Merge branch 'gpu-tests'

This commit is contained in:
Vladislav Vinogradov
2012-08-20 11:29:40 +04:00
57 changed files with 5056 additions and 7741 deletions

125
modules/gpu/perf/main.cpp Normal file
View File

@@ -0,0 +1,125 @@
#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::gpu;
using namespace cvtest;
using namespace testing;
void printOsInfo()
{
#if defined _WIN32
# if defined _WIN64
cout << "OS: Windows x64 \n" << endl;
# else
cout << "OS: Windows x32 \n" << endl;
# endif
#elif defined linux
# if defined _LP64
cout << "OS: Linux x64 \n" << endl;
# else
cout << "OS: Linux x32 \n" << endl;
# endif
#elif defined __APPLE__
# if defined _LP64
cout << "OS: Apple x64 \n" << endl;
# else
cout << "OS: Apple x32 \n" << endl;
# endif
#endif
}
void printCudaInfo()
{
#ifndef HAVE_CUDA
cout << "OpenCV was built without CUDA support \n" << endl;
#else
int driver;
cudaDriverGetVersion(&driver);
cout << "CUDA Driver version: " << driver << '\n';
cout << "CUDA Runtime version: " << CUDART_VERSION << '\n';
cout << endl;
cout << "GPU module was compiled for the following GPU archs:" << endl;
cout << " BIN: " << CUDA_ARCH_BIN << '\n';
cout << " PTX: " << CUDA_ARCH_PTX << '\n';
cout << endl;
int deviceCount = getCudaEnabledDeviceCount();
cout << "CUDA device count: " << deviceCount << '\n';
cout << endl;
for (int i = 0; i < deviceCount; ++i)
{
DeviceInfo info(i);
cout << "Device [" << i << "] \n";
cout << "\t Name: " << info.name() << '\n';
cout << "\t Compute capability: " << info.majorVersion() << '.' << info.minorVersion()<< '\n';
cout << "\t Multi Processor Count: " << info.multiProcessorCount() << '\n';
cout << "\t Total memory: " << static_cast<int>(static_cast<int>(info.totalMemory() / 1024.0) / 1024.0) << " Mb \n";
cout << "\t Free memory: " << static_cast<int>(static_cast<int>(info.freeMemory() / 1024.0) / 1024.0) << " Mb \n";
if (!info.isCompatible())
cout << "\t !!! This device is NOT compatible with current GPU module build \n";
cout << endl;
}
#endif
}
int main(int argc, char** argv)
{
CommandLineParser cmd(argc, (const char**) argv,
"{ print_info_only | print_info_only | false | Print information about system and exit }"
"{ device | device | 0 | Device on which tests will be executed }"
"{ cpu | cpu | false | Run tests on cpu }"
);
printOsInfo();
printCudaInfo();
if (cmd.get<bool>("print_info_only"))
return 0;
int device = cmd.get<int>("device");
bool cpu = cmd.get<bool>("cpu");
#ifndef HAVE_CUDA
cpu = true;
#endif
if (cpu)
{
runOnGpu = false;
cout << "Run tests on CPU \n" << endl;
}
else
{
runOnGpu = true;
if (device < 0 || device >= getCudaEnabledDeviceCount())
{
cerr << "Incorrect device index - " << device << endl;
return -1;
}
DeviceInfo info(device);
if (!info.isCompatible())
{
cerr << "Device " << device << " [" << info.name() << "] is NOT compatible with current GPU module build" << endl;
return -1;
}
setDevice(device);
cout << "Run tests on device " << device << " [" << info.name() << "] \n" << endl;
}
InitGoogleTest(&argc, argv);
perf::TestBase::Init(argc, argv);
return RUN_ALL_TESTS();
}

