Reworked ML logistic regression implementation, initial version
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
/*//////////////////////////////////////////////////////////////////////////////////////
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
@@ -11,7 +11,8 @@
|
||||
// Rahul Kavi rahulkavi[at]live[at]com
|
||||
//
|
||||
|
||||
// contains a subset of data from the popular Iris Dataset (taken from "http://archive.ics.uci.edu/ml/datasets/Iris")
|
||||
// contains a subset of data from the popular Iris Dataset (taken from
|
||||
// "http://archive.ics.uci.edu/ml/datasets/Iris")
|
||||
|
||||
// # You are free to use, change, or redistribute the code in any way you wish for
|
||||
// # non-commercial purposes, but please maintain the name of the original author.
|
||||
@@ -24,7 +25,6 @@
|
||||
|
||||
// # Logistic Regression ALGORITHM
|
||||
|
||||
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
|
||||
@@ -54,7 +54,7 @@
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
// the use of this software, even if advised of the possibility of such damage.*/
|
||||
|
||||
#include <iostream>
|
||||
|
||||
@@ -62,42 +62,45 @@
|
||||
#include <opencv2/ml/ml.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::ml;
|
||||
|
||||
int main()
|
||||
{
|
||||
Mat data_temp, labels_temp;
|
||||
const String filename = "data01.xml";
|
||||
cout << "**********************************************************************" << endl;
|
||||
cout << filename
|
||||
<< " contains digits 0 and 1 of 20 samples each, collected on an Android device" << endl;
|
||||
cout << "Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"
|
||||
<< endl;
|
||||
cout << "**********************************************************************" << endl;
|
||||
|
||||
Mat data, labels;
|
||||
{
|
||||
cout << "loading the dataset" << endl;
|
||||
FileStorage f;
|
||||
if(f.open(filename, FileStorage::READ))
|
||||
{
|
||||
f["datamat"] >> data;
|
||||
f["labelsmat"] >> labels;
|
||||
f.release();
|
||||
}
|
||||
else
|
||||
{
|
||||
cerr << "File can not be opened: " << filename << endl;
|
||||
return 1;
|
||||
}
|
||||
data.convertTo(data, CV_32F);
|
||||
labels.convertTo(labels, CV_32F);
|
||||
cout << "read " << data.rows << " rows of data" << endl;
|
||||
}
|
||||
|
||||
Mat data_train, data_test;
|
||||
Mat labels_train, labels_test;
|
||||
|
||||
Mat responses, result;
|
||||
FileStorage fs1, fs2;
|
||||
|
||||
FileStorage f;
|
||||
|
||||
cout<<"*****************************************************************************************"<<endl;
|
||||
cout<<"\"data01.xml\" contains digits 0 and 1 of 20 samples each, collected on an Android device"<<endl;
|
||||
cout<<"Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"<<endl;
|
||||
cout<<"*****************************************************************************************\n\n"<<endl;
|
||||
|
||||
cout<<"loading the dataset\n"<<endl;
|
||||
|
||||
f.open("data01.xml", FileStorage::READ);
|
||||
|
||||
f["datamat"] >> data_temp;
|
||||
f["labelsmat"] >> labels_temp;
|
||||
|
||||
data_temp.convertTo(data, CV_32F);
|
||||
labels_temp.convertTo(labels, CV_32F);
|
||||
|
||||
for(int i =0;i<data.rows;i++)
|
||||
for(int i = 0; i < data.rows; i++)
|
||||
{
|
||||
if(i%2 ==0)
|
||||
if(i % 2 == 0)
|
||||
{
|
||||
data_train.push_back(data.row(i));
|
||||
labels_train.push_back(labels.row(i));
|
||||
@@ -108,66 +111,66 @@ int main()
|
||||
labels_test.push_back(labels.row(i));
|
||||
}
|
||||
}
|
||||
|
||||
cout<<"training samples per class: "<<data_train.rows/2<<endl;
|
||||
cout<<"testing samples per class: "<<data_test.rows/2<<endl;
|
||||
cout << "training/testing samples count: " << data_train.rows << "/" << data_test.rows << endl;
|
||||
|
||||
// display sample image
|
||||
Mat img_disp1 = data_train.row(2).reshape(0,28).t();
|
||||
Mat img_disp2 = data_train.row(18).reshape(0,28).t();
|
||||
// Mat bigImage;
|
||||
// for(int i = 0; i < data_train.rows; ++i)
|
||||
// {
|
||||
// bigImage.push_back(data_train.row(i).reshape(0, 28));
|
||||
// }
|
||||
// imshow("digits", bigImage.t());
|
||||
|
||||
imshow("digit 0", img_disp1);
|
||||
imshow("digit 1", img_disp2);
|
||||
Mat responses, result;
|
||||
|
||||
