Revert pull request #1929 from @alalek "ocl: added workaround into Haar kernels"
This reverts commit 3dcddad88aa13b729313939648c29f420a9f8054. Conflicts: modules/ocl/src/opencl/haarobjectdetect.cl
This commit is contained in:
parent
7d82171af4
commit
3747d2643f
@ -62,13 +62,13 @@ typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode
|
|||||||
GpuHidHaarTreeNode;
|
GpuHidHaarTreeNode;
|
||||||
|
|
||||||
|
|
||||||
//typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier
|
typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier
|
||||||
//{
|
{
|
||||||
// int count __attribute__((aligned (4)));
|
int count __attribute__((aligned (4)));
|
||||||
// GpuHidHaarTreeNode* node __attribute__((aligned (8)));
|
GpuHidHaarTreeNode* node __attribute__((aligned (8)));
|
||||||
// float* alpha __attribute__((aligned (8)));
|
float* alpha __attribute__((aligned (8)));
|
||||||
//}
|
}
|
||||||
//GpuHidHaarClassifier;
|
GpuHidHaarClassifier;
|
||||||
|
|
||||||
|
|
||||||
typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier
|
typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier
|
||||||
@ -84,22 +84,22 @@ typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier
|
|||||||
GpuHidHaarStageClassifier;
|
GpuHidHaarStageClassifier;
|
||||||
|
|
||||||
|
|
||||||
//typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
|
typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
|
||||||
//{
|
{
|
||||||
// int count __attribute__((aligned (4)));
|
int count __attribute__((aligned (4)));
|
||||||
// int is_stump_based __attribute__((aligned (4)));
|
int is_stump_based __attribute__((aligned (4)));
|
||||||
// int has_tilted_features __attribute__((aligned (4)));
|
int has_tilted_features __attribute__((aligned (4)));
|
||||||
// int is_tree __attribute__((aligned (4)));
|
int is_tree __attribute__((aligned (4)));
|
||||||
// int pq0 __attribute__((aligned (4)));
|
int pq0 __attribute__((aligned (4)));
|
||||||
// int pq1 __attribute__((aligned (4)));
|
int pq1 __attribute__((aligned (4)));
|
||||||
// int pq2 __attribute__((aligned (4)));
|
int pq2 __attribute__((aligned (4)));
|
||||||
// int pq3 __attribute__((aligned (4)));
|
int pq3 __attribute__((aligned (4)));
|
||||||
// int p0 __attribute__((aligned (4)));
|
int p0 __attribute__((aligned (4)));
|
||||||
// int p1 __attribute__((aligned (4)));
|
int p1 __attribute__((aligned (4)));
|
||||||
// int p2 __attribute__((aligned (4)));
|
int p2 __attribute__((aligned (4)));
|
||||||
// int p3 __attribute__((aligned (4)));
|
int p3 __attribute__((aligned (4)));
|
||||||
// float inv_window_area __attribute__((aligned (4)));
|
float inv_window_area __attribute__((aligned (4)));
|
||||||
//} GpuHidHaarClassifierCascade;
|
} GpuHidHaarClassifierCascade;
|
||||||
|
|
||||||
|
|
||||||
#ifdef PACKED_CLASSIFIER
|
#ifdef PACKED_CLASSIFIER
|
||||||
@ -196,12 +196,10 @@ __kernel void gpuRunHaarClassifierCascadePacked(
|
|||||||
for(int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++ )
|
for(int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++ )
|
||||||
{// iterate until candidate is valid
|
{// iterate until candidate is valid
|
||||||
float stage_sum = 0.0f;
|
float stage_sum = 0.0f;
|
||||||
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
|
int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
|
||||||
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
|
float stagethreshold = as_float(stageinfo.y);
|
||||||
int lcl_off = (yl*DATA_SIZE_X)+(xl);
|
