refactor cudaoptflow public API:
* use opaque algorithm interfaces * add stream support
This commit is contained in:
@@ -42,23 +42,21 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
#define MIN_SIZE 32
|
||||
|
||||
#define S(x) StreamAccessor::getStream(x)
|
||||
|
||||
// CUDA resize() is fast, but it differs from the CPU analog. Disabling this flag
|
||||
// leads to an inefficient code. It's for debug purposes only.
|
||||
#define ENABLE_CUDA_RESIZE 1
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::cuda;
|
||||
|
||||
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
||||
|
||||
void cv::cuda::FarnebackOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
|
||||
Ptr<FarnebackOpticalFlow> cv::cuda::FarnebackOpticalFlow::create(int, double, bool, int, int, int, double, int) { throw_no_cuda(); return Ptr<BroxOpticalFlow>(); }
|
||||
|
||||
#else
|
||||
|
||||
#define MIN_SIZE 32
|
||||
|
||||
// CUDA resize() is fast, but it differs from the CPU analog. Disabling this flag
|
||||
// leads to an inefficient code. It's for debug purposes only.
|
||||
#define ENABLE_CUDA_RESIZE 1
|
||||
|
||||
namespace cv { namespace cuda { namespace device { namespace optflow_farneback
|
||||
{
|
||||
void setPolynomialExpansionConsts(
|
||||
@@ -76,8 +74,6 @@ namespace cv { namespace cuda { namespace device { namespace optflow_farneback
|
||||
void updateFlowGpu(
|
||||
const PtrStepSzf M, PtrStepSzf flowx, PtrStepSzf flowy, cudaStream_t stream);
|
||||
|
||||
/*void boxFilterGpu(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream);*/
|
||||
|
||||
void boxFilter5Gpu(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream);
|
||||
|
||||
void boxFilter5Gpu_CC11(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream);
|
||||
@@ -93,10 +89,93 @@ namespace cv { namespace cuda { namespace device { namespace optflow_farneback
|
||||
void gaussianBlur5Gpu_CC11(
|
||||
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream);
|
||||
|
||||
}}}} // namespace cv { namespace cuda { namespace cudev { namespace optflow_farneback
|
||||
}}}}
|
||||
|
||||
namespace
|
||||
{
|
||||
class FarnebackOpticalFlowImpl : public FarnebackOpticalFlow
|
||||
{
|
||||
public:
|
||||
FarnebackOpticalFlowImpl(int numLevels, double pyrScale, bool fastPyramids, int winSize,
|
||||
int numIters, int polyN, double polySigma, int flags) :
|
||||
numLevels_(numLevels), pyrScale_(pyrScale), fastPyramids_(fastPyramids), winSize_(winSize),
|
||||
numIters_(numIters), polyN_(polyN), polySigma_(polySigma), flags_(flags)
|
||||
{
|
||||
}
|
||||
|
||||
virtual int getNumLevels() const { return numLevels_; }
|
||||
virtual void setNumLevels(int numLevels) { numLevels_ = numLevels; }
|
||||
|
||||
virtual double getPyrScale() const { return pyrScale_; }
|
||||
virtual void setPyrScale(double pyrScale) { pyrScale_ = pyrScale; }
|
||||
|
||||
virtual bool getFastPyramids() const { return fastPyramids_; }
|
||||
virtual void setFastPyramids(bool fastPyramids) { fastPyramids_ = fastPyramids; }
|
||||
|
||||
virtual int getWinSize() const { return winSize_; }
|
||||
virtual void setWinSize(int winSize) { winSize_ = winSize; }
|
||||
|
||||
virtual int getNumIters() const { return numIters_; }
|
||||
virtual void setNumIters(int numIters) { numIters_ = numIters; }
|
||||
|
||||
virtual int getPolyN() const { return polyN_; }
|
||||
virtual void setPolyN(int polyN) { polyN_ = polyN; }
|
||||
|
||||