cout<<"initializing Logisitc Regression Parameters\n"<<endl;
|
||||
// LogisticRegression::Params params = LogisticRegression::Params(
|
||||
// 0.001, 10, LogisticRegression::BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
// params1 (above) with batch gradient performs better than mini batch
|
||||
// gradient below with same parameters
|
||||
LogisticRegression::Params params = LogisticRegression::Params(
|
||||
0.001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
|
||||
// LogisticRegressionParams params1 = LogisticRegressionParams(0.001, 10, LogisticRegression::BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
// params1 (above) with batch gradient performs better than mini batch gradient below with same parameters
|
||||
LogisticRegressionParams params1 = LogisticRegressionParams(0.001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
// however mini batch gradient descent parameters with slower learning
|
||||
// rate(below) can be used to get higher accuracy than with parameters
|
||||
// mentioned above
|
||||
// LogisticRegression::Params params = LogisticRegression::Params(
|
||||
// 0.000001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
|
||||
// however mini batch gradient descent parameters with slower learning rate(below) can be used to get higher accuracy than with parameters mentioned above
|
||||
// LogisticRegressionParams params1 = LogisticRegressionParams(0.000001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
cout << "training...";
|
||||
Ptr<StatModel> lr1 = LogisticRegression::create(params);
|
||||
lr1->train(data_train, ROW_SAMPLE, labels_train);
|
||||
cout << "done!" << endl;
|
||||
|
||||
cout<<"training Logisitc Regression classifier\n"<<endl;
|
||||
cout << "predicting...";
|
||||
lr1->predict(data_test, responses);
|
||||
cout << "done!" << endl;
|
||||
|
||||
LogisticRegression lr1(data_train, labels_train, params1);
|
||||
lr1.predict(data_test, responses);
|
||||
// show prediction report
|
||||
cout << "original vs predicted:" << endl;
|
||||
labels_test.convertTo(labels_test, CV_32S);
|
||||
|
||||
cout<<"Original Label :: Predicted Label"<<endl;
|
||||
result = (labels_test == responses)/255;
|
||||
|
||||
for(int i=0;i<labels_test.rows;i++)
|
||||
{
|
||||
cout<<labels_test.at<int>(i,0)<<" :: "<< responses.at<int>(i,0)<<endl;
|
||||
}
|
||||
|
||||
// calculate accuracy
|
||||
cout<<"accuracy: "<<((double)cv::sum(result)[0]/result.rows)*100<<"%\n";
|
||||
cout<<"saving the classifier"<<endl;
|
||||
cout << labels_test.t() << endl;
|
||||
cout << responses.t() << endl;
|
||||
result = (labels_test == responses) / 255;
|
||||
cout << "accuracy: " << ((double)cv::sum(result)[0] / result.rows) * 100 << "%\n";
|
||||
|
||||
// save the classfier
|
||||
fs1.open("NewLR_Trained.xml",FileStorage::WRITE);
|
||||
lr1.write(fs1);
|
||||
fs1.release();
|
||||
cout << "saving the classifier" << endl;
|
||||
const String saveFilename = "NewLR_Trained.xml";
|
||||
lr1->save(saveFilename);
|
||||
|
||||
// load the classifier onto new object
|
||||
LogisticRegressionParams params2 = LogisticRegressionParams();
|
||||
LogisticRegression lr2(params2);
|
||||
cout<<"loading a new classifier"<<endl;
|
||||
fs2.open("NewLR_Trained.xml",FileStorage::READ);
|
||||
FileNode fn2 = fs2.root();
|
||||
lr2.read(fn2);
|
||||
fs2.release();
|
||||
|
||||
Mat responses2;
|
||||
cout << "loading a new classifier" << endl;
|
||||
Ptr<LogisticRegression> lr2 = StatModel::load<LogisticRegression>(saveFilename);
|
||||
|
||||
// predict using loaded classifier
|
||||
cout<<"predicting the dataset using the loaded classfier\n"<<endl;
|
||||
lr2.predict(data_test, responses2);
|
||||
cout << "predicting the dataset using the loaded classfier" << endl;
|
||||
Mat responses2;
|
||||
lr2->predict(data_test, responses2);
|
||||
// calculate accuracy
|
||||
cout<<"accuracy using loaded classifier: "<<100 * (float)cv::countNonZero(labels_test == responses2)/responses2.rows<<"%"<<endl;
|
||||
waitKey(0);
|
||||
cout << "accuracy using loaded classifier: "
|
||||
<< 100 * (float)cv::countNonZero(labels_test == responses2) / responses2.rows << "%"
|
||||
<< endl;
|
||||
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
||||
|
Reference in New Issue
Block a user