This commit is contained in:
Alexander Shishkov 2013-08-06 15:41:39 +04:00
commit 3c218717a9
8 changed files with 159 additions and 93 deletions

View File

@ -90,6 +90,7 @@ bool HdrDecoder::readData(Mat& _img)
}
RGBE_ReadPixels_RLE(file, const_cast<float*>(img.ptr<float>()), img.cols, img.rows);
fclose(file); file = NULL;
if(_img.depth() == img.depth()) {
img.convertTo(_img, _img.type());
} else {
@ -123,10 +124,16 @@ HdrEncoder::~HdrEncoder()
bool HdrEncoder::write( const Mat& _img, const std::vector<int>& params )
{
CV_Assert(_img.channels() == 3);
Mat img;
if(_img.depth() != CV_32F) {
_img.convertTo(img, CV_32FC3, 1/255.0f);
CV_Assert(img.channels() == 3 || img.channels() == 1);
if(img.channels() == 1) {
std::vector<Mat> splitted(3, _img);
merge(splitted, img);
} else {
_img.copyTo(img);
}
if(img.depth() != CV_32F) {
img.convertTo(img, CV_32FC3, 1/255.0f);
}
CV_Assert(params.empty() || params[0] == HDR_NONE || params[0] == HDR_RLE);
FILE *fout = fopen(m_filename.c_str(), "wb");

View File

@ -194,7 +194,7 @@ Recovers camera response.
:param src: vector of input images
:param dst: matrix with calculated camera response, one column per channel
:param dst: matrix with calculated camera response
:param times: vector of exposure time values for each image
@ -232,7 +232,7 @@ Merges images.
:param times: vector of exposure time values for each image
:param response: matrix with camera response, one column per channel
:param response: one-column matrix with camera response
MergeDebevec
--------

View File

@ -206,6 +206,9 @@ public:
CV_WRAP virtual int getSamples() const = 0;
CV_WRAP virtual void setSamples(int samples) = 0;
CV_WRAP virtual bool getTest() const = 0;
CV_WRAP virtual void setTest(bool val) = 0;
};
CV_EXPORTS_W Ptr<CalibrateDebevec> createCalibrateDebevec(int samples = 50, float lambda = 10.0f);

View File

@ -55,7 +55,8 @@ public:
samples(samples),
lambda(lambda),
name("CalibrateDebevec"),
w(tringleWeights())
w(tringleWeights()),
test(false)
{
}
@ -63,14 +64,19 @@ public:
{
std::vector<Mat> images;
src.getMatVector(images);
dst.create(256, images[0].channels(), CV_32F);
Mat response = dst.getMat();
CV_Assert(!images.empty() && images.size() == times.size());
CV_Assert(images[0].depth() == CV_8U);
CV_Assert(images.size() == times.size());
checkImageDimensions(images);
CV_Assert(images[0].depth() == CV_8U);
for(int channel = 0; channel < images[0].channels(); channel++) {
int channels = images[0].channels();
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
dst.create(256, 1, CV_32FCC);
Mat result = dst.getMat();
std::vector<Mat> result_split(channels);
for(int channel = 0; channel < channels; channel++) {
Mat A = Mat::zeros(samples * images.size() + 257, 256 + samples, CV_32F);
Mat B = Mat::zeros(A.rows, 1, CV_32F);
@ -78,6 +84,9 @@ public:
for(int i = 0; i < samples; i++) {
int pos = 3 * (rand() % images[0].total()) + channel;
if(test) {
pos = 3 * i + channel;
}
for(size_t j = 0; j < images.size(); j++) {
int val = (images[j].ptr() + pos)[0];
@ -98,11 +107,15 @@ public:
}
Mat solution;
solve(A, B, solution, DECOMP_SVD);
solution.rowRange(0, 256).copyTo(response.col(channel));
solution.rowRange(0, 256).copyTo(result_split[channel]);
}
exp(response, response);
merge(result_split, result);
exp(result, result);
}
bool getTest() const { return test; }
void setTest(bool val) { test = val; }
int getSamples() const { return samples; }
void setSamples(int val) { samples = val; }
@ -128,6 +141,7 @@ protected:
String name;
int samples;
float lambda;
bool test;
Mat w;
};

View File

@ -61,11 +61,9 @@ void checkImageDimensions(const std::vector<Mat>& images)
Mat tringleWeights()
{
Mat w(256, 3, CV_32F);
Mat w(256, 1, CV_32F);
for(int i = 0; i < 256; i++) {
for(int j = 0; j < 3; j++) {
w.at<float>(i, j) = i < 128 ? i + 1.0f : 256.0f - i;
}
w.at<float>(i) = i < 128 ? i + 1.0f : 256.0f - i;
}
return w;
}