virtual double getPolySigma() const { return polySigma_; }
|
||||
virtual void setPolySigma(double polySigma) { polySigma_ = polySigma; }
|
||||
|
||||
virtual int getFlags() const { return flags_; }
|
||||
virtual void setFlags(int flags) { flags_ = flags; }
|
||||
|
||||
virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream);
|
||||
|
||||
private:
|
||||
int numLevels_;
|
||||
double pyrScale_;
|
||||
bool fastPyramids_;
|
||||
int winSize_;
|
||||
int numIters_;
|
||||
int polyN_;
|
||||
double polySigma_;
|
||||
int flags_;
|
||||
|
||||
private:
|
||||
void prepareGaussian(
|
||||
int n, double sigma, float *g, float *xg, float *xxg,
|
||||
double &ig11, double &ig03, double &ig33, double &ig55);
|
||||
|
||||
void setPolynomialExpansionConsts(int n, double sigma);
|
||||
|
||||
void updateFlow_boxFilter(
|
||||
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
|
||||
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
|
||||
|
||||
void updateFlow_gaussianBlur(
|
||||
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
|
||||
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
|
||||
|
||||
void calcImpl(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &stream);
|
||||
|
||||
GpuMat frames_[2];
|
||||
GpuMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
|
||||
std::vector<GpuMat> pyramid0_, pyramid1_;
|
||||
};
|
||||
|
||||
void FarnebackOpticalFlowImpl::calc(InputArray _frame0, InputArray _frame1, InputOutputArray _flow, Stream& stream)
|
||||
{
|
||||
const GpuMat frame0 = _frame0.getGpuMat();
|
||||
const GpuMat frame1 = _frame1.getGpuMat();
|
||||
|
||||
BufferPool pool(stream);
|
||||
GpuMat flowx = pool.getBuffer(frame0.size(), CV_32FC1);
|
||||
GpuMat flowy = pool.getBuffer(frame0.size(), CV_32FC1);
|
||||
|
||||
calcImpl(frame0, frame1, flowx, flowy, stream);
|
||||
|
||||
GpuMat flows[] = {flowx, flowy};
|
||||
cuda::merge(flows, 2, _flow, stream);
|
||||
}
|
||||
|
||||
GpuMat allocMatFromBuf(int rows, int cols, int type, GpuMat& mat)
|
||||
{
|
||||
if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols)
|
||||
@@ -104,285 +183,287 @@ namespace
|
||||
|
||||
return mat = GpuMat(rows, cols, type);
|
||||
}
|
||||
}
|
||||
|
||||
void cv::cuda::FarnebackOpticalFlow::prepareGaussian(
|
||||
int n, double sigma, float *g, float *xg, float *xxg,
|
||||
double &ig11, double &ig03, double &ig33, double &ig55)
|
||||
{
|
||||
double s = 0.;
|
||||
for (int x = -n; x <= n; x++)
|
||||
{
|
||||
g[x] = (float)std::exp(-x*x/(2*sigma*sigma));
|
||||
s += g[x];
|
||||
}
|
||||
|
||||
s = 1./s;
|
||||
for (int x = -n; x <= n; x++)
|
||||
{
|
||||
g[x] = (float)(g[x]*s);
|
||||
xg[x] = (float)(x*g[x]);
|
||||
xxg[x] = (float)(x*x*g[x]);
|
||||
}
|
||||
|
||||
Mat_<double> G(6, 6);
|
||||
G.setTo(0);
|
||||
|
||||
for (int y = -n; y <= n; y++)
|
||||
void FarnebackOpticalFlowImpl::prepareGaussian(
|
||||
int n, double sigma, float *g, float *xg, float *xxg,
|
||||
double &ig11, double &ig03, double &ig33, double &ig55)
|
||||
{
|
||||
double s = 0.;
|
||||
for (int x = -n; x <= n; x++)
|
||||
{
|
||||
G(0,0) += g[y]*g[x];
|
||||
G(1,1) += g[y]*g[x]*x*x;
|
||||
G(3,3) += g[y]*g[x]*x*x*x*x;
|
||||
G(5,5) += g[y]*g[x]*x*x*y*y;
|
||||
}
|
||||
}
|
||||
|
||||
//G[0][0] = 1.;
|
||||
G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1);
|
||||
G(4,4) = G(3,3);
|
||||
G(3,4) = G(4,3) = G(5,5);
|
||||
|
||||
// invG:
|
||||
// [ x e e ]
|
||||
// [ y ]
|
||||
