Doxygen tutorials: cpp done
This commit is contained in:
@@ -20,7 +20,7 @@ The *Canny Edge detector* was developed by John F. Canny in 1986. Also known to
|
||||
|
||||
### Steps
|
||||
|
||||
1. Filter out any noise. The Gaussian filter is used for this purpose. An example of a Gaussian
|
||||
-# Filter out any noise. The Gaussian filter is used for this purpose. An example of a Gaussian
|
||||
kernel of \f$size = 5\f$ that might be used is shown below:
|
||||
|
||||
\f[K = \dfrac{1}{159}\begin{bmatrix}
|
||||
@@ -31,8 +31,8 @@ The *Canny Edge detector* was developed by John F. Canny in 1986. Also known to
|
||||
2 & 4 & 5 & 4 & 2
|
||||
\end{bmatrix}\f]
|
||||
|
||||
2. Find the intensity gradient of the image. For this, we follow a procedure analogous to Sobel:
|
||||
1. Apply a pair of convolution masks (in \f$x\f$ and \f$y\f$ directions:
|
||||
-# Find the intensity gradient of the image. For this, we follow a procedure analogous to Sobel:
|
||||
-# Apply a pair of convolution masks (in \f$x\f$ and \f$y\f$ directions:
|
||||
\f[G_{x} = \begin{bmatrix}
|
||||
-1 & 0 & +1 \\
|
||||
-2 & 0 & +2 \\
|
||||
@@ -43,44 +43,44 @@ The *Canny Edge detector* was developed by John F. Canny in 1986. Also known to
|
||||
+1 & +2 & +1
|
||||
\end{bmatrix}\f]
|
||||
|
||||
2. Find the gradient strength and direction with:
|
||||
-# Find the gradient strength and direction with:
|
||||
\f[\begin{array}{l}
|
||||
G = \sqrt{ G_{x}^{2} + G_{y}^{2} } \\
|
||||
\theta = \arctan(\dfrac{ G_{y} }{ G_{x} })
|
||||
\end{array}\f]
|
||||
The direction is rounded to one of four possible angles (namely 0, 45, 90 or 135)
|
||||
|
||||
3. *Non-maximum* suppression is applied. This removes pixels that are not considered to be part of
|
||||
-# *Non-maximum* suppression is applied. This removes pixels that are not considered to be part of
|
||||
an edge. Hence, only thin lines (candidate edges) will remain.
|
||||
4. *Hysteresis*: The final step. Canny does use two thresholds (upper and lower):
|
||||
-# *Hysteresis*: The final step. Canny does use two thresholds (upper and lower):
|
||||
|
||||
1. If a pixel gradient is higher than the *upper* threshold, the pixel is accepted as an edge
|
||||
2. If a pixel gradient value is below the *lower* threshold, then it is rejected.
|
||||
3. If the pixel gradient is between the two thresholds, then it will be accepted only if it is
|
||||
-# If a pixel gradient is higher than the *upper* threshold, the pixel is accepted as an edge
|
||||
-# If a pixel gradient value is below the *lower* threshold, then it is rejected.
|
||||
-# If the pixel gradient is between the two thresholds, then it will be accepted only if it is
|
||||
connected to a pixel that is above the *upper* threshold.
|
||||
|
||||
Canny recommended a *upper*:*lower* ratio between 2:1 and 3:1.
|
||||
|
||||
5. For more details, you can always consult your favorite Computer Vision book.
|
||||
-# For more details, you can always consult your favorite Computer Vision book.
|
||||
|
||||
Code
|
||||
----
|
||||
|
||||
1. **What does this program do?**
|
||||
-# **What does this program do?**
|
||||
- Asks the user to enter a numerical value to set the lower threshold for our *Canny Edge
|
||||
Detector* (by means of a Trackbar)
|
||||
- Applies the *Canny Detector* and generates a **mask** (bright lines representing the edges
|
||||
on a black background).
|
||||
- Applies the mask obtained on the original image and display it in a window.
|
||||
|
||||
2. The tutorial code's is shown lines below. You can also download it from
|
||||
-# The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/CannyDetector_Demo.cpp)
|
||||
@includelineno samples/cpp/tutorial_code/ImgTrans/CannyDetector_Demo.cpp
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
1. Create some needed variables:
|
||||
-# Create some needed variables:
|
||||
@code{.cpp}
|
||||
Mat src, src_gray;
|
||||
Mat dst, detected_edges;
|
||||
@@ -94,12 +94,12 @@ Explanation
|
||||
@endcode
|
||||
Note the following:
|
||||
|
||||