int lcl_off = (lid_y*DATA_SIZE_X)+(lid_x);
|
||||||
int stagecount = stageinfo->count;
|
for(int nodeloop = 0; nodeloop < stageinfo.x; nodecounter++,nodeloop++ )
|
||||||
float stagethreshold = stageinfo->threshold;
|
|
||||||
for(int nodeloop = 0; nodeloop < stagecount; nodecounter++,nodeloop++ )
|
|
||||||
{
|
{
|
||||||
// simple macro to extract shorts from int
|
// simple macro to extract shorts from int
|
||||||
#define M0(_t) ((_t)&0xFFFF)
|
#define M0(_t) ((_t)&0xFFFF)
|
||||||
@ -360,14 +358,11 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
|||||||
for(int stageloop = start_stage; (stageloop < split_stage) && result; stageloop++ )
|
for(int stageloop = start_stage; (stageloop < split_stage) && result; stageloop++ )
|
||||||
{
|
{
|
||||||
float stage_sum = 0.f;
|
float stage_sum = 0.f;
|
||||||
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
|
int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
|
||||||
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
|
float stagethreshold = as_float(stageinfo.y);
|
||||||
int stagecount = stageinfo->count;
|
for(int nodeloop = 0; nodeloop < stageinfo.x; )
|
||||||
float stagethreshold = stageinfo->threshold;
|
|
||||||
for(int nodeloop = 0; nodeloop < stagecount; )
|
|
||||||
{
|
{
|
||||||
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*)
|
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter);
|
||||||
(((__global uchar*)nodeptr) + nodecounter * sizeof(GpuHidHaarTreeNode));
|
|
||||||
|
|
||||||
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
||||||
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
||||||
@ -423,7 +418,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
|||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
result = (stage_sum >= stagethreshold) ? 1 : 0;
|
result = (stage_sum >= stagethreshold);
|
||||||
}
|
}
|
||||||
if(factor < 2)
|
if(factor < 2)
|
||||||
{
|
{
|
||||||
@ -452,17 +447,14 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
|||||||
lclcount[0]=0;
|
lclcount[0]=0;
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
|
|
||||||
//int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
|
int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
|
||||||
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
|
float stagethreshold = as_float(stageinfo.y);
|
||||||
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
|
|
||||||
int stagecount = stageinfo->count;
|
|
||||||
float stagethreshold = stageinfo->threshold;
|
|
||||||
|
|
||||||
int perfscale = queuecount > 4 ? 3 : 2;
|
int perfscale = queuecount > 4 ? 3 : 2;
|
||||||
int queuecount_loop = (queuecount + (1<<perfscale)-1) >> perfscale;
|
int queuecount_loop = (queuecount + (1<<perfscale)-1) >> perfscale;
|
||||||
int lcl_compute_win = lcl_sz >> perfscale;
|
int lcl_compute_win = lcl_sz >> perfscale;
|
||||||
int lcl_compute_win_id = (lcl_id >>(6-perfscale));
|
int lcl_compute_win_id = (lcl_id >>(6-perfscale));
|
||||||
int lcl_loops = (stagecount + lcl_compute_win -1) >> (6-perfscale);
|
int lcl_loops = (stageinfo.x + lcl_compute_win -1) >> (6-perfscale);
|
||||||
int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale));
|
int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale));
|
||||||
for(int queueloop=0; queueloop<queuecount_loop; queueloop++)
|
for(int queueloop=0; queueloop<queuecount_loop; queueloop++)
|
||||||
{
|
{
|
||||||
@ -477,10 +469,10 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
|||||||
float part_sum = 0.f;
|
float part_sum = 0.f;
|
||||||