View File

@@ -1,219 +1,263 @@
#include "perf_precomp.hpp"
#ifdef HAVE_CUDA
using namespace std;
using namespace testing;
namespace {
//////////////////////////////////////////////////////////////////////
// StereoBM
GPU_PERF_TEST_1(StereoBM, cv::gpu::DeviceInfo)
typedef pair<string, string> pair_string;
DEF_PARAM_TEST_1(ImagePair, pair_string);
PERF_TEST_P(ImagePair, Calib3D_StereoBM, Values(make_pair<string, string>("gpu/perf/aloe.jpg", "gpu/perf/aloeR.jpg")))
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat img_l_host = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img_l_host.empty());
cv::Mat img_r_host = readImage("gpu/perf/aloeR.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img_r_host.empty());
cv::gpu::StereoBM_GPU bm(0, 256);
cv::gpu::GpuMat img_l(img_l_host);
cv::gpu::GpuMat img_r(img_r_host);
cv::gpu::GpuMat dst;
bm(img_l, img_r, dst);
declare.time(5.0);
TEST_CYCLE()
const cv::Mat imgLeft = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgLeft.empty());
const cv::Mat imgRight = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgRight.empty());
const int preset = 0;
const int ndisp = 256;
if (runOnGpu)
{
bm(img_l, img_r, dst);
cv::gpu::StereoBM_GPU d_bm(preset, ndisp);
cv::gpu::GpuMat d_imgLeft(imgLeft);
cv::gpu::GpuMat d_imgRight(imgRight);
cv::gpu::GpuMat d_dst;
d_bm(d_imgLeft, d_imgRight, d_dst);
TEST_CYCLE()
{
d_bm(d_imgLeft, d_imgRight, d_dst);
}
}
else
{
cv::StereoBM bm(preset, ndisp);
cv::Mat dst;
bm(imgLeft, imgRight, dst);
TEST_CYCLE()
{
bm(imgLeft, imgRight, dst);
}
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, StereoBM, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////
// StereoBeliefPropagation
GPU_PERF_TEST_1(StereoBeliefPropagation, cv::gpu::DeviceInfo)
PERF_TEST_P(ImagePair, Calib3D_StereoBeliefPropagation, Values(make_pair<string, string>("gpu/stereobp/aloe-L.png", "gpu/stereobp/aloe-R.png")))
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat img_l_host = readImage("gpu/stereobp/aloe-L.png");
ASSERT_FALSE(img_l_host.empty());
cv::Mat img_r_host = readImage("gpu/stereobp/aloe-R.png");
ASSERT_FALSE(img_r_host.empty());
cv::gpu::StereoBeliefPropagation bp(64);
cv::gpu::GpuMat img_l(img_l_host);
cv::gpu::GpuMat img_r(img_r_host);
cv::gpu::GpuMat dst;
bp(img_l, img_r, dst);
declare.time(10.0);
TEST_CYCLE()
const cv::Mat imgLeft = readImage(GetParam().first);
ASSERT_FALSE(imgLeft.empty());
const cv::Mat imgRight = readImage(GetParam().second);
ASSERT_FALSE(imgRight.empty());
const int ndisp = 64;
if (runOnGpu)
{
bp(img_l, img_r, dst);
cv::gpu::StereoBeliefPropagation d_bp(ndisp);
cv::gpu::GpuMat d_imgLeft(imgLeft);
cv::gpu::GpuMat d_imgRight(imgRight);
cv::gpu::GpuMat d_dst;
d_bp(d_imgLeft, d_imgRight, d_dst);
TEST_CYCLE()
{
d_bp(d_imgLeft, d_imgRight, d_dst);
}
}
else
{
FAIL();
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, StereoBeliefPropagation, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////
// StereoConstantSpaceBP
GPU_PERF_TEST_1(StereoConstantSpaceBP, cv::gpu::DeviceInfo)
PERF_TEST_P(ImagePair, Calib3D_StereoConstantSpaceBP, Values(make_pair<string, string>("gpu/stereobm/aloe-L.png", "gpu/stereobm/aloe-R.png")))
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat img_l_host = readImage("gpu/stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img_l_host.empty());
cv::Mat img_r_host = readImage("gpu/stereobm/aloe-R.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img_r_host.empty());
cv::gpu::StereoConstantSpaceBP csbp(128);
cv::gpu::GpuMat img_l(img_l_host);
cv::gpu::GpuMat img_r(img_r_host);
cv::gpu::GpuMat dst;
csbp(img_l, img_r, dst);
declare.time(10.0);
TEST_CYCLE()
const cv::Mat imgLeft = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgLeft.empty());
const cv::Mat imgRight = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(imgRight.empty());
const int ndisp = 128;
if (runOnGpu)
{
csbp(img_l, img_r, dst);
cv::gpu::StereoConstantSpaceBP d_csbp(ndisp);
cv::gpu::GpuMat d_imgLeft(imgLeft);
cv::gpu::GpuMat d_imgRight(imgRight);
cv::gpu::GpuMat d_dst;
d_csbp(d_imgLeft, d_imgRight, d_dst);
TEST_CYCLE()
{
d_csbp(d_imgLeft, d_imgRight, d_dst);
}
}
else
{
FAIL();
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, StereoConstantSpaceBP, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////
// DisparityBilateralFilter
GPU_PERF_TEST_1(DisparityBilateralFilter, cv::gpu::DeviceInfo)
PERF_TEST_P(ImagePair, Calib3D_DisparityBilateralFilter, Values(make_pair<string, string>("gpu/stereobm/aloe-L.png", "gpu/stereobm/aloe-disp.png")))
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
const cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
cv::Mat img_host = readImage("gpu/stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img_host.empty());
const cv::Mat disp = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(disp.empty());
cv::Mat disp_host = readImage("gpu/stereobm/aloe-disp.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(disp_host.empty());
const int ndisp = 128;
cv::gpu::DisparityBilateralFilter f(128);
cv::gpu::GpuMat img(img_host);
cv::gpu::GpuMat disp(disp_host);
cv::gpu::GpuMat dst;
f(disp, img, dst);
TEST_CYCLE()
if (runOnGpu)
{
f(disp, img, dst);
cv::gpu::DisparityBilateralFilter d_filter(ndisp);
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_disp(disp);
cv::gpu::GpuMat d_dst;
d_filter(d_disp, d_img, d_dst);
TEST_CYCLE()
{
d_filter(d_disp, d_img, d_dst);
}
}
else
{
FAIL();
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, DisparityBilateralFilter, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////
// TransformPoints
IMPLEMENT_PARAM_CLASS(Count, int)
DEF_PARAM_TEST_1(Count, int);
GPU_PERF_TEST(TransformPoints, cv::gpu::DeviceInfo, Count)
PERF_TEST_P(Count, Calib3D_TransformPoints, Values(5000, 10000, 20000))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const int count = GetParam();
int count = GET_PARAM(1);
cv::Mat src(1, count, CV_32FC3);
fillRandom(src, -100, 100);
cv::Mat src_host(1, count, CV_32FC3);
fill(src_host, -100, 100);
const cv::Mat rvec = cv::Mat::ones(1, 3, CV_32FC1);
const cv::Mat tvec = cv::Mat::ones(1, 3, CV_32FC1);
