
6.5,3.0,5.5,1.8, 7.7,3.8,6.7,2.2, 7.7,2.6,6.9,2.3, 6.0,2.2,5.0,1.5,
|
||||
6.9,3.2,5.7,2.3, 5.6,2.8,4.9,2.0, 7.7,2.8,6.7,2.0, 6.3,2.7,4.9,1.8,
|
||||
6.7,3.3,5.7,2.1, 7.2,3.2,6.0,1.8, 6.2,2.8,4.8,1.8, 6.1,3.0,4.9,1.8,
|
||||
6.4,2.8,5.6,2.1, 7.2,3.0,5.8,1.6, 7.4,2.8,6.1,1.9, 7.9,3.8,6.4,2.0,
|
||||
6.4,2.8,5.6,2.2, 6.3,2.8,5.1,1.5, 6.1,2.6,5.6,1.4, 7.7,3.0,6.1,2.3,
|
||||
6.3,3.4,5.6,2.4, 6.4,3.1,5.5,1.8, 6.0,3.0,4.8,1.8, 6.9,3.1,5.4,2.1,
|
||||
6.7,3.1,5.6,2.4, 6.9,3.1,5.1,2.3, 5.8,2.7,5.1,1.9, 6.8,3.2,5.9,2.3,
|
||||
6.7,3.3,5.7,2.5, 6.7,3.0,5.2,2.3, 6.3,2.5,5.0,1.9, 6.5,3.0,5.2,2.0,
|
||||
6.2,3.4,5.4,2.3, 5.9,3.0,5.1,1.8);
|
||||
|
||||
Mat labels = (Mat_<int>(150, 1)<< 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||||
3, 3, 3, 3, 3);
|
||||
|
||||
// LogisticRegressionParams params = LogisticRegressionParams();
|
||||
string dataFileName = ts->get_data_path() + "iris.data";
|
||||
Ptr<TrainData> tdata = TrainData::loadFromCSV(dataFileName, 0);
|
||||
|
||||
Mat responses1, responses2;
|
||||
Mat learnt_mat1, learnt_mat2;
|
||||
Mat pred_result1, comp_learnt_mats;
|
||||
|
||||
float errorCount = 0.0;
|
||||
|
||||
LogisticRegressionParams params1 = LogisticRegressionParams();
|
||||
LogisticRegressionParams params2 = LogisticRegressionParams();
|
||||
|
||||
LogisticRegression::Params params1 = LogisticRegression::Params();
|
||||
params1.alpha = 1.0;
|
||||
params1.num_iters = 10001;
|
||||
params1.norm = LogisticRegression::REG_L2;
|
||||
@@ -259,56 +165,40 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
|
||||
params1.train_method = LogisticRegression::BATCH;
|
||||
params1.mini_batch_size = 10;
|
||||
|
||||
data.convertTo(data, CV_32FC1);
|
||||
labels.convertTo(labels, CV_32FC1);
|
||||
|
||||
// run LR classifier train classifier
|
||||
LogisticRegression lr1(data, labels, params1);
|
||||
LogisticRegression lr2(params2);
|
||||
learnt_mat1 = lr1.get_learnt_thetas();
|
||||
|
||||
lr1.predict(data, responses1);
|
||||
// now save the classifier
|
||||
|
||||
string filename = cv::tempfile(".xml");
|
||||
// train and save the classifier
|
||||
String filename = cv::tempfile(".xml");
|
||||
try
|
||||
{
|
||||
//lr1.save(filename.c_str());
|
||||
FileStorage fs;
|
||||
fs.open(filename.c_str(),FileStorage::WRITE);
|
||||
lr1.write(fs);
|
||||
fs.release();
|
||||
// run LR classifier train classifier
|
||||
Ptr<LogisticRegression> lr1 = LogisticRegression::create(params1);
|
||||
lr1->train(tdata);
|
||||
lr1->predict(tdata->getSamples(), responses1);
|
||||
learnt_mat1 = lr1->get_learnt_thetas();
|
||||
lr1->save(filename);
|
||||
}
|
||||
|
||||
catch(...)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Crash in write method.\n" );
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
|
||||
}
|
||||
|
||||
// and load to another
|
||||
try
|
||||
{
|
||||
//lr2.load(filename.c_str());
|
||||
FileStorage fs;
|
||||
fs.open(filename.c_str(),FileStorage::READ);
|
||||
FileNode fn = fs.root();
|
||||
lr2.read(fn);
|
||||
fs.release();
|
||||
Ptr<LogisticRegression> lr2 = StatModel::load<LogisticRegression>(filename);
|
||||
lr2->predict(tdata->getSamples(), responses2);
|
||||
learnt_mat2 = lr2->get_learnt_thetas();
|
||||
}
|
||||
|
||||
catch(...)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Crash in read method.\n");
|
||||
ts->printf(cvtest::TS::LOG, "Crash in write method.\n" );
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
|
||||
}
|
||||
|
||||
lr2.predict(data, responses2);
|
||||
|
||||
learnt_mat2 = lr2.get_learnt_thetas();
|
||||
|
||||
CV_Assert(responses1.rows == responses2.rows);
|
||||
|
||||
// compare difference in learnt matrices before and after loading from disk
|
||||
Mat comp_learnt_mats;
|
||||
comp_learnt_mats = (learnt_mat1 == learnt_mat2);
|
||||
comp_learnt_mats = comp_learnt_mats.reshape(1, comp_learnt_mats.rows*comp_learnt_mats.cols);
|
||||
comp_learnt_mats.convertTo(comp_learnt_mats, CV_32S);
|
||||
@@ -317,6 +207,7 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
|
||||
// compare difference in prediction outputs and stored inputs
|
||||
// check if there is any difference between computed learnt mat and retreived mat
|
