Merge pull request #3897 from sanchom:bugfix_4030
This commit is contained in:
commit
38ce0fe954
@ -1669,13 +1669,13 @@ public:
|
|||||||
Mat samples = data->getTrainSamples();
|
Mat samples = data->getTrainSamples();
|
||||||
Mat responses;
|
Mat responses;
|
||||||
bool is_classification = false;
|
bool is_classification = false;
|
||||||
Mat class_labels0 = class_labels;
|
|
||||||
int class_count = (int)class_labels.total();
|
int class_count = (int)class_labels.total();
|
||||||
|
|
||||||
if( svmType == C_SVC || svmType == NU_SVC )
|
if( svmType == C_SVC || svmType == NU_SVC )
|
||||||
{
|
{
|
||||||
responses = data->getTrainNormCatResponses();
|
responses = data->getTrainNormCatResponses();
|
||||||
class_labels = data->getClassLabels();
|
class_labels = data->getClassLabels();
|
||||||
|
class_count = (int)class_labels.total();
|
||||||
is_classification = true;
|
is_classification = true;
|
||||||
|
|
||||||
vector<int> temp_class_labels;
|
vector<int> temp_class_labels;
|
||||||
@ -1755,8 +1755,9 @@ public:
|
|||||||
Mat temp_train_responses(train_sample_count, 1, rtype);
|
Mat temp_train_responses(train_sample_count, 1, rtype);
|
||||||
Mat temp_test_responses;
|
Mat temp_test_responses;
|
||||||
|
|
||||||
|
// If grid.minVal == grid.maxVal, this will allow one and only one pass through the loop with params.var = grid.minVal.
|
||||||
#define FOR_IN_GRID(var, grid) \
|
#define FOR_IN_GRID(var, grid) \
|
||||||
for( params.var = grid.minVal; params.var == grid.minVal || params.var < grid.maxVal; params.var *= grid.logStep )
|
for( params.var = grid.minVal; params.var == grid.minVal || params.var < grid.maxVal; params.var = (grid.minVal == grid.maxVal) ? grid.maxVal + 1 : params.var * grid.logStep )
|
||||||
|
|
||||||
FOR_IN_GRID(C, C_grid)
|
FOR_IN_GRID(C, C_grid)
|
||||||
FOR_IN_GRID(gamma, gamma_grid)
|
FOR_IN_GRID(gamma, gamma_grid)
|
||||||
@ -1814,7 +1815,6 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
params = best_params;
|
params = best_params;
|
||||||
class_labels = class_labels0;
|
|
||||||
return do_train( samples, responses );
|
return do_train( samples, responses );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
89
modules/ml/test/test_svmtrainauto.cpp
Normal file
89
modules/ml/test/test_svmtrainauto.cpp
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// Intel License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other materials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include "test_precomp.hpp"
|
||||||
|
|
||||||
|
using namespace cv;
|
||||||
|
using namespace std;
|
||||||
|
using cv::ml::SVM;
|
||||||
|
using cv::ml::TrainData;
|
||||||
|
|
||||||
|
//--------------------------------------------------------------------------------------------
|
||||||
|
class CV_SVMTrainAutoTest : public cvtest::BaseTest {
|
||||||
|
public:
|
||||||
|
CV_SVMTrainAutoTest() {}
|
||||||
|
protected:
|
||||||
|
virtual void run( int start_from );
|
||||||
|
};
|
||||||
|
|
||||||
|
void CV_SVMTrainAutoTest::run( int /*start_from*/ )
|
||||||
|
{
|
||||||
|
int datasize = 100;
|
||||||
|
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
|
||||||
|
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
|
||||||
|
|
||||||
|
RNG rng(0);
|
||||||
|
for (int i = 0; i < datasize; ++i)
|
||||||
|
{
|
||||||
|
int response = rng.uniform(0, 2); // Random from {0, 1}.
|
||||||
|
samples.at<float>( i, 0 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
|
||||||
|
samples.at<float>( i, 1 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
|
||||||
|
responses.at<int>( i, 0 ) = response;
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::Ptr<TrainData> data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
|
||||||
|
cv::Ptr<SVM> svm = SVM::create();
|
||||||
|
svm->trainAuto( data, 10 ); // 2-fold cross validation.
|
||||||
|
|
||||||
|
float test_data0[2] = {0.25f, 0.25f};
|
||||||
|
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
|
||||||
|
float result0 = svm->predict( test_point0 );
|
||||||
|
float test_data1[2] = {0.75f, 0.75f};
|
||||||
|
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
|
||||||
|
float result1 = svm->predict( test_point1 );
|
||||||
|
|
||||||
|
if ( fabs( result0 - 0 ) > 0.001 || fabs( result1 - 1 ) > 0.001 )
|
||||||
|
{
|
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(ML_SVM, trainauto) { CV_SVMTrainAutoTest test; test.safe_run(); }
|
Loading…
x
Reference in New Issue
Block a user