cv::gpu::GpuMat src(src_host);
cv::Mat rvec = cv::Mat::ones(1, 3, CV_32FC1);
cv::Mat tvec = cv::Mat::ones(1, 3, CV_32FC1);
cv::gpu::GpuMat dst;
cv::gpu::transformPoints(src, rvec, tvec, dst);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::transformPoints(src, rvec, tvec, dst);
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::transformPoints(d_src, rvec, tvec, d_dst);
TEST_CYCLE()
{
cv::gpu::transformPoints(d_src, rvec, tvec, d_dst);
}
}
else
{
FAIL();
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, TransformPoints, testing::Combine(
ALL_DEVICES,
testing::Values<Count>(5000, 10000, 20000)));
//////////////////////////////////////////////////////////////////////
// ProjectPoints
GPU_PERF_TEST(ProjectPoints, cv::gpu::DeviceInfo, Count)
PERF_TEST_P(Count, Calib3D_ProjectPoints, Values(5000, 10000, 20000))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const int count = GetParam();
int count = GET_PARAM(1);
cv::Mat src(1, count, CV_32FC3);
fillRandom(src, -100, 100);
cv::Mat src_host(1, count, CV_32FC3);
fill(src_host, -100, 100);
const cv::Mat rvec = cv::Mat::ones(1, 3, CV_32FC1);
const cv::Mat tvec = cv::Mat::ones(1, 3, CV_32FC1);
const cv::Mat camera_mat = cv::Mat::ones(3, 3, CV_32FC1);
cv::gpu::GpuMat src(src_host);
cv::Mat rvec = cv::Mat::ones(1, 3, CV_32FC1);
cv::Mat tvec = cv::Mat::ones(1, 3, CV_32FC1);
cv::Mat camera_mat = cv::Mat::ones(3, 3, CV_32FC1);
cv::gpu::GpuMat dst;
cv::gpu::projectPoints(src, rvec, tvec, camera_mat, cv::Mat(), dst);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::projectPoints(src, rvec, tvec, camera_mat, cv::Mat(), dst);
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::projectPoints(d_src, rvec, tvec, camera_mat, cv::Mat(), d_dst);
TEST_CYCLE()
{
cv::gpu::projectPoints(d_src, rvec, tvec, camera_mat, cv::Mat(), d_dst);
}
}
else
{
cv::Mat dst;
cv::projectPoints(src, rvec, tvec, camera_mat, cv::noArray(), dst);
TEST_CYCLE()
{
cv::projectPoints(src, rvec, tvec, camera_mat, cv::noArray(), dst);
}
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, ProjectPoints, testing::Combine(
ALL_DEVICES,
testing::Values<Count>(5000, 10000, 20000)));
//////////////////////////////////////////////////////////////////////
// SolvePnPRansac
GPU_PERF_TEST(SolvePnPRansac, cv::gpu::DeviceInfo, Count)
PERF_TEST_P(Count, Calib3D_SolvePnPRansac, Values(5000, 10000, 20000))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
declare.time(10.0);
int count = GET_PARAM(1);
const int count = GetParam();
cv::Mat object(1, count, CV_32FC3);
fill(object, -100, 100);
fillRandom(object, -100, 100);
cv::Mat camera_mat(3, 3, CV_32FC1);
fill(camera_mat, 0.5, 1);
fillRandom(camera_mat, 0.5, 1);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
cv::Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0));
const cv::Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0));
std::vector<cv::Point2f> image_vec;
cv::Mat rvec_gold(1, 3, CV_32FC1);
fill(rvec_gold, 0, 1);
fillRandom(rvec_gold, 0, 1);
cv::Mat tvec_gold(1, 3, CV_32FC1);
fill(tvec_gold, 0, 1);
fillRandom(tvec_gold, 0, 1);
cv::projectPoints(object, rvec_gold, tvec_gold, camera_mat, dist_coef, image_vec);
cv::Mat image(1, count, CV_32FC2, &image_vec[0]);
@@ -221,82 +265,92 @@ GPU_PERF_TEST(SolvePnPRansac, cv::gpu::DeviceInfo, Count)
cv::Mat rvec;
cv::Mat tvec;
cv::gpu::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
declare.time(3.0);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
TEST_CYCLE()
{
cv::gpu::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
}
}
else
{
cv::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
TEST_CYCLE()
{
cv::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
}
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, SolvePnPRansac, testing::Combine(
ALL_DEVICES,
testing::Values<Count>(5000, 10000, 20000)));
//////////////////////////////////////////////////////////////////////
// ReprojectImageTo3D
GPU_PERF_TEST(ReprojectImageTo3D, cv::gpu::DeviceInfo, cv::Size, MatDepth)
PERF_TEST_P(Sz_Depth, Calib3D_ReprojectImageTo3D, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16S)))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const cv::Size size = GET_PARAM(0);
const int depth = GET_PARAM(1);
cv::Size size = GET_PARAM(1);
int depth = GET_PARAM(2);
cv::Mat src_host(size, depth);
fill(src_host, 5.0, 30.0);
cv::Mat src(size, depth);
fillRandom(src, 5.0, 30.0);
cv::Mat Q(4, 4, CV_32FC1);
fill(Q, 0.1, 1.0);
fillRandom(Q, 0.1, 1.0);
cv::gpu::GpuMat src(src_host);
cv::gpu::GpuMat dst;
cv::gpu::reprojectImageTo3D(src, dst, Q);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::reprojectImageTo3D(src, dst, Q);
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::reprojectImageTo3D(d_src, d_dst, Q);
TEST_CYCLE()
{
cv::gpu::reprojectImageTo3D(d_src, d_dst, Q);
}
}
else
{
cv::Mat dst;
cv::reprojectImageTo3D(src, dst, Q);
TEST_CYCLE()
{
cv::reprojectImageTo3D(src, dst, Q);
}
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, ReprojectImageTo3D, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values<MatDepth>(CV_8U, CV_16S)));
//////////////////////////////////////////////////////////////////////
// DrawColorDisp
GPU_PERF_TEST(DrawColorDisp, cv::gpu::DeviceInfo, cv::Size, MatDepth)
PERF_TEST_P(Sz_Depth, Calib3D_DrawColorDisp, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16S)))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const cv::Size size = GET_PARAM(0);
const int type = GET_PARAM(1);
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
cv::Mat src(size, type);
fillRandom(src, 0, 255);
cv::Mat src_host(size, type);
fill(src_host, 0, 255);
cv::gpu::GpuMat src(src_host);
cv::gpu::GpuMat dst;
cv::gpu::drawColorDisp(src, dst, 255);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::drawColorDisp(src, dst, 255);
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::drawColorDisp(d_src, d_dst, 255);
TEST_CYCLE()
{
cv::gpu::drawColorDisp(d_src, d_dst, 255);
}
}
else
{
FAIL();
}
}
INSTANTIATE_TEST_CASE_P(Calib3D, DrawColorDisp, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatDepth(CV_8U), MatDepth(CV_16S))));
#endif
} // namespace