||||
|
||||
float errorCount = 0.0;
|
||||
errorCount += 1 - (float)cv::countNonZero(responses1 == responses2)/responses1.rows;
|
||||
errorCount += 1 - (float)cv::sum(comp_learnt_mats)[0]/comp_learnt_mats.rows;
|
||||
|
||||
|
@@ -1,4 +1,4 @@
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
/*//////////////////////////////////////////////////////////////////////////////////////
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
@@ -11,7 +11,8 @@
|
||||
// Rahul Kavi rahulkavi[at]live[at]com
|
||||
//
|
||||
|
||||
// contains a subset of data from the popular Iris Dataset (taken from "http://archive.ics.uci.edu/ml/datasets/Iris")
|
||||
// contains a subset of data from the popular Iris Dataset (taken from
|
||||
// "http://archive.ics.uci.edu/ml/datasets/Iris")
|
||||
|
||||
// # You are free to use, change, or redistribute the code in any way you wish for
|
||||
// # non-commercial purposes, but please maintain the name of the original author.
|
||||
@@ -24,7 +25,6 @@
|
||||
|
||||
// # Logistic Regression ALGORITHM
|
||||
|
||||
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
|
||||
@@ -54,7 +54,7 @@
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
// the use of this software, even if advised of the possibility of such damage.*/
|
||||
|
||||
#include <iostream>
|
||||
|
||||
@@ -62,39 +62,42 @@
|
||||
#include <opencv2/ml/ml.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::ml;
|
||||
|
||||
int main()
|
||||
{
|
||||
Mat data_temp, labels_temp;
|
||||
const String filename = "data01.xml";
|
||||
cout << "**********************************************************************" << endl;
|
||||
cout << filename
|
||||
<< " contains digits 0 and 1 of 20 samples each, collected on an Android device" << endl;
|
||||
cout << "Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"
|
||||
<< endl;
|
||||
cout << "**********************************************************************" << endl;
|
||||
|
||||
Mat data, labels;
|
||||
{
|
||||
cout << "loading the dataset" << endl;
|
||||
FileStorage f;
|
||||
if(f.open(filename, FileStorage::READ))
|
||||
{
|
||||
f["datamat"] >> data;
|
||||
f["labelsmat"] >> labels;
|
||||
f.release();
|
||||
}
|
||||
else
|
||||
{
|
||||
cerr << "File can not be opened: " << filename << endl;
|
||||
return 1;
|
||||
}
|
||||
data.convertTo(data, CV_32F);
|
||||
labels.convertTo(labels, CV_32F);
|
||||
cout << "read " << data.rows << " rows of data" << endl;
|
||||
}
|
||||
|
||||
Mat data_train, data_test;
|
||||
Mat labels_train, labels_test;
|
||||
|
||||
Mat responses, result;
|
||||
FileStorage fs1, fs2;
|
||||
|
||||
FileStorage f;
|
||||
|
||||
cout<<"*****************************************************************************************"<<endl;
|
||||
cout<<"\"data01.xml\" contains digits 0 and 1 of 20 samples each, collected on an Android device"<<endl;
|
||||
cout<<"Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"<<endl;
|
||||
cout<<"*****************************************************************************************\n\n"<<endl;
|
||||
|
||||
cout<<"loading the dataset\n"<<endl;
|
||||
|
||||
f.open("data01.xml", FileStorage::READ);
|
||||
|
||||
f["datamat"] >> data_temp;
|
||||
f["labelsmat"] >> labels_temp;
|
||||
|
||||
data_temp.convertTo(data, CV_32F);
|
||||
labels_temp.convertTo(labels, CV_32F);
|
||||
|
||||
for(int i = 0; i < data.rows; i++)
|
||||
{
|
||||
if(i % 2 == 0)
|
||||
@@ -108,66 +111,66 @@ int main()
|
||||
labels_test.push_back(labels.row(i));
|
||||
}
|
||||
}
|
||||
|
||||
cout<<"training samples per class: "<<data_train.rows/2<<endl;
|
||||
cout<<"testing samples per class: "<<data_test.rows/2<<endl;
|
||||
cout << "training/testing samples count: " << data_train.rows << "/" << data_test.rows << endl;
|
||||
|
||||
// display sample image
|
||||
Mat img_disp1 = data_train.row(2).reshape(0,28).t();
|
||||
Mat img_disp2 = data_train.row(18).reshape(0,28).t();
|
||||
// Mat bigImage;
|
||||
// for(int i = 0; i < data_train.rows; ++i)
|
||||
// {
|
||||
// bigImage.push_back(data_train.row(i).reshape(0, 28));
|
||||
// }
|
||||
// imshow("digits", bigImage.t());
|
||||
|
||||
imshow("digit 0", img_disp1);