1. We establish a ratio of lower:upper threshold of 3:1 (with the variable *ratio*)
|
||||
2. We set the kernel size of \f$3\f$ (for the Sobel operations to be performed internally by the
|
||||
-# We establish a ratio of lower:upper threshold of 3:1 (with the variable *ratio*)
|
||||
-# We set the kernel size of \f$3\f$ (for the Sobel operations to be performed internally by the
|
||||
Canny function)
|
||||
3. We set a maximum value for the lower Threshold of \f$100\f$.
|
||||
-# We set a maximum value for the lower Threshold of \f$100\f$.
|
||||
|
||||
2. Loads the source image:
|
||||
-# Loads the source image:
|
||||
@code{.cpp}
|
||||
/// Load an image
|
||||
src = imread( argv[1] );
|
||||
@@ -107,35 +107,35 @@ Explanation
|
||||
if( !src.data )
|
||||
{ return -1; }
|
||||
@endcode
|
||||
3. Create a matrix of the same type and size of *src* (to be *dst*)
|
||||
-# Create a matrix of the same type and size of *src* (to be *dst*)
|
||||
@code{.cpp}
|
||||
dst.create( src.size(), src.type() );
|
||||
@endcode
|
||||
4. Convert the image to grayscale (using the function @ref cv::cvtColor :
|
||||
-# Convert the image to grayscale (using the function @ref cv::cvtColor :
|
||||
@code{.cpp}
|
||||
cvtColor( src, src_gray, COLOR_BGR2GRAY );
|
||||
@endcode
|
||||
5. Create a window to display the results
|
||||
-# Create a window to display the results
|
||||
@code{.cpp}
|
||||
namedWindow( window_name, WINDOW_AUTOSIZE );
|
||||
@endcode
|
||||
6. Create a Trackbar for the user to enter the lower threshold for our Canny detector:
|
||||
-# Create a Trackbar for the user to enter the lower threshold for our Canny detector:
|
||||
@code{.cpp}
|
||||
createTrackbar( "Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold );
|
||||
@endcode
|
||||
Observe the following:
|
||||
|
||||
1. The variable to be controlled by the Trackbar is *lowThreshold* with a limit of
|
||||
-# The variable to be controlled by the Trackbar is *lowThreshold* with a limit of
|
||||
*max_lowThreshold* (which we set to 100 previously)
|
||||
2. Each time the Trackbar registers an action, the callback function *CannyThreshold* will be
|
||||
-# Each time the Trackbar registers an action, the callback function *CannyThreshold* will be
|
||||
invoked.
|
||||
|
||||
7. Let's check the *CannyThreshold* function, step by step:
|
||||
1. First, we blur the image with a filter of kernel size 3:
|
||||
-# Let's check the *CannyThreshold* function, step by step:
|
||||
-# First, we blur the image with a filter of kernel size 3:
|
||||
@code{.cpp}
|
||||
blur( src_gray, detected_edges, Size(3,3) );
|
||||
@endcode
|
||||
2. Second, we apply the OpenCV function @ref cv::Canny :
|
||||
-# Second, we apply the OpenCV function @ref cv::Canny :
|
||||
@code{.cpp}
|
||||
Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size );
|
||||
@endcode
|
||||
@@ -149,11 +149,11 @@ Explanation
|
||||
- *kernel_size*: We defined it to be 3 (the size of the Sobel kernel to be used
|
||||
internally)
|
||||
|
||||
8. We fill a *dst* image with zeros (meaning the image is completely black).
|
||||
-# We fill a *dst* image with zeros (meaning the image is completely black).
|
||||
@code{.cpp}
|
||||
dst = Scalar::all(0);
|
||||
@endcode
|
||||
9. Finally, we will use the function @ref cv::Mat::copyTo to map only the areas of the image that are
|
||||
-# Finally, we will use the function @ref cv::Mat::copyTo to map only the areas of the image that are
|
||||
identified as edges (on a black background).
|
||||
@code{.cpp}
|
||||
src.copyTo( dst, detected_edges);
|
||||
@@ -163,20 +163,21 @@ Explanation
|
||||
contours on a black background, the resulting *dst* will be black in all the area but the
|
||||
detected edges.
|
||||
|
||||
10. We display our result:
|
||||
-# We display our result:
|
||||
@code{.cpp}
|
||||
imshow( window_name, dst );
|
||||
@endcode
|
||||
|
||||
Result
|
||||
------
|
||||
|
||||
- After compiling the code above, we can run it giving as argument the path to an image. For
|
||||
example, using as an input the following image:
|
||||
|
||||