File diff suppressed because it is too large Load Diff

View File

@@ -1,209 +1,278 @@
#include "perf_precomp.hpp"
#ifdef HAVE_CUDA
using namespace std;
using namespace testing;
namespace {
//////////////////////////////////////////////////////////////////////
// SURF
GPU_PERF_TEST_1(SURF, cv::gpu::DeviceInfo)
DEF_PARAM_TEST_1(Image, string);
PERF_TEST_P(Image, Features2D_SURF, Values<string>("gpu/perf/aloe.jpg"))
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
declare.time(50.0);
cv::Mat img_host = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img_host.empty());
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
cv::gpu::SURF_GPU surf;
cv::gpu::GpuMat img(img_host);
cv::gpu::GpuMat keypoints, descriptors;
surf(img, cv::gpu::GpuMat(), keypoints, descriptors);
declare.time(2.0);
TEST_CYCLE()
if (runOnGpu)
{
surf(img, cv::gpu::GpuMat(), keypoints, descriptors);
cv::gpu::SURF_GPU d_surf;
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_keypoints, d_descriptors;
d_surf(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
TEST_CYCLE()
{
d_surf(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
}
}
else
{
cv::SURF surf;
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
surf(img, cv::noArray(), keypoints, descriptors);
TEST_CYCLE()
{
keypoints.clear();
surf(img, cv::noArray(), keypoints, descriptors);
}
}
}
INSTANTIATE_TEST_CASE_P(Features2D, SURF, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////
// FAST
GPU_PERF_TEST_1(FAST, cv::gpu::DeviceInfo)
PERF_TEST_P(Image, Features2D_FAST, Values<string>("gpu/perf/aloe.jpg"))
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
cv::Mat img_host = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img_host.empty());
cv::gpu::FAST_GPU fast(20);
cv::gpu::GpuMat img(img_host);
cv::gpu::GpuMat keypoints;
fast(img, cv::gpu::GpuMat(), keypoints);
TEST_CYCLE()
if (runOnGpu)
{
fast(img, cv::gpu::GpuMat(), keypoints);
cv::gpu::FAST_GPU d_fast(20);
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_keypoints;
d_fast(d_img, cv::gpu::GpuMat(), d_keypoints);
TEST_CYCLE()
{
d_fast(d_img, cv::gpu::GpuMat(), d_keypoints);
}
}
else
{
std::vector<cv::KeyPoint> keypoints;
cv::FAST(img, keypoints, 20);
TEST_CYCLE()
{
keypoints.clear();
cv::FAST(img, keypoints, 20);
}
}
}
INSTANTIATE_TEST_CASE_P(Features2D, FAST, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////
// ORB
GPU_PERF_TEST_1(ORB, cv::gpu::DeviceInfo)
PERF_TEST_P(Image, Features2D_ORB, Values<string>("gpu/perf/aloe.jpg"))
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
cv::Mat img_host = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img_host.empty());
cv::gpu::ORB_GPU orb(4000);
cv::gpu::GpuMat img(img_host);
cv::gpu::GpuMat keypoints, descriptors;
TEST_CYCLE()
if (runOnGpu)
{
orb(img, cv::gpu::GpuMat(), keypoints, descriptors);
cv::gpu::ORB_GPU d_orb(4000);
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_keypoints, d_descriptors;
d_orb(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
TEST_CYCLE()
{
d_orb(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
}
}
else
{
cv::ORB orb(4000);
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
orb(img, cv::noArray(), keypoints, descriptors);
TEST_CYCLE()
{
keypoints.clear();
orb(img, cv::noArray(), keypoints, descriptors);
}
}
}
INSTANTIATE_TEST_CASE_P(Features2D, ORB, ALL_DEVICES);
//////////////////////////////////////////////////////////////////////
// BFMatch
DEF_PARAM_TEST(DescSize_Norm, int, NormType);
PERF_TEST_P(DescSize_Norm, Features2D_BFMatch, Combine(Values(64, 128, 256), Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))))
{
declare.time(20.0);
int desc_size = GET_PARAM(0);
int normType = GET_PARAM(1);
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
cv::Mat query(3000, desc_size, type);
fillRandom(query);
cv::Mat train(3000, desc_size, type);
fillRandom(train);
if (runOnGpu)
{
cv::gpu::BFMatcher_GPU d_matcher(normType);
cv::gpu::GpuMat d_query(query);
cv::gpu::GpuMat d_train(train);
cv::gpu::GpuMat d_trainIdx, d_distance;
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
TEST_CYCLE()
{
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
}
}
else
{
cv::BFMatcher matcher(normType);
std::vector<cv::DMatch> matches;
matcher.match(query, train, matches);
TEST_CYCLE()
{
matcher.match(query, train, matches);
}
}
}
//////////////////////////////////////////////////////////////////////
// BruteForceMatcher_match
// BFKnnMatch
IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
DEF_PARAM_TEST(DescSize_K_Norm, int, int, NormType);
GPU_PERF_TEST(BruteForceMatcher_match, cv::gpu::DeviceInfo, DescriptorSize, NormType)
PERF_TEST_P(DescSize_K_Norm, Features2D_BFKnnMatch, Combine(
Values(64, 128, 256),
Values(2, 3),
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
declare.time(30.0);
int desc_size = GET_PARAM(1);
int desc_size = GET_PARAM(0);
int k = GET_PARAM(1);
int normType = GET_PARAM(2);
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
cv::Mat query_host(3000, desc_size, type);
fill(query_host, 0.0, 10.0);
cv::Mat query(3000, desc_size, type);
fillRandom(query);
cv::Mat train_host(3000, desc_size, type);
fill(train_host, 0.0, 10.0);
cv::Mat train(3000, desc_size, type);
fillRandom(train);
cv::gpu::BFMatcher_GPU matcher(normType);
cv::gpu::GpuMat query(query_host);
cv::gpu::GpuMat train(train_host);
cv::gpu::GpuMat trainIdx, distance;
matcher.matchSingle(query, train, trainIdx, distance);
declare.time(3.0);
TEST_CYCLE()
if (runOnGpu)
{
matcher.matchSingle(query, train, trainIdx, distance);
cv::gpu::BFMatcher_GPU d_matcher(normType);
cv::gpu::GpuMat d_query(query);
cv::gpu::GpuMat d_train(train);
cv::gpu::GpuMat d_trainIdx, d_distance, d_allDist;
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, k);
TEST_CYCLE()
{
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, k);
}
}
else
{
cv::BFMatcher matcher(normType);
std::vector< std::vector<cv::DMatch> > matches;
matcher.knnMatch(query, train, matches, k);
TEST_CYCLE()
{
matcher.knnMatch(query, train, matches, k);
}
}
}
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher_match, testing::Combine(
ALL_DEVICES,
testing::Values(DescriptorSize(64), DescriptorSize(128), DescriptorSize(256)),
testing::Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))));
//////////////////////////////////////////////////////////////////////
// BruteForceMatcher_knnMatch
// BFRadiusMatch
IMPLEMENT_PARAM_CLASS(K, int)
GPU_PERF_TEST(BruteForceMatcher_knnMatch, cv::gpu::DeviceInfo, DescriptorSize, K, NormType)
PERF_TEST_P(DescSize_Norm, Features2D_BFRadiusMatch, Combine(Values(64, 128, 256), Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
declare.time(30.0);
int desc_size = GET_PARAM(1);
int k = GET_PARAM(2);
int normType = GET_PARAM(3);
int desc_size = GET_PARAM(0);
int normType = GET_PARAM(1);
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
cv::Mat query_host(3000, desc_size, type);
fill(query_host, 0.0, 10.0);
cv::Mat query(3000, desc_size, type);
fillRandom(query, 0.0, 1.0);
cv::Mat train_host(3000, desc_size, type);
fill(train_host, 0.0, 10.0);
cv::Mat train(3000, desc_size, type);
fillRandom(train, 0.0, 1.0);
cv::gpu::BFMatcher_GPU matcher(normType);
cv::gpu::GpuMat query(query_host);
cv::gpu::GpuMat train(train_host);
cv::gpu::GpuMat trainIdx, distance, allDist;
matcher.knnMatchSingle(query, train, trainIdx, distance, allDist, k);
declare.time(3.0);
TEST_CYCLE()
if (runOnGpu)
{
matcher.knnMatchSingle(query, train, trainIdx, distance, allDist, k);
cv::gpu::BFMatcher_GPU d_matcher(normType);
cv::gpu::GpuMat d_query(query);
cv::gpu::GpuMat d_train(train);
cv::gpu::GpuMat d_trainIdx, d_nMatches, d_distance;
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, 2.0);
TEST_CYCLE()
{
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, 2.0);
}
}
else
{
cv::BFMatcher matcher(normType);
std::vector< std::vector<cv::DMatch> > matches;
matcher.radiusMatch(query, train, matches, 2.0);
TEST_CYCLE()
{
matcher.radiusMatch(query, train, matches, 2.0);
}
}
}
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher_knnMatch, testing::Combine(
ALL_DEVICES,
testing::Values(DescriptorSize(64), DescriptorSize(128), DescriptorSize(256)),
testing::Values(K(2), K(3)),
testing::Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))));
//////////////////////////////////////////////////////////////////////
// BruteForceMatcher_radiusMatch
GPU_PERF_TEST(BruteForceMatcher_radiusMatch, cv::gpu::DeviceInfo, DescriptorSize, NormType)
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
int desc_size = GET_PARAM(1);
int normType = GET_PARAM(2);
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
cv::Mat query_host(3000, desc_size, type);
fill(query_host, 0.0, 1.0);
cv::Mat train_host(3000, desc_size, type);
fill(train_host, 0.0, 1.0);
cv::gpu::BFMatcher_GPU matcher(normType);
cv::gpu::GpuMat query(query_host);
cv::gpu::GpuMat train(train_host);
cv::gpu::GpuMat trainIdx, nMatches, distance;
matcher.radiusMatchSingle(query, train, trainIdx, distance, nMatches, 2.0);
declare.time(3.0);
TEST_CYCLE()
{
matcher.radiusMatchSingle(query, train, trainIdx, distance, nMatches, 2.0);
}
}
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher_radiusMatch, testing::Combine(
ALL_DEVICES,
testing::Values(DescriptorSize(64), DescriptorSize(128), DescriptorSize(256)),
testing::Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))));
#endif
} // namespace