// [ y ]
|
||||
// [ e z ]
|
||||
// [ e z ]
|
||||
// [ u ]
|
||||
Mat_<double> invG = G.inv(DECOMP_CHOLESKY);
|
||||
|
||||
ig11 = invG(1,1);
|
||||
ig03 = invG(0,3);
|
||||
ig33 = invG(3,3);
|
||||
ig55 = invG(5,5);
|
||||
}
|
||||
|
||||
|
||||
void cv::cuda::FarnebackOpticalFlow::setPolynomialExpansionConsts(int n, double sigma)
|
||||
{
|
||||
std::vector<float> buf(n*6 + 3);
|
||||
float* g = &buf[0] + n;
|
||||
float* xg = g + n*2 + 1;
|
||||
float* xxg = xg + n*2 + 1;
|
||||
|
||||
if (sigma < FLT_EPSILON)
|
||||
sigma = n*0.3;
|
||||
|
||||
double ig11, ig03, ig33, ig55;
|
||||
prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55);
|
||||
|
||||
device::optflow_farneback::setPolynomialExpansionConsts(n, g, xg, xxg, static_cast<float>(ig11), static_cast<float>(ig03), static_cast<float>(ig33), static_cast<float>(ig55));
|
||||
}
|
||||
|
||||
|
||||
void cv::cuda::FarnebackOpticalFlow::updateFlow_boxFilter(
|
||||
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
|
||||
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
|
||||
{
|
||||
if (deviceSupports(FEATURE_SET_COMPUTE_12))
|
||||
device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, S(streams[0]));
|
||||
else
|
||||
device::optflow_farneback::boxFilter5Gpu_CC11(M, blockSize/2, bufM, S(streams[0]));
|
||||
swap(M, bufM);
|
||||
|
||||
for (int i = 1; i < 5; ++i)
|
||||
streams[i].waitForCompletion();
|
||||
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0]));
|
||||
|
||||
if (updateMatrices)
|
||||
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0]));
|
||||
}
|
||||
|
||||
|
||||
void cv::cuda::FarnebackOpticalFlow::updateFlow_gaussianBlur(
|
||||
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
|
||||
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
|
||||
{
|
||||
if (deviceSupports(FEATURE_SET_COMPUTE_12))
|
||||
device::optflow_farneback::gaussianBlur5Gpu(
|
||||
M, blockSize/2, bufM, BORDER_REPLICATE, S(streams[0]));
|
||||
else
|
||||
device::optflow_farneback::gaussianBlur5Gpu_CC11(
|
||||
M, blockSize/2, bufM, BORDER_REPLICATE, S(streams[0]));
|
||||
swap(M, bufM);
|
||||
|
||||
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0]));
|
||||
|
||||
if (updateMatrices)
|
||||
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0]));
|
||||
}
|
||||
|
||||
|
||||
void cv::cuda::FarnebackOpticalFlow::operator ()(
|
||||
const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s)
|
||||
{
|
||||
CV_Assert(frame0.channels() == 1 && frame1.channels() == 1);
|
||||
CV_Assert(frame0.size() == frame1.size());
|
||||
CV_Assert(polyN == 5 || polyN == 7);
|
||||
CV_Assert(!fastPyramids || std::abs(pyrScale - 0.5) < 1e-6);
|
||||
|
||||
Stream streams[5];
|
||||
if (S(s))
|
||||
streams[0] = s;
|
||||
|
||||
Size size = frame0.size();
|
||||
GpuMat prevFlowX, prevFlowY, curFlowX, curFlowY;
|
||||
|
||||
flowx.create(size, CV_32F);
|
||||
flowy.create(size, CV_32F);
|
||||
GpuMat flowx0 = flowx;
|
||||
GpuMat flowy0 = flowy;
|
||||
|
||||
// Crop unnecessary levels
|
||||
double scale = 1;
|
||||
int numLevelsCropped = 0;
|
||||
for (; numLevelsCropped < numLevels; numLevelsCropped++)
|
||||
{
|
||||
scale *= pyrScale;
|
||||
if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE)
|
||||
break;
|
||||
}
|
||||
|
||||
frame0.convertTo(frames_[0], CV_32F, streams[0]);
|
||||
frame1.convertTo(frames_[1], CV_32F, streams[1]);
|
||||
|
||||
if (fastPyramids)
|
||||
{
|
||||