|
||||

|
||||
|
||||
- Moving the slider, trying different threshold, we obtain the following result:
|
||||
|
||||

|
||||

|
||||
|
||||
- Notice how the image is superposed to the black background on the edge regions.
|
||||
|
||||
@@ -14,14 +14,14 @@ Theory
|
||||
|
||||
@note The explanation below belongs to the book **Learning OpenCV** by Bradski and Kaehler.
|
||||
|
||||
1. In our previous tutorial we learned to use convolution to operate on images. One problem that
|
||||
-# In our previous tutorial we learned to use convolution to operate on images. One problem that
|
||||
naturally arises is how to handle the boundaries. How can we convolve them if the evaluated
|
||||
points are at the edge of the image?
|
||||
2. What most of OpenCV functions do is to copy a given image onto another slightly larger image and
|
||||
-# What most of OpenCV functions do is to copy a given image onto another slightly larger image and
|
||||
then automatically pads the boundary (by any of the methods explained in the sample code just
|
||||
below). This way, the convolution can be performed over the needed pixels without problems (the
|
||||
extra padding is cut after the operation is done).
|
||||
3. In this tutorial, we will briefly explore two ways of defining the extra padding (border) for an
|
||||
-# In this tutorial, we will briefly explore two ways of defining the extra padding (border) for an
|
||||
image:
|
||||
|
||||
-# **BORDER_CONSTANT**: Pad the image with a constant value (i.e. black or \f$0\f$
|
||||
@@ -33,91 +33,26 @@ Theory
|
||||
Code
|
||||
----
|
||||
|
||||
1. **What does this program do?**
|
||||
-# **What does this program do?**
|
||||
- Load an image
|
||||
- Let the user choose what kind of padding use in the input image. There are two options:
|
||||
|
||||
1. *Constant value border*: Applies a padding of a constant value for the whole border.
|
||||
-# *Constant value border*: Applies a padding of a constant value for the whole border.
|
||||
This value will be updated randomly each 0.5 seconds.
|
||||
2. *Replicated border*: The border will be replicated from the pixel values at the edges of
|
||||
-# *Replicated border*: The border will be replicated from the pixel values at the edges of
|
||||
the original image.
|
||||
|
||||
The user chooses either option by pressing 'c' (constant) or 'r' (replicate)
|
||||
- The program finishes when the user presses 'ESC'
|
||||
|
||||
2. The tutorial code's is shown lines below. You can also download it from
|
||||
-# The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/copyMakeBorder_demo.cpp)
|
||||
@code{.cpp}
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
@includelineno samples/cpp/tutorial_code/ImgTrans/copyMakeBorder_demo.cpp
|
||||
|
||||
using namespace cv;
|
||||
|
||||
/// Global Variables
|
||||
Mat src, dst;
|
||||
int top, bottom, left, right;
|
||||
int borderType;
|
||||
Scalar value;
|
||||
char* window_name = "copyMakeBorder Demo";
|
||||
RNG rng(12345);
|
||||
|
||||
/* @function main */
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
|
||||
int c;
|
||||
|
||||
/// Load an image
|
||||
src = imread( argv[1] );
|
||||
|
||||
if( !src.data )
|
||||
{ return -1;
|
||||
printf(" No data entered, please enter the path to an image file \n");
|
||||
}
|
||||
|
||||
/// Brief how-to for this program
|
||||
printf( "\n \t copyMakeBorder Demo: \n" );
|
||||
printf( "\t -------------------- \n" );
|
||||
printf( " ** Press 'c' to set the border to a random constant value \n");
|
||||
printf( " ** Press 'r' to set the border to be replicated \n");
|
||||
printf( " ** Press 'ESC' to exit the program \n");
|
||||
|
||||
/// Create window
|
||||
namedWindow( window_name, WINDOW_AUTOSIZE );
|
||||
|
||||
/// Initialize arguments for the filter
|
||||
top = (int) (0.05*src.rows); bottom = (int) (0.05*src.rows);
|
||||
left = (int) (0.05*src.cols); right = (int) (0.05*src.cols);
|
||||
dst = src;
|
||||
|
||||
imshow( window_name, dst );
|
||||
|
||||
while( true )
|
||||
{
|
||||
c = waitKey(500);
|
||||
|