View File

@@ -1,308 +1,379 @@
#include "perf_precomp.hpp"
#ifdef HAVE_CUDA
using namespace std;
using namespace testing;
namespace {
//////////////////////////////////////////////////////////////////////
// Blur
IMPLEMENT_PARAM_CLASS(KernelSize, int)
DEF_PARAM_TEST(Sz_Type_KernelSz, cv::Size, MatType, int);
GPU_PERF_TEST(Blur, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize)
PERF_TEST_P(Sz_Type_KernelSz, Filters_Blur, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4), Values(3, 5, 7)))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
declare.time(20.0);
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int ksize = GET_PARAM(3);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
cv::Mat src_host(size, type);
fill(src_host, 0.0, 255.0);
cv::Mat src(size, type);
fillRandom(src);
cv::gpu::GpuMat src(src_host);
cv::gpu::GpuMat dst;
cv::gpu::blur(src, dst, cv::Size(ksize, ksize));
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::blur(src, dst, cv::Size(ksize, ksize));
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::blur(d_src, d_dst, cv::Size(ksize, ksize));
TEST_CYCLE()
{
cv::gpu::blur(d_src, d_dst, cv::Size(ksize, ksize));
}
}
else
{
cv::Mat dst;
cv::blur(src, dst, cv::Size(ksize, ksize));
TEST_CYCLE()
{
cv::blur(src, dst, cv::Size(ksize, ksize));
}
}
}
INSTANTIATE_TEST_CASE_P(Filters, Blur, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7))));
//////////////////////////////////////////////////////////////////////
// Sobel
GPU_PERF_TEST(Sobel, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize)
PERF_TEST_P(Sz_Type_KernelSz, Filters_Sobel, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1), Values(3, 5, 7, 9, 11, 13, 15)))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
declare.time(20.0);
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int ksize = GET_PARAM(3);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
cv::Mat src_host(size, type);
fill(src_host, 0.0, 255.0);
cv::Mat src(size, type);
fillRandom(src);
cv::gpu::GpuMat src(src_host);
cv::gpu::GpuMat dst;
cv::gpu::GpuMat buf;
cv::gpu::Sobel(src, dst, -1, 1, 1, buf, ksize);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::Sobel(src, dst, -1, 1, 1, buf, ksize);
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
cv::gpu::Sobel(d_src, d_dst, -1, 1, 1, d_buf, ksize);
TEST_CYCLE()
{
cv::gpu::Sobel(d_src, d_dst, -1, 1, 1, d_buf, ksize);
}
}
else
{
cv::Mat dst;
cv::Sobel(src, dst, -1, 1, 1, ksize);
TEST_CYCLE()
{
cv::Sobel(src, dst, -1, 1, 1, ksize);
}
}
}
INSTANTIATE_TEST_CASE_P(Filters, Sobel, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1)),
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7), KernelSize(9), KernelSize(11), KernelSize(13), KernelSize(15))));
//////////////////////////////////////////////////////////////////////
// Scharr
GPU_PERF_TEST(Scharr, cv::gpu::DeviceInfo, cv::Size, MatType)
PERF_TEST_P(Sz_Type, Filters_Scharr, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1)))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
declare.time(20.0);
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
cv::Mat src_host(size, type);
fill(src_host, 0.0, 255.0);
cv::Mat src(size, type);
fillRandom(src);
cv::gpu::GpuMat src(src_host);
cv::gpu::GpuMat dst;
cv::gpu::GpuMat buf;
cv::gpu::Scharr(src, dst, -1, 1, 0, buf);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::Scharr(src, dst, -1, 1, 0, buf);
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
cv::gpu::Scharr(d_src, d_dst, -1, 1, 0, d_buf);
TEST_CYCLE()
{
cv::gpu::Scharr(d_src, d_dst, -1, 1, 0, d_buf);
}
}
else
{
cv::Mat dst;
cv::Scharr(src, dst, -1, 1, 0);
TEST_CYCLE()
{
cv::Scharr(src, dst, -1, 1, 0);
}
}
}
INSTANTIATE_TEST_CASE_P(Filters, Scharr, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1))));
//////////////////////////////////////////////////////////////////////
// GaussianBlur
GPU_PERF_TEST(GaussianBlur, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize)
PERF_TEST_P(Sz_Type_KernelSz, Filters_GaussianBlur, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1), Values(3, 5, 7, 9, 11, 13, 15)))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
declare.time(20.0);
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int ksize = GET_PARAM(3);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
cv::Mat src_host(size, type);
fill(src_host, 0.0, 255.0);
cv::Mat src(size, type);
fillRandom(src);
cv::gpu::GpuMat src(src_host);
cv::gpu::GpuMat dst;
cv::gpu::GpuMat buf;
cv::gpu::GaussianBlur(src, dst, cv::Size(ksize, ksize), buf, 0.5);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::GaussianBlur(src, dst, cv::Size(ksize, ksize), buf, 0.5);
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
cv::gpu::GaussianBlur(d_src, d_dst, cv::Size(ksize, ksize), d_buf, 0.5);
TEST_CYCLE()
{
cv::gpu::GaussianBlur(d_src, d_dst, cv::Size(ksize, ksize), d_buf, 0.5);
}
}
else
{
cv::Mat dst;
cv::GaussianBlur(src, dst, cv::Size(ksize, ksize), 0.5);
TEST_CYCLE()
{
cv::GaussianBlur(src, dst, cv::Size(ksize, ksize), 0.5);
}
}
}
INSTANTIATE_TEST_CASE_P(Filters, GaussianBlur, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1)),
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7), KernelSize(9), KernelSize(11), KernelSize(13), KernelSize(15))));
//////////////////////////////////////////////////////////////////////
// Laplacian
GPU_PERF_TEST(Laplacian, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize)
PERF_TEST_P(Sz_Type_KernelSz, Filters_Laplacian, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), Values(1, 3)))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
declare.time(20.0);
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int ksize = GET_PARAM(3);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
cv::Mat src_host(size, type);
fill(src_host, 0.0, 255.0);
cv::Mat src(size, type);
fillRandom(src);
cv::gpu::GpuMat src(src_host);
cv::gpu::GpuMat dst;
cv::gpu::Laplacian(src, dst, -1, ksize);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::Laplacian(src, dst, -1, ksize);
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::Laplacian(d_src, d_dst, -1, ksize);
TEST_CYCLE()
{
cv::gpu::Laplacian(d_src, d_dst, -1, ksize);
}
}
else
{
cv::Mat dst;
cv::Laplacian(src, dst, -1, ksize);
TEST_CYCLE()
{
cv::Laplacian(src, dst, -1, ksize);
}
}
}
INSTANTIATE_TEST_CASE_P(Filters, Laplacian, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC4)),
testing::Values(KernelSize(1), KernelSize(3))));
//////////////////////////////////////////////////////////////////////
// Erode
GPU_PERF_TEST(Erode, cv::gpu::DeviceInfo, cv::Size, MatType)
PERF_TEST_P(Sz_Type, Filters_Erode, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4)))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
declare.time(20.0);
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
cv::Mat src_host(size, type);
fill(src_host, 0.0, 255.0);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
cv::gpu::GpuMat src(src_host);
cv::gpu::GpuMat dst;
cv::gpu::GpuMat buf;
cv::gpu::erode(src, dst, ker, buf);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::erode(src, dst, ker, buf);
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
cv::gpu::erode(d_src, d_dst, ker, d_buf);
TEST_CYCLE()
{
cv::gpu::erode(d_src, d_dst, ker, d_buf);
}
}
else
{
cv::Mat dst;
cv::erode(src, dst, ker);
TEST_CYCLE()
{
cv::erode(src, dst, ker);
}
}
}
INSTANTIATE_TEST_CASE_P(Filters, Erode, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4))));
//////////////////////////////////////////////////////////////////////
// Dilate
GPU_PERF_TEST(Dilate, cv::gpu::DeviceInfo, cv::Size, MatType)
PERF_TEST_P(Sz_Type, Filters_Dilate, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4)))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
declare.time(20.0);
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
cv::Mat src_host(size, type);
fill(src_host, 0.0, 255.0);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
cv::gpu::GpuMat src(src_host);
cv::gpu::GpuMat dst;
cv::gpu::GpuMat buf;
cv::gpu::dilate(src, dst, ker, buf);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::dilate(src, dst, ker, buf);
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf;
cv::gpu::dilate(d_src, d_dst, ker, d_buf);
TEST_CYCLE()
{
cv::gpu::dilate(d_src, d_dst, ker, d_buf);
}
}
else
{
cv::Mat dst;
cv::dilate(src, dst, ker);
TEST_CYCLE()
{
cv::dilate(src, dst, ker);
}
}
}
INSTANTIATE_TEST_CASE_P(Filters, Dilate, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4))));
//////////////////////////////////////////////////////////////////////
// MorphologyEx
CV_ENUM(MorphOp, cv::MORPH_OPEN, cv::MORPH_CLOSE, cv::MORPH_GRADIENT, cv::MORPH_TOPHAT, cv::MORPH_BLACKHAT)
#define ALL_MORPH_OPS testing::Values(MorphOp(cv::MORPH_OPEN), MorphOp(cv::MORPH_CLOSE), MorphOp(cv::MORPH_GRADIENT), MorphOp(cv::MORPH_TOPHAT), MorphOp(cv::MORPH_BLACKHAT))
#define ALL_MORPH_OPS ValuesIn(MorphOp::all())
GPU_PERF_TEST(MorphologyEx, cv::gpu::DeviceInfo, cv::Size, MatType, MorphOp)
DEF_PARAM_TEST(Sz_Type_Op, cv::Size, MatType, MorphOp);
PERF_TEST_P(Sz_Type_Op, Filters_MorphologyEx, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4), ALL_MORPH_OPS))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
declare.time(20.0);
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int morphOp = GET_PARAM(3);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int morphOp = GET_PARAM(2);
cv::Mat src_host(size, type);
fill(src_host, 0.0, 255.0);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
cv::gpu::GpuMat src(src_host);
cv::gpu::GpuMat dst;
cv::gpu::GpuMat buf1;
cv::gpu::GpuMat buf2;
cv::gpu::morphologyEx(src, dst, morphOp, ker, buf1, buf2);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::morphologyEx(src, dst, morphOp, ker, buf1, buf2);
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::GpuMat d_buf1;
cv::gpu::GpuMat d_buf2;
cv::gpu::morphologyEx(d_src, d_dst, morphOp, ker, d_buf1, d_buf2);
TEST_CYCLE()
{
cv::gpu::morphologyEx(d_src, d_dst, morphOp, ker, d_buf1, d_buf2);
}
}
else
{
cv::Mat dst;
cv::morphologyEx(src, dst, morphOp, ker);
TEST_CYCLE()
{
cv::morphologyEx(src, dst, morphOp, ker);
}
}
}
INSTANTIATE_TEST_CASE_P(Filters, MorphologyEx, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
ALL_MORPH_OPS));
//////////////////////////////////////////////////////////////////////
// Filter2D
GPU_PERF_TEST(Filter2D, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize)
PERF_TEST_P(Sz_Type_KernelSz, Filters_Filter2D, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), Values(3, 5, 7, 9, 11, 13, 15)))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
declare.time(20.0);
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int ksize = GET_PARAM(3);
cv::Size size = GET_PARAM(0);
int type = GET_PARAM(1);
int ksize = GET_PARAM(2);
cv::Mat src_host(size, type);
fill(src_host, 0.0, 255.0);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat kernel(ksize, ksize, CV_32FC1);
fill(kernel, 0.0, 1.0);
fillRandom(kernel, 0.0, 1.0);
cv::gpu::GpuMat src(src_host);
cv::gpu::GpuMat dst;
cv::gpu::filter2D(src, dst, -1, kernel);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::filter2D(src, dst, -1, kernel);
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
cv::gpu::filter2D(d_src, d_dst, -1, kernel);
TEST_CYCLE()
{
cv::gpu::filter2D(d_src, d_dst, -1, kernel);
}
}
else
{
cv::Mat dst;
cv::filter2D(src, dst, -1, kernel);
TEST_CYCLE()
{
cv::filter2D(src, dst, -1, kernel);
}
}
}
INSTANTIATE_TEST_CASE_P(Filters, Filter2D, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC4)),
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7), KernelSize(9), KernelSize(11), KernelSize(13), KernelSize(15))));
#endif
} // namespace