View File

@ -61,62 +61,87 @@ public:
{
std::vector<Mat> images;
src.getMatVector(images);
dst.create(images[0].size(), CV_MAKETYPE(CV_32F, images[0].channels()));
Mat result = dst.getMat();
CV_Assert(images.size() == times.size());
CV_Assert(images[0].depth() == CV_8U);
checkImageDimensions(images);
Mat response = input_response.getMat();
CV_Assert(response.rows == 256 && response.cols >= images[0].channels());
Mat log_response;
log(response, log_response);
std::vector<float> exp_times(times.size());
for(size_t i = 0; i < exp_times.size(); i++) {
exp_times[i] = logf(times[i]);
}
CV_Assert(images[0].depth() == CV_8U);
int channels = images[0].channels();
float *res_ptr = result.ptr<float>();
for(size_t pos = 0; pos < result.total(); pos++, res_ptr += channels) {
Size size = images[0].size();
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
std::vector<float> sum(channels, 0);
float weight_sum = 0;
for(size_t im = 0; im < images.size(); im++) {
dst.create(images[0].size(), CV_32FCC);
Mat result = dst.getMat();
uchar *img_ptr = images[im].ptr() + channels * pos;
float w = 0;
for(int channel = 0; channel < channels; channel++) {
w += weights.at<float>(img_ptr[channel]);
Mat response = input_response.getMat();
if(response.empty()) {
response = linearResponse(channels);
}
log(response, response);
CV_Assert(response.rows == 256 && response.cols == 1 &&
response.channels() == channels);
Mat exp_values(times);
log(exp_values, exp_values);
result = Mat::zeros(size, CV_32FCC);
std::vector<Mat> result_split;
split(result, result_split);
Mat weight_sum = Mat::zeros(size, CV_32F);
for(size_t i = 0; i < images.size(); i++) {
std::vector<Mat> splitted;
split(images[i], splitted);
Mat w = Mat::zeros(size, CV_32F);
for(int c = 0; c < channels; c++) {
LUT(splitted[c], weights, splitted[c]);
w += splitted[c];
}
w /= channels;
Mat response_img;
LUT(images[i], response, response_img);
split(response_img, splitted);
for(int c = 0; c < channels; c++) {
result_split[c] += w.mul(splitted[c] - exp_values.at<float>(i));
}
weight_sum += w;
for(int channel = 0; channel < channels; channel++) {
sum[channel] += w * (log_response.at<float>(img_ptr[channel], channel) - exp_times[im]);
}
}
for(int channel = 0; channel < channels; channel++) {
res_ptr[channel] = exp(sum[channel] / weight_sum);
}
weight_sum = 1.0f / weight_sum;
for(int c = 0; c < channels; c++) {
result_split[c] = result_split[c].mul(weight_sum);
}
merge(result_split, result);
exp(result, result);
}
void process(InputArrayOfArrays src, OutputArray dst, const std::vector<float>& times)
{
Mat response(256, 3, CV_32F);
for(int i = 0; i < 256; i++) {
for(int j = 0; j < 3; j++) {
response.at<float>(i, j) = static_cast<float>(max(i, 1));
}
}
process(src, dst, times, response);
process(src, dst, times, Mat());
}
protected:
String name;
Mat weights;
Mat linearResponse(int channels)
{
Mat single_response = Mat(256, 1, CV_32F);
for(int i = 1; i < 256; i++) {
single_response.at<float>(i) = static_cast<float>(i);
}
single_response.at<float>(0) = static_cast<float>(1);
std::vector<Mat> splitted(channels);
for(int c = 0; c < channels; c++) {
splitted[c] = single_response;
}
Mat result;
merge(splitted, result);
return result;
}
};
Ptr<MergeDebevec> createMergeDebevec()
@ -146,33 +171,48 @@ public:
src.getMatVector(images);
checkImageDimensions(images);
std::vector<Mat> weights(images.size());
Mat weight_sum = Mat::zeros(images[0].size(), CV_32FC1);
for(size_t im = 0; im < images.size(); im++) {
Mat img, gray, contrast, saturation, wellexp;
std::vector<Mat> channels(3);
int channels = images[0].channels();
CV_Assert(channels == 1 || channels == 3);
Size size = images[0].size();
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
images[im].convertTo(img, CV_32FC3, 1.0/255.0);
std::vector<Mat> weights(images.size());
Mat weight_sum = Mat::zeros(size, CV_32F);
for(size_t i = 0; i < images.size(); i++) {
Mat img, gray, contrast, saturation, wellexp;
std::vector<Mat> splitted(channels);
images[i].convertTo(img, CV_32F, 1.0f/255.0f);
if(channels == 3) {
cvtColor(img, gray, COLOR_RGB2GRAY);
split(img, channels);
} else {
img.copyTo(gray);
}
split(img, splitted);
Laplacian(gray, contrast, CV_32F);
contrast = abs(contrast);
Mat mean = (channels[0] + channels[1] + channels[2]) / 3.0f;
saturation = Mat::zeros(channels[0].size(), CV_32FC1);
for(int i = 0; i < 3; i++) {
Mat deviation = channels[i] - mean;
pow(deviation, 2.0, deviation);
Mat mean = Mat::zeros(size, CV_32F);
for(int c = 0; c < channels; c++) {
mean += splitted[c];
}
mean /= channels;
saturation = Mat::zeros(size, CV_32F);
for(int c = 0; c < channels; c++) {
Mat deviation = splitted[c] - mean;
pow(deviation, 2.0f, deviation);
saturation += deviation;
}
sqrt(saturation, saturation);
wellexp = Mat::ones(gray.size(), CV_32FC1);
for(int i = 0; i < 3; i++) {
Mat exp = channels[i] - 0.5f;
pow(exp, 2, exp);
exp = -exp / 0.08;
wellexp = Mat::ones(size, CV_32F);
for(int c = 0; c < channels; c++) {
Mat exp = splitted[c] - 0.5f;
pow(exp, 2.0f, exp);
exp = -exp / 0.08f;
wellexp = wellexp.mul(exp);
}
@ -180,33 +220,37 @@ public:
pow(saturation, wsat, saturation);
pow(wellexp, wexp, wellexp);
weights[im] = contrast;
weights[im] = weights[im].mul(saturation);
weights[im] = weights[im].mul(wellexp);
weight_sum += weights[im];
weights[i] = contrast;
if(channels == 3) {
weights[i] = weights[i].mul(saturation);
}
int maxlevel = static_cast<int>(logf(static_cast<float>(max(images[0].rows, images[0].cols))) / logf(2.0)) - 1;
weights[i] = weights[i].mul(wellexp);
weight_sum += weights[i];
}
int maxlevel = static_cast<int>(logf(static_cast<float>(min(size.width, size.height))) / logf(2.0f));
std::vector<Mat> res_pyr(maxlevel + 1);
for(size_t im = 0; im < images.size(); im++) {
weights[im] /= weight_sum;
for(size_t i = 0; i < images.size(); i++) {
weights[i] /= weight_sum;
Mat img;
images[im].convertTo(img, CV_32FC3, 1/255.0);
images[i].convertTo(img, CV_32F, 1.0f/255.0f);
std::vector<Mat> img_pyr, weight_pyr;
buildPyramid(img, img_pyr, maxlevel);
buildPyramid(weights[im], weight_pyr, maxlevel);
buildPyramid(weights[i], weight_pyr, maxlevel);
for(int lvl = 0; lvl < maxlevel; lvl++) {
Mat up;
pyrUp(img_pyr[lvl + 1], up, img_pyr[lvl].size());
img_pyr[lvl] -= up;
}
for(int lvl = 0; lvl <= maxlevel; lvl++) {
std::vector<Mat> channels(3);
split(img_pyr[lvl], channels);
for(int i = 0; i < 3; i++) {
channels[i] = channels[i].mul(weight_pyr[lvl]);
std::vector<Mat> splitted(channels);
split(img_pyr[lvl], splitted);
for(int c = 0; c < channels; c++) {
splitted[c] = splitted[c].mul(weight_pyr[lvl]);
}
merge(channels, img_pyr[lvl]);
merge(splitted, img_pyr[lvl]);
if(res_pyr[lvl].empty()) {
res_pyr[lvl] = img_pyr[lvl];
} else {
@ -219,7 +263,7 @@ public:
pyrUp(res_pyr[lvl], up, res_pyr[lvl - 1].size());
res_pyr[lvl - 1] += up;
}
dst.create(images[0].size(), CV_32FC3);
dst.create(size, CV_32FCC);
res_pyr[0].copyTo(dst.getMat());
}

