refactored train and predict methods of em
This commit is contained in:
@@ -56,12 +56,12 @@ CvEMParams::CvEMParams( int _nclusters, int _cov_mat_type, int _start_step,
|
||||
probs(_probs), weights(_weights), means(_means), covs(_covs), term_crit(_term_crit)
|
||||
{}
|
||||
|
||||
CvEM::CvEM() : likelihood(DBL_MAX)
|
||||
CvEM::CvEM() : logLikelihood(DBL_MAX)
|
||||
{
|
||||
}
|
||||
|
||||
CvEM::CvEM( const CvMat* samples, const CvMat* sample_idx,
|
||||
CvEMParams params, CvMat* labels ) : likelihood(DBL_MAX)
|
||||
CvEMParams params, CvMat* labels ) : logLikelihood(DBL_MAX)
|
||||
{
|
||||
train(samples, sample_idx, params, labels);
|
||||
}
|
||||
@@ -96,16 +96,14 @@ void CvEM::write( CvFileStorage* _fs, const char* name ) const
|
||||
|
||||
double CvEM::calcLikelihood( const Mat &input_sample ) const
|
||||
{
|
||||
double likelihood;
|
||||
emObj.predict(input_sample, noArray(), &likelihood);
|
||||
return likelihood;
|
||||
return emObj.predict(input_sample)[0];
|
||||
}
|
||||
|
||||
float
|
||||
CvEM::predict( const CvMat* _sample, CvMat* _probs ) const
|
||||
{
|
||||
Mat prbs0 = cvarrToMat(_probs), prbs = prbs0, sample = cvarrToMat(_sample);
|
||||
int cls = emObj.predict(sample, _probs ? _OutputArray(prbs) : cv::noArray());
|
||||
int cls = static_cast<int>(emObj.predict(sample, _probs ? _OutputArray(prbs) : cv::noArray())[1]);
|
||||
if(_probs)
|
||||
{
|
||||
if( prbs.data != prbs0.data )
|
||||
@@ -203,29 +201,27 @@ bool CvEM::train( const Mat& _samples, const Mat& _sample_idx,
|
||||
CvEMParams _params, Mat* _labels )
|
||||
{
|
||||
CV_Assert(_sample_idx.empty());
|
||||
Mat prbs, weights, means, likelihoods;
|
||||
Mat prbs, weights, means, logLikelihoods;
|
||||
std::vector<Mat> covsHdrs;
|
||||
init_params(_params, prbs, weights, means, covsHdrs);
|
||||
|
||||
emObj = EM(_params.nclusters, _params.cov_mat_type, _params.term_crit);
|
||||
bool isOk = false;
|
||||
if( _params.start_step == EM::START_AUTO_STEP )
|
||||
isOk = emObj.train(_samples, _labels ? _OutputArray(*_labels) : cv::noArray(),
|
||||
probs, likelihoods);
|
||||
isOk = emObj.train(_samples,
|
||||
logLikelihoods, _labels ? _OutputArray(*_labels) : cv::noArray(), probs);
|
||||
else if( _params.start_step == EM::START_E_STEP )
|
||||
isOk = emObj.trainE(_samples, means, covsHdrs, weights,
|
||||
_labels ? _OutputArray(*_labels) : cv::noArray(),
|
||||
probs, likelihoods);
|
||||
logLikelihoods, _labels ? _OutputArray(*_labels) : cv::noArray(), probs);
|
||||
else if( _params.start_step == EM::START_M_STEP )
|
||||
isOk = emObj.trainM(_samples, prbs,
|
||||
_labels ? _OutputArray(*_labels) : cv::noArray(),
|
||||
probs, likelihoods);
|
||||
logLikelihoods, _labels ? _OutputArray(*_labels) : cv::noArray(), probs);
|
||||
else
|
||||
CV_Error(CV_StsBadArg, "Bad start type of EM algorithm");
|
||||
|
||||
if(isOk)
|
||||
{
|
||||
likelihoods = sum(likelihoods).val[0];
|
||||
logLikelihood = sum(logLikelihoods).val[0];
|
||||
set_mat_hdrs();
|
||||
}
|
||||
|
||||
@@ -235,8 +231,7 @@ bool CvEM::train( const Mat& _samples, const Mat& _sample_idx,
|
||||
float
|
||||
CvEM::predict( const Mat& _sample, Mat* _probs ) const
|
||||
{
|
||||
int cls = emObj.predict(_sample, _probs ? _OutputArray(*_probs) : cv::noArray());
|
||||
return (float)cls;
|
||||
return static_cast<float>(emObj.predict(_sample, _probs ? _OutputArray(*_probs) : cv::noArray())[1]);
|
||||
}
|
||||
|
||||
int CvEM::getNClusters() const
|
||||
|
Reference in New Issue
Block a user