// Build Gaussian pyramids using pyrDown()
|
||||
pyramid0_.resize(numLevelsCropped + 1);
|
||||
pyramid1_.resize(numLevelsCropped + 1);
|
||||
pyramid0_[0] = frames_[0];
|
||||
pyramid1_[0] = frames_[1];
|
||||
for (int i = 1; i <= numLevelsCropped; ++i)
|
||||
{
|
||||
cuda::pyrDown(pyramid0_[i - 1], pyramid0_[i], streams[0]);
|
||||
cuda::pyrDown(pyramid1_[i - 1], pyramid1_[i], streams[1]);
|
||||
}
|
||||
}
|
||||
|
||||
setPolynomialExpansionConsts(polyN, polySigma);
|
||||
device::optflow_farneback::setUpdateMatricesConsts();
|
||||
|
||||
for (int k = numLevelsCropped; k >= 0; k--)
|
||||
{
|
||||
streams[0].waitForCompletion();
|
||||
|
||||
scale = 1;
|
||||
for (int i = 0; i < k; i++)
|
||||
scale *= pyrScale;
|
||||
|
||||
double sigma = (1./scale - 1) * 0.5;
|
||||
int smoothSize = cvRound(sigma*5) | 1;
|
||||
smoothSize = std::max(smoothSize, 3);
|
||||
|
||||
int width = cvRound(size.width*scale);
|
||||
int height = cvRound(size.height*scale);
|
||||
|
||||
if (fastPyramids)
|
||||
{
|
||||
width = pyramid0_[k].cols;
|
||||
height = pyramid0_[k].rows;
|
||||
g[x] = (float)std::exp(-x*x/(2*sigma*sigma));
|
||||
s += g[x];
|
||||
}
|
||||
|
||||
if (k > 0)
|
||||
s = 1./s;
|
||||
for (int x = -n; x <= n; x++)
|
||||
{
|
||||
curFlowX.create(height, width, CV_32F);
|
||||
curFlowY.create(height, width, CV_32F);
|
||||
}
|
||||
else
|
||||
{
|
||||
curFlowX = flowx0;
|
||||
curFlowY = flowy0;
|
||||
g[x] = (float)(g[x]*s);
|
||||
xg[x] = (float)(x*g[x]);
|
||||
xxg[x] = (float)(x*x*g[x]);
|
||||
}
|
||||
|
||||
if (!prevFlowX.data)
|
||||
Mat_<double> G(6, 6);
|
||||
G.setTo(0);
|
||||
|
||||
for (int y = -n; y <= n; y++)
|
||||
{
|
||||
if (flags & OPTFLOW_USE_INITIAL_FLOW)
|
||||
for (int x = -n; x <= n; x++)
|
||||
{
|
||||
cuda::resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
|
||||
cuda::resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
|
||||
curFlowX.convertTo(curFlowX, curFlowX.depth(), scale, streams[0]);
|
||||
curFlowY.convertTo(curFlowY, curFlowY.depth(), scale, streams[1]);
|
||||
G(0,0) += g[y]*g[x];
|
||||
G(1,1) += g[y]*g[x]*x*x;
|
||||
G(3,3) += g[y]*g[x]*x*x*x*x;
|
||||
G(5,5) += g[y]*g[x]*x*x*y*y;
|
||||
}
|
||||
}
|
||||
|
||||
//G[0][0] = 1.;
|
||||
G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1);
|
||||
G(4,4) = G(3,3);
|
||||
G(3,4) = G(4,3) = G(5,5);
|
||||
|
||||
// invG:
|
||||
// [ x e e ]
|
||||
// [ y ]
|
||||
// [ y ]
|
||||
// [ e z ]
|
||||
// [ e z ]
|
||||
// [ u ]
|
||||
Mat_<double> invG = G.inv(DECOMP_CHOLESKY);
|
||||
|
||||
ig11 = invG(1,1);
|
||||
ig03 = invG(0,3);
|
||||
ig33 = invG(3,3);
|
||||
ig55 = invG(5,5);
|
||||
}
|
||||
|
||||
void FarnebackOpticalFlowImpl::setPolynomialExpansionConsts(int n, double sigma)
|
||||
{
|
||||
std::vector<float> buf(n*6 + 3);
|
||||
float* g = &buf[0] + n;
|
||||
float* xg = g + n*2 + 1;
|
||||
float* xxg = xg + n*2 + 1;
|
||||
|
||||
if (sigma < FLT_EPSILON)
|
||||
sigma = n*0.3;
|
||||
|
||||
double ig11, ig03, ig33, ig55;
|
||||
prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55);
|
||||
|
||||
device::optflow_farneback::setPolynomialExpansionConsts(n, g, xg, xxg, static_cast<float>(ig11), static_cast<float>(ig03), static_cast<float>(ig33), static_cast<float>(ig55));
|
||||
}
|
||||
|
||||
void FarnebackOpticalFlowImpl::updateFlow_boxFilter(
|
||||
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
|
||||
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