File diff suppressed because it is too large Load Diff

View File

@@ -1,75 +1,136 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//M*/
#include "perf_precomp.hpp"
#ifdef HAVE_CUDA
using namespace std;
using namespace testing;
GPU_PERF_TEST(ConnectedComponents, cv::gpu::DeviceInfo, cv::Size)
namespace {
DEF_PARAM_TEST_1(Image, string);
struct GreedyLabeling
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
struct dot
{
int x;
int y;
cv::Mat image = readImage("gpu/labeling/aloe-disp.png", cv::IMREAD_GRAYSCALE);
static dot make(int i, int j)
{
dot d; d.x = i; d.y = j;
return d;
}
};
// cv::threshold(image, image, 150, 255, CV_THRESH_BINARY);
struct InInterval
{
InInterval(const int& _lo, const int& _hi) : lo(-_lo), hi(_hi) {};
const int lo, hi;
cv::gpu::GpuMat mask;
mask.create(image.rows, image.cols, CV_8UC1);
bool operator() (const unsigned char a, const unsigned char b) const
{
int d = a - b;
return lo <= d && d <= hi;
}
};
cv::gpu::GpuMat components;
components.create(image.rows, image.cols, CV_32SC1);
GreedyLabeling(cv::Mat img)
: image(img), _labels(image.size(), CV_32SC1, cv::Scalar::all(-1)) {stack = new dot[image.cols * image.rows];}
cv::gpu::connectivityMask(cv::gpu::GpuMat(image), mask, cv::Scalar::all(0), cv::Scalar::all(2));
~GreedyLabeling(){delete[] stack;}
ASSERT_NO_THROW(cv::gpu::labelComponents(mask, components));
void operator() (cv::Mat labels) const
{
labels.setTo(cv::Scalar::all(-1));
InInterval inInt(0, 2);
int cc = -1;
int* dist_labels = (int*)labels.data;
int pitch = labels.step1();
unsigned char* source = (unsigned char*)image.data;
int width = image.cols;
int height = image.rows;
for (int j = 0; j < image.rows; ++j)
for (int i = 0; i < image.cols; ++i)
{
if (dist_labels[j * pitch + i] != -1) continue;
dot* top = stack;
dot p = dot::make(i, j);
cc++;
dist_labels[j * pitch + i] = cc;
while (top >= stack)
{
int* dl = &dist_labels[p.y * pitch + p.x];
unsigned char* sp = &source[p.y * image.step1() + p.x];
dl[0] = cc;
//right
if( p.x < (width - 1) && dl[ +1] == -1 && inInt(sp[0], sp[+1]))
*top++ = dot::make(p.x + 1, p.y);
//left
if( p.x > 0 && dl[-1] == -1 && inInt(sp[0], sp[-1]))
*top++ = dot::make(p.x - 1, p.y);
//bottom
if( p.y < (height - 1) && dl[+pitch] == -1 && inInt(sp[0], sp[+image.step1()]))
*top++ = dot::make(p.x, p.y + 1);
//top
if( p.y > 0 && dl[-pitch] == -1 && inInt(sp[0], sp[-image.step1()]))
*top++ = dot::make(p.x, p.y - 1);
p = *--top;
}
}
}
cv::Mat image;
cv::Mat _labels;
dot* stack;
};
PERF_TEST_P(Image, Labeling_ConnectedComponents, Values<string>("gpu/labeling/aloe-disp.png"))
{
declare.time(1.0);
TEST_CYCLE()
cv::Mat image = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
if (runOnGpu)
{
cv::gpu::labelComponents(mask, components);
cv::gpu::GpuMat mask;
mask.create(image.rows, image.cols, CV_8UC1);
cv::gpu::GpuMat components;
components.create(image.rows, image.cols, CV_32SC1);
cv::gpu::connectivityMask(cv::gpu::GpuMat(image), mask, cv::Scalar::all(0), cv::Scalar::all(2));
ASSERT_NO_THROW(cv::gpu::labelComponents(mask, components));
TEST_CYCLE()
{
cv::gpu::labelComponents(mask, components);
}
}
else
{
GreedyLabeling host(image);
host(host._labels);
declare.time(1.0);
TEST_CYCLE()
{
host(host._labels);
}
}
}
INSTANTIATE_TEST_CASE_P(Labeling, ConnectedComponents, testing::Combine(ALL_DEVICES, testing::Values(cv::Size(261, 262))));
#endif
} // namespace

View File

@@ -1,20 +0,0 @@
#include "perf_precomp.hpp"
#ifdef HAVE_CUDA
int main(int argc, char **argv)
{
testing::InitGoogleTest(&argc, argv);
perf::TestBase::Init(argc, argv);
return RUN_ALL_TESTS();
}
#else
int main()
{
printf("OpenCV was built without CUDA support\n");
return 0;
}
#endif

