refactor cudaoptflow public API:

* use opaque algorithm interfaces
* add stream support
This commit is contained in:
Vladislav Vinogradov
2014-12-31 15:36:15 +03:00
parent 19c6bbe7d9
commit 381216aa54
7 changed files with 1258 additions and 925 deletions

View File

@@ -472,16 +472,16 @@ namespace pyrlk
}
}
void loadConstants(int2 winSize, int iters)
void loadConstants(int2 winSize, int iters, cudaStream_t stream)
{
cudaSafeCall( cudaMemcpyToSymbol(c_winSize_x, &winSize.x, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_winSize_y, &winSize.y, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbolAsync(c_winSize_x, &winSize.x, sizeof(int), 0, cudaMemcpyHostToDevice, stream) );
cudaSafeCall( cudaMemcpyToSymbolAsync(c_winSize_y, &winSize.y, sizeof(int), 0, cudaMemcpyHostToDevice, stream) );
int2 halfWin = make_int2((winSize.x - 1) / 2, (winSize.y - 1) / 2);
cudaSafeCall( cudaMemcpyToSymbol(c_halfWin_x, &halfWin.x, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(c_halfWin_y, &halfWin.y, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbolAsync(c_halfWin_x, &halfWin.x, sizeof(int), 0, cudaMemcpyHostToDevice, stream) );
cudaSafeCall( cudaMemcpyToSymbolAsync(c_halfWin_y, &halfWin.y, sizeof(int), 0, cudaMemcpyHostToDevice, stream) );
cudaSafeCall( cudaMemcpyToSymbol(c_iters, &iters, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbolAsync(c_iters, &iters, sizeof(int), 0, cudaMemcpyHostToDevice, stream) );
}
void sparse1(PtrStepSzf I, PtrStepSzf J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,

View File

@@ -66,15 +66,16 @@ namespace tvl1flow
dy(y, x) = 0.5f * (src(::min(y + 1, src.rows - 1), x) - src(::max(y - 1, 0), x));
}
void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy)
void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy, cudaStream_t stream)
{
const dim3 block(32, 8);
const dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y));
centeredGradientKernel<<<grid, block>>>(src, dx, dy);
centeredGradientKernel<<<grid, block, 0, stream>>>(src, dx, dy);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
if (!stream)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
@@ -164,7 +165,10 @@ namespace tvl1flow
rho(y, x) = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val;
}
void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y, PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf I1w, PtrStepSzf I1wx, PtrStepSzf I1wy, PtrStepSzf grad, PtrStepSzf rho)
void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y,
PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf I1w, PtrStepSzf I1wx,
PtrStepSzf I1wy, PtrStepSzf grad, PtrStepSzf rho,
cudaStream_t stream)
{
const dim3 block(32, 8);
const dim3 grid(divUp(I0.cols, block.x), divUp(I0.rows, block.y));
@@ -173,10 +177,11 @@ namespace tvl1flow
bindTexture(&tex_I1x, I1x);
bindTexture(&tex_I1y, I1y);
warpBackwardKernel<<<grid, block>>>(I0, u1, u2, I1w, I1wx, I1wy, grad, rho);
warpBackwardKernel<<<grid, block, 0, stream>>>(I0, u1, u2, I1w, I1wx, I1wy, grad, rho);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
if (!stream)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
@@ -292,15 +297,17 @@ namespace tvl1flow
PtrStepSzf grad, PtrStepSzf rho_c,
PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf p31, PtrStepSzf p32,
PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf u3, PtrStepSzf error,
float l_t, float theta, float gamma, bool calcError)
float l_t, float theta, float gamma, bool calcError,
cudaStream_t stream)
{
const dim3 block(32, 8);
const dim3 grid(divUp(I1wx.cols, block.x), divUp(I1wx.rows, block.y));
estimateUKernel<<<grid, block>>>(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, p31, p32, u1, u2, u3, error, l_t, theta, gamma, calcError);
estimateUKernel<<<grid, block, 0, stream>>>(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, p31, p32, u1, u2, u3, error, l_t, theta, gamma, calcError);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
if (!stream)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
@@ -346,15 +353,19 @@ namespace tvl1flow
}
}
void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf u3, PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf p31, PtrStepSzf p32, float taut, float gamma)
void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf u3,
PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf p31, PtrStepSzf p32,
float taut, float gamma,
cudaStream_t stream)
{
const dim3 block(32, 8);
const dim3 grid(divUp(u1.cols, block.x), divUp(u1.rows, block.y));
estimateDualVariablesKernel<<<grid, block>>>(u1, u2, u3, p11, p12, p21, p22, p31, p32, taut, gamma);
estimateDualVariablesKernel<<<grid, block, 0, stream>>>(u1, u2, u3, p11, p12, p21, p22, p31, p32, taut, gamma);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
if (!stream)
cudaSafeCall( cudaDeviceSynchronize() );
}
}