diff --git a/modules/core/include/opencv2/core.hpp b/modules/core/include/opencv2/core.hpp index 40d678206..05f649a62 100644 --- a/modules/core/include/opencv2/core.hpp +++ b/modules/core/include/opencv2/core.hpp @@ -694,6 +694,37 @@ min-max but modify the whole array, you can use norm and Mat::convertTo. In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, the range transformation for sparse matrices is not allowed since it can shift the zero level. +Possible usage with some positive example data: +@code{.cpp} + vector positiveData = { 2.0, 8.0, 10.0 }; + vector normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax; + + // Norm to probability (total count) + // sum(numbers) = 20.0 + // 2.0 0.1 (2.0/20.0) + // 8.0 0.4 (8.0/20.0) + // 10.0 0.5 (10.0/20.0) + normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1); + + // Norm to unit vector: ||positiveData|| = 1.0 + // 2.0 0.15 + // 8.0 0.62 + // 10.0 0.77 + normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2); + + // Norm to max element + // 2.0 0.2 (2.0/10.0) + // 8.0 0.8 (8.0/10.0) + // 10.0 1.0 (10.0/10.0) + normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF); + + // Norm to range [0.0;1.0] + // 2.0 0.0 (shift to left border) + // 8.0 0.75 (6.0/8.0) + // 10.0 1.0 (shift to right border) + normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX); +@endcode + @param src input array. @param dst output array of the same size as src . @param alpha norm value to normalize to or the lower range boundary in case of the range