||||
if( (char)c == 27 )
|
||||
{ break; }
|
||||
else if( (char)c == 'c' )
|
||||
{ borderType = BORDER_CONSTANT; }
|
||||
else if( (char)c == 'r' )
|
||||
{ borderType = BORDER_REPLICATE; }
|
||||
|
||||
value = Scalar( rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255) );
|
||||
copyMakeBorder( src, dst, top, bottom, left, right, borderType, value );
|
||||
|
||||
imshow( window_name, dst );
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
@endcode
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
1. First we declare the variables we are going to use:
|
||||
-# First we declare the variables we are going to use:
|
||||
@code{.cpp}
|
||||
Mat src, dst;
|
||||
int top, bottom, left, right;
|
||||
@@ -129,7 +64,7 @@ Explanation
|
||||
Especial attention deserves the variable *rng* which is a random number generator. We use it to
|
||||
generate the random border color, as we will see soon.
|
||||
|
||||
2. As usual we load our source image *src*:
|
||||
-# As usual we load our source image *src*:
|
||||
@code{.cpp}
|
||||
src = imread( argv[1] );
|
||||
|
||||
@@ -138,17 +73,17 @@ Explanation
|
||||
printf(" No data entered, please enter the path to an image file \n");
|
||||
}
|
||||
@endcode
|
||||
3. After giving a short intro of how to use the program, we create a window:
|
||||
-# After giving a short intro of how to use the program, we create a window:
|
||||
@code{.cpp}
|
||||
namedWindow( window_name, WINDOW_AUTOSIZE );
|
||||
@endcode
|
||||
4. Now we initialize the argument that defines the size of the borders (*top*, *bottom*, *left* and
|
||||
-# Now we initialize the argument that defines the size of the borders (*top*, *bottom*, *left* and
|
||||
*right*). We give them a value of 5% the size of *src*.
|
||||
@code{.cpp}
|
||||
top = (int) (0.05*src.rows); bottom = (int) (0.05*src.rows);
|
||||
left = (int) (0.05*src.cols); right = (int) (0.05*src.cols);
|
||||
@endcode
|
||||
5. The program begins a *while* loop. If the user presses 'c' or 'r', the *borderType* variable
|
||||
-# The program begins a *while* loop. If the user presses 'c' or 'r', the *borderType* variable
|
||||
takes the value of *BORDER_CONSTANT* or *BORDER_REPLICATE* respectively:
|
||||
@code{.cpp}
|
||||
while( true )
|
||||
@@ -162,14 +97,14 @@ Explanation
|
||||
else if( (char)c == 'r' )
|
||||
{ borderType = BORDER_REPLICATE; }
|
||||
@endcode
|
||||
6. In each iteration (after 0.5 seconds), the variable *value* is updated...
|
||||
-# In each iteration (after 0.5 seconds), the variable *value* is updated...
|
||||
@code{.cpp}
|
||||
value = Scalar( rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255) );
|
||||
@endcode
|
||||
with a random value generated by the **RNG** variable *rng*. This value is a number picked
|
||||
randomly in the range \f$[0,255]\f$
|
||||
|
||||
7. Finally, we call the function @ref cv::copyMakeBorder to apply the respective padding:
|
||||
-# Finally, we call the function @ref cv::copyMakeBorder to apply the respective padding:
|
||||
@code{.cpp}
|
||||
copyMakeBorder( src, dst, top, bottom, left, right, borderType, value );
|
||||
@endcode
|
||||
@@ -184,14 +119,15 @@ Explanation
|
||||
-# *value*: If *borderType* is *BORDER_CONSTANT*, this is the value used to fill the border
|
||||
pixels.
|
||||
|
||||
8. We display our output image in the image created previously
|
||||
-# We display our output image in the image created previously
|
||||
@code{.cpp}
|
||||
imshow( window_name, dst );
|
||||
@endcode
|
||||
|
||||
Results
|
||||
-------
|
||||
|
||||
1. After compiling the code above, you can execute it giving as argument the path of an image. The
|
||||
-# After compiling the code above, you can execute it giving as argument the path of an image. The
|
||||
result should be:
|
||||
|
||||
- By default, it begins with the border set to BORDER_CONSTANT. Hence, a succession of random
|
||||
@@ -203,4 +139,4 @@ Results
|
||||
Below some screenshot showing how the border changes color and how the *BORDER_REPLICATE*
|
||||
option looks:
|
||||
|
||||