const int stump_factor = STUMP_BASED ? 1 : 2;
|
const int stump_factor = STUMP_BASED ? 1 : 2;
|
||||||
int root_offset = 0;
|
int root_offset = 0;
|
||||||
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stagecount;)
|
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stageinfo.x;)
|
||||||
{
|
{
|
||||||
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*)
|
__global GpuHidHaarTreeNode* currentnodeptr =
|
||||||
(((__global uchar*)nodeptr) + sizeof(GpuHidHaarTreeNode) * ((nodecounter + tempnodecounter) * stump_factor + root_offset));
|
nodeptr + (nodecounter + tempnodecounter) * stump_factor + root_offset;
|
||||||
|
|
||||||
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
||||||
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
||||||
@ -557,7 +549,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
|||||||
|
|
||||||
queuecount = lclcount[0];
|
queuecount = lclcount[0];
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
nodecounter += stagecount;
|
nodecounter += stageinfo.x;
|
||||||
}//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++)
|
}//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++)
|
||||||
|
|
||||||
if(lcl_id<queuecount)
|
if(lcl_id<queuecount)
|
||||||
|
@ -59,13 +59,13 @@ typedef struct __attribute__((aligned(128))) GpuHidHaarTreeNode
|
|||||||
int right __attribute__((aligned(4)));
|
int right __attribute__((aligned(4)));
|
||||||
}
|
}
|
||||||
GpuHidHaarTreeNode;
|
GpuHidHaarTreeNode;
|
||||||
//typedef struct __attribute__((aligned(32))) GpuHidHaarClassifier
|
typedef struct __attribute__((aligned(32))) GpuHidHaarClassifier
|
||||||
//{
|
{
|
||||||
// int count __attribute__((aligned(4)));
|
int count __attribute__((aligned(4)));
|
||||||
// GpuHidHaarTreeNode *node __attribute__((aligned(8)));
|
GpuHidHaarTreeNode *node __attribute__((aligned(8)));
|
||||||
// float *alpha __attribute__((aligned(8)));
|
float *alpha __attribute__((aligned(8)));
|
||||||
//}
|
}
|
||||||
//GpuHidHaarClassifier;
|
GpuHidHaarClassifier;
|
||||||
typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier
|
typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier
|
||||||
{
|
{
|
||||||
int count __attribute__((aligned(4)));
|
int count __attribute__((aligned(4)));
|
||||||
@ -77,27 +77,27 @@ typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier
|
|||||||
int reserved3 __attribute__((aligned(8)));
|
int reserved3 __attribute__((aligned(8)));
|
||||||
}
|
}
|
||||||
GpuHidHaarStageClassifier;
|
GpuHidHaarStageClassifier;
|
||||||
//typedef struct __attribute__((aligned(64))) GpuHidHaarClassifierCascade
|
typedef struct __attribute__((aligned(64))) GpuHidHaarClassifierCascade
|
||||||
//{
|
{
|
||||||
// int count __attribute__((aligned(4)));
|
int count __attribute__((aligned(4)));
|
||||||
// int is_stump_based __attribute__((aligned(4)));
|
int is_stump_based __attribute__((aligned(4)));
|
||||||
// int has_tilted_features __attribute__((aligned(4)));
|
int has_tilted_features __attribute__((aligned(4)));
|
||||||
// int is_tree __attribute__((aligned(4)));
|
int is_tree __attribute__((aligned(4)));
|
||||||
// int pq0 __attribute__((aligned(4)));
|
int pq0 __attribute__((aligned(4)));
|
||||||
// int pq1 __attribute__((aligned(4)));
|
int pq1 __attribute__((aligned(4)));
|
||||||
// int pq2 __attribute__((aligned(4)));
|
int pq2 __attribute__((aligned(4)));
|
||||||
// int pq3 __attribute__((aligned(4)));
|
int pq3 __attribute__((aligned(4)));
|
||||||
// int p0 __attribute__((aligned(4)));
|