View File

@ -462,8 +462,8 @@ protected:
void signedPow(Mat src, float power, Mat& dst)
{
Mat sign = (src > 0);
sign.convertTo(sign, CV_32F, 1/255.0f);
sign = sign * 2 - 1;
sign.convertTo(sign, CV_32F, 1.0f/255.0f);
sign = sign * 2.0f - 1.0f;
pow(abs(src), power, dst);
dst = dst.mul(sign);
}

View File

@ -78,11 +78,11 @@ void loadExposureSeq(String path, vector<Mat>& images, vector<float>& times = DE
void loadResponseCSV(String path, Mat& response)
{
response = Mat(256, 3, CV_32F);
response = Mat(256, 1, CV_32FC3);
ifstream resp_file(path.c_str());
for(int i = 0; i < 256; i++) {
for(int channel = 0; channel < 3; channel++) {
resp_file >> response.at<float>(i, channel);
for(int c = 0; c < 3; c++) {
resp_file >> response.at<Vec3f>(i)[c];
resp_file.ignore(1);
}
}
@ -187,6 +187,7 @@ TEST(Photo_MergeDebevec, regression)
Mat result, expected;
loadImage(test_path + "merge/debevec.exr", expected);
merge->process(images, result, times, response);
imwrite("test.exr", result);
checkEqual(expected, result, 1e-3f);
}
@ -199,9 +200,8 @@ TEST(Photo_CalibrateDebevec, regression)
Mat expected, response;
loadExposureSeq(test_path + "exposures/", images, times);
loadResponseCSV(test_path + "calibrate/debevec.csv", expected);
Ptr<CalibrateDebevec> calibrate = createCalibrateDebevec();
srand(1);
calibrate->setTest(true);
calibrate->process(images, response, times);
checkEqual(expected, response, 1e-3f);
}