|
||||
imshow("digit 1", img_disp2);
|
||||
Mat responses, result;
|
||||
|
||||
cout<<"initializing Logisitc Regression Parameters\n"<<endl;
|
||||
// LogisticRegression::Params params = LogisticRegression::Params(
|
||||
// 0.001, 10, LogisticRegression::BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
// params1 (above) with batch gradient performs better than mini batch
|
||||
// gradient below with same parameters
|
||||
LogisticRegression::Params params = LogisticRegression::Params(
|
||||
0.001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
|
||||
// LogisticRegressionParams params1 = LogisticRegressionParams(0.001, 10, LogisticRegression::BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
// params1 (above) with batch gradient performs better than mini batch gradient below with same parameters
|
||||
LogisticRegressionParams params1 = LogisticRegressionParams(0.001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
// however mini batch gradient descent parameters with slower learning
|
||||
// rate(below) can be used to get higher accuracy than with parameters
|
||||
// mentioned above
|
||||
// LogisticRegression::Params params = LogisticRegression::Params(
|
||||
// 0.000001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
|
||||
// however mini batch gradient descent parameters with slower learning rate(below) can be used to get higher accuracy than with parameters mentioned above
|
||||
// LogisticRegressionParams params1 = LogisticRegressionParams(0.000001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
cout << "training...";
|
||||
Ptr<StatModel> lr1 = LogisticRegression::create(params);
|
||||
lr1->train(data_train, ROW_SAMPLE, labels_train);
|
||||
cout << "done!" << endl;
|
||||
|
||||
cout<<"training Logisitc Regression classifier\n"<<endl;
|
||||
cout << "predicting...";
|
||||
lr1->predict(data_test, responses);
|
||||
cout << "done!" << endl;
|
||||
|
||||
LogisticRegression lr1(data_train, labels_train, params1);
|
||||
lr1.predict(data_test, responses);
|
||||
// show prediction report
|
||||
cout << "original vs predicted:" << endl;
|
||||
labels_test.convertTo(labels_test, CV_32S);
|
||||
|
||||
cout<<"Original Label :: Predicted Label"<<endl;
|
||||
cout << labels_test.t() << endl;
|
||||
cout << responses.t() << endl;
|
||||
result = (labels_test == responses) / 255;
|
||||
|
||||
for(int i=0;i<labels_test.rows;i++)
|
||||
{
|
||||
cout<<labels_test.at<int>(i,0)<<" :: "<< responses.at<int>(i,0)<<endl;
|
||||
}
|
||||
|
||||
// calculate accuracy
|
||||
cout << "accuracy: " << ((double)cv::sum(result)[0] / result.rows) * 100 << "%\n";
|
||||
cout<<"saving the classifier"<<endl;
|
||||
|
||||
// save the classfier
|
||||
fs1.open("NewLR_Trained.xml",FileStorage::WRITE);
|
||||
lr1.write(fs1);
|
||||
fs1.release();
|
||||
cout << "saving the classifier" << endl;
|
||||
const String saveFilename = "NewLR_Trained.xml";
|
||||
lr1->save(saveFilename);
|
||||
|
||||
// load the classifier onto new object
|
||||
LogisticRegressionParams params2 = LogisticRegressionParams();
|
||||
LogisticRegression lr2(params2);
|
||||
cout << "loading a new classifier" << endl;
|
||||
fs2.open("NewLR_Trained.xml",FileStorage::READ);
|
||||
FileNode fn2 = fs2.root();
|
||||
lr2.read(fn2);
|
||||
fs2.release();
|
||||
|
||||
Mat responses2;
|
||||
Ptr<LogisticRegression> lr2 = StatModel::load<LogisticRegression>(saveFilename);
|
||||
|
||||
// predict using loaded classifier
|
||||
cout<<"predicting the dataset using the loaded classfier\n"<<endl;
|
||||
lr2.predict(data_test, responses2);
|
||||
cout << "predicting the dataset using the loaded classfier" << endl;
|
||||
Mat responses2;
|
||||
lr2->predict(data_test, responses2);
|
||||
// calculate accuracy
|
||||
cout<<"accuracy using loaded classifier: "<<100 * (float)cv::countNonZero(labels_test == responses2)/responses2.rows<<"%"<<endl;
|
||||
waitKey(0);
|
||||
cout << "accuracy using loaded classifier: "
|
||||
<< 100 * (float)cv::countNonZero(labels_test == responses2) / responses2.rows << "%"
|
||||
<< endl;
|
||||
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
||||
|
Reference in New Issue
Block a user