int p0 __attribute__((aligned(4)));
|
||||||
// int p1 __attribute__((aligned(4)));
|
int p1 __attribute__((aligned(4)));
|
||||||
// int p2 __attribute__((aligned(4)));
|
int p2 __attribute__((aligned(4)));
|
||||||
// int p3 __attribute__((aligned(4)));
|
int p3 __attribute__((aligned(4)));
|
||||||
// float inv_window_area __attribute__((aligned(4)));
|
float inv_window_area __attribute__((aligned(4)));
|
||||||
//} GpuHidHaarClassifierCascade;
|
} GpuHidHaarClassifierCascade;
|
||||||
|
|
||||||
__kernel void gpuRunHaarClassifierCascade_scaled2(
|
__kernel void gpuRunHaarClassifierCascade_scaled2(
|
||||||
global GpuHidHaarStageClassifier *stagecascadeptr_,
|
global GpuHidHaarStageClassifier *stagecascadeptr,
|
||||||
global int4 *info,
|
global int4 *info,
|
||||||
global GpuHidHaarTreeNode *nodeptr_,
|
global GpuHidHaarTreeNode *nodeptr,
|
||||||
global const int *restrict sum,
|
global const int *restrict sum,
|
||||||
global const float *restrict sqsum,
|
global const float *restrict sqsum,
|
||||||
global int4 *candidate,
|
global int4 *candidate,
|
||||||
@ -132,7 +132,8 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
|
|||||||
int max_idx = rows * cols - 1;
|
int max_idx = rows * cols - 1;
|
||||||
for (int scalei = 0; scalei < loopcount; scalei++)
|
for (int scalei = 0; scalei < loopcount; scalei++)
|
||||||
{
|
{
|
||||||
int4 scaleinfo1 = info[scalei];
|
int4 scaleinfo1;
|
||||||
|
scaleinfo1 = info[scalei];
|
||||||
int grpnumperline = (scaleinfo1.y & 0xffff0000) >> 16;
|
int grpnumperline = (scaleinfo1.y & 0xffff0000) >> 16;
|
||||||
int totalgrp = scaleinfo1.y & 0xffff;
|
int totalgrp = scaleinfo1.y & 0xffff;
|
||||||
float factor = as_float(scaleinfo1.w);
|
float factor = as_float(scaleinfo1.w);
|
||||||
@ -173,18 +174,15 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
|
|||||||
for (int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++)
|
for (int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++)
|
||||||
{
|
{
|
||||||
float stage_sum = 0.f;
|
float stage_sum = 0.f;
|
||||||
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
|
int stagecount = stagecascadeptr[stageloop].count;
|
||||||
(((__global uchar*)stagecascadeptr_)+stageloop*sizeof(GpuHidHaarStageClassifier));
|
|
||||||
int stagecount = stageinfo->count;
|
|
||||||
for (int nodeloop = 0; nodeloop < stagecount;)
|
for (int nodeloop = 0; nodeloop < stagecount;)
|
||||||
{
|
{
|
||||||
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*)
|
__global GpuHidHaarTreeNode *currentnodeptr = (nodeptr + nodecounter);
|
||||||
(((__global uchar*)nodeptr_) + nodecounter * sizeof(GpuHidHaarTreeNode));
|
|
||||||
int4 info1 = *(__global int4 *)(&(currentnodeptr->p[0][0]));
|
int4 info1 = *(__global int4 *)(&(currentnodeptr->p[0][0]));
|
||||||
int4 info2 = *(__global int4 *)(&(currentnodeptr->p[1][0]));
|
int4 info2 = *(__global int4 *)(&(currentnodeptr->p[1][0]));
|
||||||
int4 info3 = *(__global int4 *)(&(currentnodeptr->p[2][0]));
|
int4 info3 = *(__global int4 *)(&(currentnodeptr->p[2][0]));
|
||||||
float4 w = *(__global float4 *)(&(currentnodeptr->weight[0]));
|
float4 w = *(__global float4 *)(&(currentnodeptr->weight[0]));
|
||||||
float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0]));
|
float3 alpha3 = *(__global float3 *)(&(currentnodeptr->alpha[0]));
|
||||||
float nodethreshold = w.w * variance_norm_factor;
|
float nodethreshold = w.w * variance_norm_factor;
|
||||||
|
|
||||||
info1.x += p_offset;
|
info1.x += p_offset;
|
||||||