|
||||

|
||||
|
||||
@@ -23,18 +23,18 @@ In a very general sense, convolution is an operation between every part of an im
|
||||
A kernel is essentially a fixed size array of numerical coefficeints along with an *anchor point* in
|
||||
that array, which is tipically located at the center.
|
||||
|
||||

|
||||

|
||||
|
||||
### How does convolution with a kernel work?
|
||||
|
||||
Assume you want to know the resulting value of a particular location in the image. The value of the
|
||||
convolution is calculated in the following way:
|
||||
|
||||
1. Place the kernel anchor on top of a determined pixel, with the rest of the kernel overlaying the
|
||||
-# Place the kernel anchor on top of a determined pixel, with the rest of the kernel overlaying the
|
||||
corresponding local pixels in the image.
|
||||
2. Multiply the kernel coefficients by the corresponding image pixel values and sum the result.
|
||||
3. Place the result to the location of the *anchor* in the input image.
|
||||
4. Repeat the process for all pixels by scanning the kernel over the entire image.
|
||||
-# Multiply the kernel coefficients by the corresponding image pixel values and sum the result.
|
||||
-# Place the result to the location of the *anchor* in the input image.
|
||||
-# Repeat the process for all pixels by scanning the kernel over the entire image.
|
||||
|
||||
Expressing the procedure above in the form of an equation we would have:
|
||||
|
||||
@@ -46,7 +46,7 @@ these operations.
|
||||
Code
|
||||
----
|
||||
|
||||
1. **What does this program do?**
|
||||
-# **What does this program do?**
|
||||
- Loads an image
|
||||
- Performs a *normalized box filter*. For instance, for a kernel of size \f$size = 3\f$, the
|
||||
kernel would be:
|
||||
@@ -61,7 +61,7 @@ Code
|
||||
|
||||
- The filter output (with each kernel) will be shown during 500 milliseconds
|
||||
|
||||
2. The tutorial code's is shown lines below. You can also download it from
|
||||
-# The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/filter2D_demo.cpp)
|
||||
@code{.cpp}
|
||||
#include "opencv2/imgproc.hpp"
|
||||
@@ -125,26 +125,26 @@ int main ( int argc, char** argv )
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
1. Load an image
|
||||
-# Load an image
|
||||
@code{.cpp}
|
||||
src = imread( argv[1] );
|
||||
|
||||
if( !src.data )
|
||||
{ return -1; }
|
||||
@endcode
|
||||
2. Create a window to display the result
|
||||
-# Create a window to display the result
|
||||
@code{.cpp}
|
||||
namedWindow( window_name, WINDOW_AUTOSIZE );
|
||||
@endcode
|
||||
3. Initialize the arguments for the linear filter
|
||||
-# Initialize the arguments for the linear filter
|
||||
@code{.cpp}
|
||||
anchor = Point( -1, -1 );
|
||||
delta = 0;
|
||||
ddepth = -1;
|
||||
@endcode
|
||||
4. Perform an infinite loop updating the kernel size and applying our linear filter to the input
|
||||
-# Perform an infinite loop updating the kernel size and applying our linear filter to the input
|
||||
image. Let's analyze that more in detail:
|
||||
5. First we define the kernel our filter is going to use. Here it is:
|
||||
-# First we define the kernel our filter is going to use. Here it is:
|
||||
@code{.cpp}
|
||||
kernel_size = 3 + 2*( ind%5 );
|
||||
kernel = Mat::ones( kernel_size, kernel_size, CV_32F )/ (float)(kernel_size*kernel_size);
|
||||
@@ -153,7 +153,7 @@ Explanation
|
||||
line actually builds the kernel by setting its value to a matrix filled with \f$1's\f$ and
|
||||
normalizing it by dividing it between the number of elements.
|
||||
|
||||
6. After setting the kernel, we can generate the filter by using the function @ref cv::filter2D :
|
||||
-# After setting the kernel, we can generate the filter by using the function @ref cv::filter2D :
|
||||
@code{.cpp}
|
||||
filter2D(src, dst, ddepth , kernel, anchor, delta, BORDER_DEFAULT );
|
||||
@endcode
|
||||
@@ -169,14 +169,14 @@ Explanation
|
||||
-# *delta*: A value to be added to each pixel during the convolution. By default it is \f$0\f$
|
||||
-# *BORDER_DEFAULT*: We let this value by default (more details in the following tutorial)
|
||||
|
||||
7. Our program will effectuate a *while* loop, each 500 ms the kernel size of our filter will be
|
||||
-# Our program will effectuate a *while* loop, each 500 ms the kernel size of our filter will be
|
||||
updated in the range indicated.
|
||||
|
||||
Results
|
||||
-------
|
||||
|
||||
1. After compiling the code above, you can execute it giving as argument the path of an image. The
|
||||
-# After compiling the code above, you can execute it giving as argument the path of an image. The
|
||||
result should be a window that shows an image blurred by a normalized filter. Each 0.5 seconds
|
||||
the kernel size should change, as can be seen in the series of snapshots below:
|
||||
|
||||