|
||||
{
|
||||
if (deviceSupports(FEATURE_SET_COMPUTE_12))
|
||||
device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, StreamAccessor::getStream(streams[0]));
|
||||
else
|
||||
device::optflow_farneback::boxFilter5Gpu_CC11(M, blockSize/2, bufM, StreamAccessor::getStream(streams[0]));
|
||||
swap(M, bufM);
|
||||
|
||||
for (int i = 1; i < 5; ++i)
|
||||
streams[i].waitForCompletion();
|
||||
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, StreamAccessor::getStream(streams[0]));
|
||||
|
||||
if (updateMatrices)
|
||||
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, StreamAccessor::getStream(streams[0]));
|
||||
}
|
||||
|
||||
void FarnebackOpticalFlowImpl::updateFlow_gaussianBlur(
|
||||
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
|
||||
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
|
||||
{
|
||||
if (deviceSupports(FEATURE_SET_COMPUTE_12))
|
||||
device::optflow_farneback::gaussianBlur5Gpu(
|
||||
M, blockSize/2, bufM, BORDER_REPLICATE, StreamAccessor::getStream(streams[0]));
|
||||
else
|
||||
device::optflow_farneback::gaussianBlur5Gpu_CC11(
|
||||
M, blockSize/2, bufM, BORDER_REPLICATE, StreamAccessor::getStream(streams[0]));
|
||||
swap(M, bufM);
|
||||
|
||||
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, StreamAccessor::getStream(streams[0]));
|
||||
|
||||
if (updateMatrices)
|
||||
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, StreamAccessor::getStream(streams[0]));
|
||||
}
|
||||
|
||||
void FarnebackOpticalFlowImpl::calcImpl(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &stream)
|
||||
{
|
||||
CV_Assert(frame0.channels() == 1 && frame1.channels() == 1);
|
||||
CV_Assert(frame0.size() == frame1.size());
|
||||
CV_Assert(polyN_ == 5 || polyN_ == 7);
|
||||
CV_Assert(!fastPyramids_ || std::abs(pyrScale_ - 0.5) < 1e-6);
|
||||
|
||||
Stream streams[5];
|
||||
if (stream)
|
||||
streams[0] = stream;
|
||||
|
||||
Size size = frame0.size();
|
||||
GpuMat prevFlowX, prevFlowY, curFlowX, curFlowY;
|
||||
|
||||
flowx.create(size, CV_32F);
|
||||
flowy.create(size, CV_32F);
|
||||
GpuMat flowx0 = flowx;
|
||||
GpuMat flowy0 = flowy;
|
||||
|
||||
// Crop unnecessary levels
|
||||
double scale = 1;
|
||||
int numLevelsCropped = 0;
|
||||
for (; numLevelsCropped < numLevels_; numLevelsCropped++)
|
||||
{
|
||||
scale *= pyrScale_;
|
||||
if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE)
|
||||
break;
|
||||
}
|
||||
|
||||
frame0.convertTo(frames_[0], CV_32F, streams[0]);
|
||||
frame1.convertTo(frames_[1], CV_32F, streams[1]);
|
||||
|
||||
if (fastPyramids_)
|
||||
{
|
||||
// Build Gaussian pyramids using pyrDown()
|
||||
pyramid0_.resize(numLevelsCropped + 1);
|
||||
pyramid1_.resize(numLevelsCropped + 1);
|
||||
pyramid0_[0] = frames_[0];
|
||||
pyramid1_[0] = frames_[1];
|
||||
for (int i = 1; i <= numLevelsCropped; ++i)
|
||||
{
|
||||
cuda::pyrDown(pyramid0_[i - 1], pyramid0_[i], streams[0]);
|
||||
cuda::pyrDown(pyramid1_[i - 1], pyramid1_[i], streams[1]);
|
||||
}
|
||||
}
|
||||
|
||||
setPolynomialExpansionConsts(polyN_, polySigma_);
|
||||
device::optflow_farneback::setUpdateMatricesConsts();
|
||||
|
||||
for (int k = numLevelsCropped; k >= 0; k--)
|
||||
{
|
||||
streams[0].waitForCompletion();
|
||||
|
||||
scale = 1;
|
||||
for (int i = 0; i < k; i++)
|
||||
scale *= pyrScale_;
|
||||
|
||||
double sigma = (1./scale - 1) * 0.5;
|
||||
int smoothSize = cvRound(sigma*5) | 1;
|