View File

@@ -1,141 +1,169 @@
#include "perf_precomp.hpp"
#ifdef HAVE_CUDA
using namespace std;
using namespace testing;
namespace {
//////////////////////////////////////////////////////////////////////
// SetTo
GPU_PERF_TEST(SetTo, cv::gpu::DeviceInfo, cv::Size, MatType)
PERF_TEST_P(Sz_Depth_Cn, MatOp_SetTo, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), Values(1, 3, 4)))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
int channels = GET_PARAM(2);
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int type = CV_MAKE_TYPE(depth, channels);
cv::gpu::GpuMat src(size, type);
cv::Scalar val(1, 2, 3, 4);
src.setTo(val);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::GpuMat d_src(size, type);
d_src.setTo(val);
TEST_CYCLE()
{
d_src.setTo(val);
}
}
else
{
cv::Mat src(size, type);
src.setTo(val);
TEST_CYCLE()
{
src.setTo(val);
}
}
}
INSTANTIATE_TEST_CASE_P(MatOp, SetTo, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4),
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4),
MatType(CV_64FC1), MatType(CV_64FC3), MatType(CV_64FC4))));
//////////////////////////////////////////////////////////////////////
// SetToMasked
GPU_PERF_TEST(SetToMasked, cv::gpu::DeviceInfo, cv::Size, MatType)
PERF_TEST_P(Sz_Depth_Cn, MatOp_SetToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), Values(1, 3, 4)))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
int channels = GET_PARAM(2);
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int type = CV_MAKE_TYPE(depth, channels);
cv::Mat src_host(size, type);
fill(src_host, 0, 255);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat mask_host(size, CV_8UC1);
fill(mask_host, 0, 2);
cv::Mat mask(size, CV_8UC1);
fillRandom(mask, 0, 2);
cv::gpu::GpuMat src(src_host);
cv::Scalar val(1, 2, 3, 4);
cv::gpu::GpuMat mask(mask_host);
src.setTo(val, mask);
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_mask(mask);
TEST_CYCLE()
d_src.setTo(val, d_mask);
TEST_CYCLE()
{
d_src.setTo(val, d_mask);
}
}
else
{
src.setTo(val, mask);
TEST_CYCLE()
{
src.setTo(val, mask);
}
}
}
INSTANTIATE_TEST_CASE_P(MatOp, SetToMasked, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4),
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4),
MatType(CV_64FC1), MatType(CV_64FC3), MatType(CV_64FC4))));
//////////////////////////////////////////////////////////////////////
// CopyToMasked
GPU_PERF_TEST(CopyToMasked, cv::gpu::DeviceInfo, cv::Size, MatType)
PERF_TEST_P(Sz_Depth_Cn, MatOp_CopyToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), Values(1, 3, 4)))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
cv::Size size = GET_PARAM(0);
int depth = GET_PARAM(1);
int channels = GET_PARAM(2);
cv::Size size = GET_PARAM(1);
int type = GET_PARAM(2);
int type = CV_MAKE_TYPE(depth, channels);
cv::Mat src_host(size, type);
fill(src_host, 0, 255);
cv::Mat src(size, type);
fillRandom(src);
cv::Mat mask_host(size, CV_8UC1);
fill(mask_host, 0, 2);
cv::Mat mask(size, CV_8UC1);
fillRandom(mask, 0, 2);
cv::gpu::GpuMat src(src_host);
cv::gpu::GpuMat mask(mask_host);
cv::gpu::GpuMat dst;
src.copyTo(dst, mask);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_mask(mask);
cv::gpu::GpuMat d_dst;
d_src.copyTo(d_dst, d_mask);
TEST_CYCLE()
{
d_src.copyTo(d_dst, d_mask);
}
}
else
{
cv::Mat dst;
src.copyTo(dst, mask);
TEST_CYCLE()
{
src.copyTo(dst, mask);
}
}
}
INSTANTIATE_TEST_CASE_P(MatOp, CopyToMasked, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4),
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4),
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4),
MatType(CV_64FC1), MatType(CV_64FC3), MatType(CV_64FC4))));
//////////////////////////////////////////////////////////////////////
// ConvertTo
GPU_PERF_TEST(ConvertTo, cv::gpu::DeviceInfo, cv::Size, MatDepth, MatDepth)
DEF_PARAM_TEST(Sz_2Depth, cv::Size, MatDepth, MatDepth);
PERF_TEST_P(Sz_2Depth, MatOp_ConvertTo, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), Values(CV_8U, CV_16U, CV_32F, CV_64F)))
{
cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
cv::Size size = GET_PARAM(0);
int depth1 = GET_PARAM(1);
int depth2 = GET_PARAM(2);
cv::Size size = GET_PARAM(1);
int depth1 = GET_PARAM(2);
int depth2 = GET_PARAM(3);
cv::Mat src(size, depth1);
fillRandom(src);
cv::Mat src_host(size, depth1);
fill(src_host, 0, 255);
cv::gpu::GpuMat src(src_host);
cv::gpu::GpuMat dst;
src.convertTo(dst, depth2, 0.5, 1.0);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_dst;
d_src.convertTo(d_dst, depth2, 0.5, 1.0);
TEST_CYCLE()
{
d_src.convertTo(d_dst, depth2, 0.5, 1.0);
}
}
else
{
cv::Mat dst;
src.convertTo(dst, depth2, 0.5, 1.0);
TEST_CYCLE()
{
src.convertTo(dst, depth2, 0.5, 1.0);
}
}
}
INSTANTIATE_TEST_CASE_P(MatOp, ConvertTo, testing::Combine(
ALL_DEVICES,
GPU_TYPICAL_MAT_SIZES,
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32F), MatDepth(CV_64F)),
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32F), MatDepth(CV_64F))));
#endif
} // namespace

View File

@@ -1,85 +1,131 @@
#include "perf_precomp.hpp"
#ifdef HAVE_CUDA
using namespace std;
using namespace testing;
namespace {
///////////////////////////////////////////////////////////////
// HOG
GPU_PERF_TEST_1(HOG, cv::gpu::DeviceInfo)
DEF_PARAM_TEST_1(Image, string);
PERF_TEST_P(Image, ObjDetect_HOG, Values<string>("gpu/hog/road.png"))
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
cv::Mat img_host = readImage("gpu/hog/road.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img_host.empty());
cv::gpu::GpuMat img(img_host);
std::vector<cv::Rect> found_locations;
cv::gpu::HOGDescriptor hog;
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
hog.detectMultiScale(img, found_locations);
TEST_CYCLE()
if (runOnGpu)
{
cv::gpu::GpuMat d_img(img);
cv::gpu::HOGDescriptor d_hog;
d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
d_hog.detectMultiScale(d_img, found_locations);
TEST_CYCLE()
{
d_hog.detectMultiScale(d_img, found_locations);
}
}
else
{
cv::HOGDescriptor hog;
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
hog.detectMultiScale(img, found_locations);
TEST_CYCLE()
{
hog.detectMultiScale(img, found_locations);
}
}
}
INSTANTIATE_TEST_CASE_P(ObjDetect, HOG, ALL_DEVICES);
///////////////////////////////////////////////////////////////
// HaarClassifier
GPU_PERF_TEST_1(HaarClassifier, cv::gpu::DeviceInfo)
typedef pair<string, string> pair_string;
DEF_PARAM_TEST_1(ImageAndCascade, pair_string);
PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier,
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/perf/haarcascade_frontalface_alt.xml")))
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
cv::Mat img_host = readImage("gpu/haarcascade/group_1_640x480_VGA.pgm", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img_host.empty());
cv::gpu::CascadeClassifier_GPU cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml")));
cv::gpu::GpuMat img(img_host);
cv::gpu::GpuMat objects_buffer;
cascade.detectMultiScale(img, objects_buffer);
TEST_CYCLE()
if (runOnGpu)
{
cascade.detectMultiScale(img, objects_buffer);
cv::gpu::CascadeClassifier_GPU d_cascade;
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_objects_buffer;
d_cascade.detectMultiScale(d_img, d_objects_buffer);
TEST_CYCLE()
{
d_cascade.detectMultiScale(d_img, d_objects_buffer);
}
}
else
{
cv::CascadeClassifier cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml")));
std::vector<cv::Rect> rects;
cascade.detectMultiScale(img, rects);
TEST_CYCLE()
{
cascade.detectMultiScale(img, rects);
}
}
}
INSTANTIATE_TEST_CASE_P(ObjDetect, HaarClassifier, ALL_DEVICES);
///////////////////////////////////////////////////////////////
// LBP cascade
//===================== LBP cascade ==========================//
GPU_PERF_TEST_1(LBPClassifier, cv::gpu::DeviceInfo)
PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier,
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/lbpcascade/lbpcascade_frontalface.xml")))
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
cv::Mat img_host = readImage("gpu/haarcascade/group_1_640x480_VGA.pgm", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img_host.empty());
cv::gpu::GpuMat img(img_host);
cv::gpu::GpuMat gpu_rects;
cv::gpu::CascadeClassifier_GPU cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml")));
cascade.detectMultiScale(img, gpu_rects);
TEST_CYCLE()
if (runOnGpu)
{
cascade.detectMultiScale(img, gpu_rects);
cv::gpu::CascadeClassifier_GPU d_cascade;
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_gpu_rects;
d_cascade.detectMultiScale(d_img, d_gpu_rects);
TEST_CYCLE()
{
d_cascade.detectMultiScale(d_img, d_gpu_rects);
}
}
else
{
cv::CascadeClassifier cascade;
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml")));
std::vector<cv::Rect> rects;
cascade.detectMultiScale(img, rects);
TEST_CYCLE()
{
cascade.detectMultiScale(img, rects);
}
}
}
INSTANTIATE_TEST_CASE_P(ObjDetect, LBPClassifier, ALL_DEVICES);
#endif
} // namespace

