updated logistic regression sample program
This commit is contained in:

committed by
Maksim Shabunin

parent
6ae43a2243
commit
3a6466d2e1
@@ -16,6 +16,8 @@
|
||||
|
||||
#include <opencv2/core/core.hpp>
|
||||
#include <opencv2/ml/ml.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
@@ -25,6 +27,10 @@ int main()
|
||||
{
|
||||
Mat data_temp, labels_temp;
|
||||
Mat data, labels;
|
||||
|
||||
Mat data_train, data_test;
|
||||
Mat labels_train, labels_test;
|
||||
|
||||
Mat responses, result;
|
||||
|
||||
FileStorage f;
|
||||
@@ -44,6 +50,32 @@ int main()
|
||||
data_temp.convertTo(data, CV_32F);
|
||||
labels_temp.convertTo(labels, CV_32F);
|
||||
|
||||
for(int i =0;i<data.rows;i++)
|
||||
{
|
||||
if(i%2 ==0)
|
||||
{
|
||||
data_train.push_back(data.row(i));
|
||||
labels_train.push_back(labels.row(i));
|
||||
}
|
||||
else
|
||||
{
|
||||
data_test.push_back(data.row(i));
|
||||
labels_test.push_back(labels.row(i));
|
||||
}
|
||||
}
|
||||
|
||||
cout<<"training samples per class: "<<data_train.rows/2<<endl;
|
||||
cout<<"testing samples per class: "<<data_test.rows/2<<endl;
|
||||
|
||||
// display sample image
|
||||
Mat img_disp1 = data_train.row(2).reshape(0,28).t();
|
||||
Mat img_disp2 = data_train.row(18).reshape(0,28).t();
|
||||
|
||||
imshow("digit 0", img_disp1);
|
||||
imshow("digit 1", img_disp2);
|
||||
|
||||
|
||||
|
||||
cout<<"initializing Logisitc Regression Parameters\n"<<endl;
|
||||
|
||||
CvLR_TrainParams params = CvLR_TrainParams();
|
||||
@@ -56,22 +88,21 @@ int main()
|
||||
|
||||
cout<<"training Logisitc Regression classifier\n"<<endl;
|
||||
|
||||
CvLR lr_(data, labels, params);
|
||||
|
||||
cout<<"predicting the trained dataset\n"<<endl;
|
||||
|
||||
lr_.predict(data, responses);
|
||||
|
||||
labels.convertTo(labels, CV_32S);
|
||||
CvLR lr_(data_train, labels_train, params);
|
||||
lr_.predict(data_test, responses);
|
||||
labels_test.convertTo(labels_test, CV_32S);
|
||||
|
||||
cout<<"Original Label :: Predicted Label"<<endl;
|
||||
result = (labels == responses)/255;
|
||||
for(int i=0;i<labels.rows;i++)
|
||||
result = (labels_test == responses)/255;
|
||||
|
||||
for(int i=0;i<labels_test.rows;i++)
|
||||
{
|
||||
cout<<labels.at<int>(i,0)<<" :: "<< responses.at<int>(i,0)<<endl;
|
||||
cout<<labels_test.at<int>(i,0)<<" :: "<< responses.at<int>(i,0)<<endl;
|
||||
}
|
||||
|
||||
// calculate accuracy
|
||||
cout<<"accuracy: "<<((double)cv::sum(result)[0]/result.rows)*100<<"%\n";
|
||||
cout<<"saving the classifier"<<endl;
|
||||
|
||||
// save the classfier
|
||||
lr_.save("NewLR_Trained.xml");
|
||||
@@ -87,11 +118,12 @@ int main()
|
||||
// predict using loaded classifier
|
||||
cout<<"predicting the dataset using the loaded classfier\n"<<endl;
|
||||
|
||||
lr2.predict(data, responses2);
|
||||
lr2.predict(data_test, responses2);
|
||||
|
||||
// calculate accuracy
|
||||
result = (labels == responses2)/255;
|
||||
result = (labels_test == responses2)/255;
|
||||
cout<<"accuracy using loaded classifier: "<<((double)cv::sum(result)[0]/result.rows)*100<<"%\n";
|
||||
waitKey(0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
Reference in New Issue
Block a user