@ -206,7 +204,7 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
|
|||||||
sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)]
|
sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)]
|
||||||
+ sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z;
|
+ sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z;
|
||||||
|
|
||||||
bool passThres = (classsum >= nodethreshold) ? 1 : 0;
|
bool passThres = classsum >= nodethreshold;
|
||||||
|
|
||||||
#if STUMP_BASED
|
#if STUMP_BASED
|
||||||
stage_sum += passThres ? alpha3.y : alpha3.x;
|
stage_sum += passThres ? alpha3.y : alpha3.x;
|
||||||
@ -236,8 +234,7 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
|
|||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
result = (int)(stage_sum >= stagecascadeptr[stageloop].threshold);
|
||||||
result = (stage_sum >= stageinfo->threshold) ? 1 : 0;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
barrier(CLK_LOCAL_MEM_FENCE);
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
@ -284,14 +281,11 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
__kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuHidHaarTreeNode *newnode, float scale, float weight_scale, const int nodenum)
|
__kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuHidHaarTreeNode *newnode, float scale, float weight_scale, int nodenum)
|
||||||
{
|
{
|
||||||
const int counter = get_global_id(0);
|
int counter = get_global_id(0);
|
||||||
int tr_x[3], tr_y[3], tr_h[3], tr_w[3], i = 0;
|
int tr_x[3], tr_y[3], tr_h[3], tr_w[3], i = 0;
|
||||||
GpuHidHaarTreeNode t1 = *(__global GpuHidHaarTreeNode*)
|
GpuHidHaarTreeNode t1 = *(orinode + counter);
|
||||||
(((__global uchar*)orinode) + counter * sizeof(GpuHidHaarTreeNode));
|
|
||||||
__global GpuHidHaarTreeNode* pNew = (__global GpuHidHaarTreeNode*)
|
|
||||||
(((__global uchar*)newnode) + (counter + nodenum) * sizeof(GpuHidHaarTreeNode));
|
|
||||||
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (i = 0; i < 3; i++)
|
for (i = 0; i < 3; i++)
|
||||||
@ -303,21 +297,22 @@ __kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuH
|
|||||||
}
|
}
|
||||||
|
|
||||||
t1.weight[0] = -(t1.weight[1] * tr_h[1] * tr_w[1] + t1.weight[2] * tr_h[2] * tr_w[2]) / (tr_h[0] * tr_w[0]);
|
t1.weight[0] = -(t1.weight[1] * tr_h[1] * tr_w[1] + t1.weight[2] * tr_h[2] * tr_w[2]) / (tr_h[0] * tr_w[0]);
|
||||||
|
counter += nodenum;
|
||||||
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (i = 0; i < 3; i++)
|
for (i = 0; i < 3; i++)
|
||||||
{
|
{
|
||||||
pNew->p[i][0] = tr_x[i];
|
newnode[counter].p[i][0] = tr_x[i];
|
||||||
pNew->p[i][1] = tr_y[i];
|
newnode[counter].p[i][1] = tr_y[i];
|
||||||
pNew->p[i][2] = tr_x[i] + tr_w[i];
|
newnode[counter].p[i][2] = tr_x[i] + tr_w[i];
|
||||||
pNew->p[i][3] = tr_y[i] + tr_h[i];
|
newnode[counter].p[i][3] = tr_y[i] + tr_h[i];
|
||||||
pNew->weight[i] = t1.weight[i] * weight_scale;
|
newnode[counter].weight[i] = t1.weight[i] * weight_scale;
|
||||||
}
|
}
|
||||||
|
|
||||||
pNew->left = t1.left;
|
newnode[counter].left = t1.left;
|
||||||
pNew->right = t1.right;
|
newnode[counter].right = t1.right;
|
||||||
pNew->threshold = t1.threshold;
|
newnode[counter].threshold = t1.threshold;
|
||||||
pNew->alpha[0] = t1.alpha[0];
|
newnode[counter].alpha[0] = t1.alpha[0];
|
||||||
pNew->alpha[1] = t1.alpha[1];
|
newnode[counter].alpha[1] = t1.alpha[1];
|
||||||
pNew->alpha[2] = t1.alpha[2];
|
newnode[counter].alpha[2] = t1.alpha[2];
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user