View File

@@ -11,6 +11,10 @@
#include "cvconfig.h"
#ifdef HAVE_CUDA
#include <cuda_runtime.h>
#endif
#include "opencv2/ts/ts.hpp"
#include "opencv2/ts/ts_perf.hpp"
@@ -18,8 +22,12 @@
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/gpu/gpu.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/video/video.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include "perf_utility.hpp"
#include "utility.hpp"
#ifdef GTEST_CREATE_SHARED_LIBRARY
#error no modules except ts should have GTEST_CREATE_SHARED_LIBRARY defined

View File

@@ -1,77 +0,0 @@
#ifndef __OPENCV_PERF_GPU_UTILITY_HPP__
#define __OPENCV_PERF_GPU_UTILITY_HPP__
void fill(cv::Mat& m, double a, double b);
using perf::MatType;
using perf::MatDepth;
CV_ENUM(BorderMode, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP)
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::INTER_AREA)
CV_ENUM(NormType, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_HAMMING)
struct CvtColorInfo
{
int scn;
int dcn;
int code;
explicit CvtColorInfo(int scn_=0, int dcn_=0, int code_=0) : scn(scn_), dcn(dcn_), code(code_) {}
};
void PrintTo(const CvtColorInfo& info, std::ostream* os);
#define IMPLEMENT_PARAM_CLASS(name, type) \
class name \
{ \
public: \
name ( type arg = type ()) : val_(arg) {} \
operator type () const {return val_;} \
private: \
type val_; \
}; \
inline void PrintTo( name param, std::ostream* os) \
{ \
*os << #name << " = " << testing::PrintToString(static_cast< type >(param)); \
}
IMPLEMENT_PARAM_CLASS(Channels, int)
namespace cv { namespace gpu
{
void PrintTo(const cv::gpu::DeviceInfo& info, std::ostream* os);
}}
#define GPU_PERF_TEST(name, ...) \
struct name : perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > \
{ \
public: \
name() {} \
protected: \
void PerfTestBody(); \
}; \
TEST_P(name, perf){ RunPerfTestBody(); } \
void name :: PerfTestBody()
#define GPU_PERF_TEST_1(name, param_type) \
struct name : perf::TestBaseWithParam< param_type > \
{ \
public: \
name() {} \
protected: \
void PerfTestBody(); \
}; \
TEST_P(name, perf){ RunPerfTestBody(); } \
void name :: PerfTestBody()
#define GPU_TYPICAL_MAT_SIZES testing::Values(perf::szSXGA, perf::sz1080p, cv::Size(1800, 1500))
cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR);
const std::vector<cv::gpu::DeviceInfo>& devices();
#define ALL_DEVICES testing::ValuesIn(devices())
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
#endif // __OPENCV_PERF_GPU_UTILITY_HPP__

File diff suppressed because it is too large Load Diff

View File

@@ -4,12 +4,19 @@ using namespace std;
using namespace cv;
using namespace cv::gpu;
void fill(Mat& m, double a, double b)
bool runOnGpu = true;
void fillRandom(Mat& m, double a, double b)
{
RNG rng(123456789);
rng.fill(m, RNG::UNIFORM, Scalar::all(a), Scalar::all(b));
}
Mat readImage(const string& fileName, int flags)
{
return imread(perf::TestBase::getDataPath(fileName), flags);
}
void PrintTo(const CvtColorInfo& info, ostream* os)
{
static const char* str[] =
@@ -184,37 +191,3 @@ void PrintTo(const CvtColorInfo& info, ostream* os)
*os << str[info.code];
}
void cv::gpu::PrintTo(const DeviceInfo& info, ostream* os)
{
*os << info.name();
}
Mat readImage(const string& fileName, int flags)
{
return imread(perf::TestBase::getDataPath(fileName), flags);
}
const vector<DeviceInfo>& devices()
{
static vector<DeviceInfo> devs;
static bool first = true;
if (first)
{
int deviceCount = getCudaEnabledDeviceCount();
devs.reserve(deviceCount);
for (int i = 0; i < deviceCount; ++i)
{
DeviceInfo info(i);
if (info.isCompatible())
devs.push_back(info);
}
first = false;
}
return devs;
}

View File

@@ -0,0 +1,45 @@
#ifndef __OPENCV_PERF_GPU_UTILITY_HPP__
#define __OPENCV_PERF_GPU_UTILITY_HPP__
#include "opencv2/core/core.hpp"
#include "opencv2/core/gpumat.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/ts/ts_perf.hpp"
extern bool runOnGpu;
void fillRandom(cv::Mat& m, double a = 0.0, double b = 255.0);
cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR);
using perf::MatType;
using perf::MatDepth;
CV_ENUM(BorderMode, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP)
#define ALL_BORDER_MODES testing::ValuesIn(BorderMode::all())
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::INTER_AREA)
#define ALL_INTERPOLATIONS testing::ValuesIn(Interpolation::all())
CV_ENUM(NormType, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_HAMMING)
struct CvtColorInfo
{
int scn;
int dcn;
int code;
explicit CvtColorInfo(int scn_=0, int dcn_=0, int code_=0) : scn(scn_), dcn(dcn_), code(code_) {}
};
void PrintTo(const CvtColorInfo& info, std::ostream* os);
#define GET_PARAM(k) std::tr1::get< k >(GetParam())
#define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name
#define DEF_PARAM_TEST_1(name, param_type) typedef ::perf::TestBaseWithParam< param_type > name
DEF_PARAM_TEST_1(Sz, cv::Size);
typedef perf::Size_MatType Sz_Type;
DEF_PARAM_TEST(Sz_Depth, cv::Size, MatDepth);
DEF_PARAM_TEST(Sz_Depth_Cn, cv::Size, MatDepth, int);
#define GPU_TYPICAL_MAT_SIZES testing::Values(perf::szSXGA, perf::sz720p, perf::sz1080p)
#endif // __OPENCV_PERF_GPU_UTILITY_HPP__