||||
smoothSize = std::max(smoothSize, 3);
|
||||
|
||||
int width = cvRound(size.width*scale);
|
||||
int height = cvRound(size.height*scale);
|
||||
|
||||
if (fastPyramids_)
|
||||
{
|
||||
width = pyramid0_[k].cols;
|
||||
height = pyramid0_[k].rows;
|
||||
}
|
||||
|
||||
if (k > 0)
|
||||
{
|
||||
curFlowX.create(height, width, CV_32F);
|
||||
curFlowY.create(height, width, CV_32F);
|
||||
}
|
||||
else
|
||||
{
|
||||
curFlowX.setTo(0, streams[0]);
|
||||
curFlowY.setTo(0, streams[1]);
|
||||
curFlowX = flowx0;
|
||||
curFlowY = flowy0;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cuda::resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
|
||||
cuda::resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
|
||||
curFlowX.convertTo(curFlowX, curFlowX.depth(), 1./pyrScale, streams[0]);
|
||||
curFlowY.convertTo(curFlowY, curFlowY.depth(), 1./pyrScale, streams[1]);
|
||||
}
|
||||
|
||||
GpuMat M = allocMatFromBuf(5*height, width, CV_32F, M_);
|
||||
GpuMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_);
|
||||
GpuMat R[2] =
|
||||
{
|
||||
allocMatFromBuf(5*height, width, CV_32F, R_[0]),
|
||||
allocMatFromBuf(5*height, width, CV_32F, R_[1])
|
||||
};
|
||||
|
||||
if (fastPyramids)
|
||||
{
|
||||
device::optflow_farneback::polynomialExpansionGpu(pyramid0_[k], polyN, R[0], S(streams[0]));
|
||||
device::optflow_farneback::polynomialExpansionGpu(pyramid1_[k], polyN, R[1], S(streams[1]));
|
||||
}
|
||||
else
|
||||
{
|
||||
GpuMat blurredFrame[2] =
|
||||
if (!prevFlowX.data)
|
||||
{
|
||||
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]),
|
||||
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1])
|
||||
};
|
||||
GpuMat pyrLevel[2] =
|
||||
{
|
||||
allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]),
|
||||
allocMatFromBuf(height, width, CV_32F, pyrLevel_[1])
|
||||
};
|
||||
|
||||
Mat g = getGaussianKernel(smoothSize, sigma, CV_32F);
|
||||
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2);
|
||||
|
||||
for (int i = 0; i < 2; i++)
|
||||
{
|
||||
device::optflow_farneback::gaussianBlurGpu(
|
||||
frames_[i], smoothSize/2, blurredFrame[i], BORDER_REFLECT101, S(streams[i]));
|
||||
cuda::resize(blurredFrame[i], pyrLevel[i], Size(width, height), 0.0, 0.0, INTER_LINEAR, streams[i]);
|
||||
device::optflow_farneback::polynomialExpansionGpu(pyrLevel[i], polyN, R[i], S(streams[i]));
|
||||
if (flags_ & OPTFLOW_USE_INITIAL_FLOW)
|
||||
{
|
||||
cuda::resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
|
||||
cuda::resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
|
||||
curFlowX.convertTo(curFlowX, curFlowX.depth(), scale, streams[0]);
|
||||
curFlowY.convertTo(curFlowY, curFlowY.depth(), scale, streams[1]);
|
||||
}
|
||||
else
|
||||
{
|
||||
curFlowX.setTo(0, streams[0]);
|
||||
curFlowY.setTo(0, streams[1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
streams[1].waitForCompletion();
|
||||
device::optflow_farneback::updateMatricesGpu(curFlowX, curFlowY, R[0], R[1], M, S(streams[0]));
|
||||
|
||||
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
|
||||
{
|
||||
Mat g = getGaussianKernel(winSize, winSize/2*0.3f, CV_32F);
|
||||
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize/2), winSize/2);
|
||||
}
|
||||
for (int i = 0; i < numIters; i++)
|
||||
{
|
||||
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
|
||||
updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams);
|
||||
else
|
||||
updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams);
|
||||
{
|
||||
cuda::resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
|
||||
cuda::resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
|
||||
curFlowX.convertTo(curFlowX, curFlowX.depth(), 1./pyrScale_, streams[0]);
|
||||
curFlowY.convertTo(curFlowY, curFlowY.depth(), 1./pyrScale_, streams[1]);
|
||||
}
|
||||
|
||||
GpuMat M = allocMatFromBuf(5*height, width, CV_32F, M_);
|
||||
GpuMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_);
|
||||
GpuMat R[2] =
|
||||
{
|
||||
allocMatFromBuf(5*height, width, CV_32F, R_[0]),
|
||||
allocMatFromBuf(5*height, width, CV_32F, R_[1])
|
||||
};
|
||||
|
||||
if (fastPyramids_)
|
||||
{
|
||||
device::optflow_farneback::polynomialExpansionGpu(pyramid0_[k], polyN_, R[0], StreamAccessor::getStream(streams[0]));
|
||||
device::optflow_farneback::polynomialExpansionGpu(pyramid1_[k], polyN_, R[1], StreamAccessor::getStream(streams[1]));
|
||||
}
|
||||
else
|
||||
{
|
||||
GpuMat blurredFrame[2] =
|
||||
{
|
||||
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]),
|
||||
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1])
|
||||
};
|
||||
GpuMat pyrLevel[2] =
|
||||
{
|
||||
allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]),
|
||||
allocMatFromBuf(height, width, CV_32F, pyrLevel_[1])
|
||||
};
|
||||
|
||||
Mat g = getGaussianKernel(smoothSize, sigma, CV_32F);
|
||||
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2);
|
||||
|
||||
for (int i = 0; i < 2; i++)
|
||||
{
|
||||
device::optflow_farneback::gaussianBlurGpu(
|
||||
frames_[i], smoothSize/2, blurredFrame[i], BORDER_REFLECT101, StreamAccessor::getStream(streams[i]));
|
||||
cuda::resize(blurredFrame[i], pyrLevel[i], Size(width, height), 0.0, 0.0, INTER_LINEAR, streams[i]);
|
||||
device::optflow_farneback::polynomialExpansionGpu(pyrLevel[i], polyN_, R[i], StreamAccessor::getStream(streams[i]));
|
||||
}
|
||||
}
|
||||
|
||||
streams[1].waitForCompletion();
|
||||
device::optflow_farneback::updateMatricesGpu(curFlowX, curFlowY, R[0], R[1], M, StreamAccessor::getStream(streams[0]));
|
||||
|
||||
if (flags_ & OPTFLOW_FARNEBACK_GAUSSIAN)
|
||||
{
|
||||
Mat g = getGaussianKernel(winSize_, winSize_/2*0.3f, CV_32F);
|
||||
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize_/2), winSize_/2);
|
||||
}
|
||||
for (int i = 0; i < numIters_; i++)
|
||||
{
|
||||
if (flags_ & OPTFLOW_FARNEBACK_GAUSSIAN)
|
||||
updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize_, i < numIters_-1, streams);
|
||||
else
|
||||
updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize_, i < numIters_-1, streams);
|
||||
}
|
||||
|
||||
prevFlowX = curFlowX;
|
||||
prevFlowY = curFlowY;
|
||||
}
|
||||
|
||||
prevFlowX = curFlowX;
|
||||
prevFlowY = curFlowY;
|
||||
flowx = curFlowX;
|
||||
flowy = curFlowY;
|
||||
|
||||
if (!stream)
|
||||
streams[0].waitForCompletion();
|
||||
}
|
||||
}
|
||||
|
||||
flowx = curFlowX;
|
||||
flowy = curFlowY;
|
||||
|
||||
if (!S(s))
|
||||
streams[0].waitForCompletion();
|
||||
Ptr<FarnebackOpticalFlow> cv::cuda::FarnebackOpticalFlow::create(int numLevels, double pyrScale, bool fastPyramids, int winSize,
|
||||
int numIters, int polyN, double polySigma, int flags)
|
||||
{
|
||||
return makePtr<FarnebackOpticalFlowImpl>(numLevels, pyrScale, fastPyramids, winSize,
|
||||
numIters, polyN, polySigma, flags);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user