work on added digits.py sample (neural network for handwritten digit recognition)
This commit is contained in:
parent
2990f23e0c
commit
3cfa6949d7
BIN
samples/python2/digits.png
Normal file
BIN
samples/python2/digits.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 704 KiB |
89
samples/python2/digits.py
Normal file
89
samples/python2/digits.py
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
import itertools as it
|
||||||
|
|
||||||
|
'''
|
||||||
|
from scipy.io import loadmat
|
||||||
|
|
||||||
|
m = loadmat('ex4data1.mat')
|
||||||
|
X = m['X'].reshape(-1, 20, 20)
|
||||||
|
X = np.transpose(X, (0, 2, 1))
|
||||||
|
img = np.vstack(map(np.hstack, X.reshape(-1, 100, 20, 20)))
|
||||||
|
img = np.uint8(np.clip(img, 0, 1)*255)
|
||||||
|
cv2.imwrite('digits.png', img)
|
||||||
|
'''
|
||||||
|
|
||||||
|
def unroll_responses(responses, class_n):
|
||||||
|
sample_n = len(responses)
|
||||||
|
new_responses = np.zeros((sample_n, class_n), np.float32)
|
||||||
|
new_responses[np.arange(sample_n), responses] = 1
|
||||||
|
return new_responses
|
||||||
|
|
||||||
|
|
||||||
|
SZ = 20
|
||||||
|
digits_img = cv2.imread('digits.png', 0)
|
||||||
|
|
||||||
|
h, w = digits_img.shape
|
||||||
|
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)]
|
||||||
|
digits = np.float32(digits).reshape(-1, SZ*SZ)
|
||||||
|
N = len(digits)
|
||||||
|
labels = np.repeat(np.arange(10), N/10)
|
||||||
|
|
||||||
|
shuffle = np.random.permutation(N)
|
||||||
|
train_n = int(0.9*N)
|
||||||
|
|
||||||
|
digits_train, digits_test = np.split(digits[shuffle], [train_n])
|
||||||
|
labels_train, labels_test = np.split(labels[shuffle], [train_n])
|
||||||
|
|
||||||
|
labels_train_unrolled = unroll_responses(labels_train, 10)
|
||||||
|
|
||||||
|
model = cv2.ANN_MLP()
|
||||||
|
layer_sizes = np.int32([SZ*SZ, 25, 10])
|
||||||
|
model.create(layer_sizes)
|
||||||
|
|
||||||
|
# CvANN_MLP_TrainParams::BACKPROP,0.001
|
||||||
|
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01),
|
||||||
|
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
|
||||||
|
bp_dw_scale = 0.001,
|
||||||
|
bp_moment_scale = 0.0 )
|
||||||
|
print 'training...'
|
||||||
|
model.train(digits_train, labels_train_unrolled, None, params=params)
|
||||||
|
model.save('dig_nn.dat')
|
||||||
|
model.load('dig_nn.dat')
|
||||||
|
|
||||||
|
ret, resp = model.predict(digits_test)
|
||||||
|
resp = resp.argmax(-1)
|
||||||
|
error_mask = (resp == labels_test)
|
||||||
|
print error_mask.mean()
|
||||||
|
|
||||||
|
def grouper(n, iterable, fillvalue=None):
|
||||||
|
"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
|
||||||
|
args = [iter(iterable)] * n
|
||||||
|
return it.izip_longest(fillvalue=fillvalue, *args)
|
||||||
|
|
||||||
|
def mosaic(w, imgs):
|
||||||
|
imgs = iter(imgs)
|
||||||
|
img0 = imgs.next()
|
||||||
|
pad = np.zeros_like(img0)
|
||||||
|
imgs = it.chain([img0], imgs)
|
||||||
|
rows = grouper(w, imgs, pad)
|
||||||
|
return np.vstack(map(np.hstack, rows))
|
||||||
|
|
||||||
|
test_img = np.uint8(digits_test).reshape(-1, SZ, SZ)
|
||||||
|
|
||||||
|
def vis_resp(img, flag):
|
||||||
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||||||
|
if not flag:
|
||||||
|
img[...,:2] = 0
|
||||||
|
return img
|
||||||
|
|
||||||
|
test_img = mosaic(25, it.starmap(vis_resp, it.izip(test_img, error_mask)))
|
||||||
|
cv2.imshow('test', test_img)
|
||||||
|
cv2.waitKey()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
x
Reference in New Issue
Block a user