|
||||

|
||||
|
||||
@@ -23,7 +23,7 @@ Theory
|
||||
where \f$(x_{center}, y_{center})\f$ define the center position (green point) and \f$r\f$ is the radius,
|
||||
which allows us to completely define a circle, as it can be seen below:
|
||||
|
||||

|
||||

|
||||
|
||||
- For sake of efficiency, OpenCV implements a detection method slightly trickier than the standard
|
||||
Hough Transform: *The Hough gradient method*, which is made up of two main stages. The first
|
||||
@@ -34,82 +34,35 @@ Theory
|
||||
Code
|
||||
----
|
||||
|
||||
1. **What does this program do?**
|
||||
-# **What does this program do?**
|
||||
- Loads an image and blur it to reduce the noise
|
||||
- Applies the *Hough Circle Transform* to the blurred image .
|
||||
- Display the detected circle in a window.
|
||||
|
||||
2. The sample code that we will explain can be downloaded from
|
||||
|TutorialHoughCirclesSimpleDownload|_. A slightly fancier version (which shows trackbars for
|
||||
changing the threshold values) can be found |TutorialHoughCirclesFancyDownload|_.
|
||||
@code{.cpp}
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
-# The sample code that we will explain can be downloaded from [here](https://github.com/Itseez/opencv/tree/master/samples/cpp/houghcircles.cpp).
|
||||
A slightly fancier version (which shows trackbars for
|
||||
changing the threshold values) can be found [here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/HoughCircle_Demo.cpp).
|
||||
@includelineno samples/cpp/houghcircles.cpp
|
||||
|
||||
using namespace cv;
|
||||
|
||||
/* @function main */
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
Mat src, src_gray;
|
||||
|
||||
/// Read the image
|
||||
src = imread( argv[1], 1 );
|
||||
|
||||
if( !src.data )
|
||||
{ return -1; }
|
||||
|
||||
/// Convert it to gray
|
||||
cvtColor( src, src_gray, COLOR_BGR2GRAY );
|
||||
|
||||
/// Reduce the noise so we avoid false circle detection
|
||||
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 );
|
||||
|
||||
vector<Vec3f> circles;
|
||||
|
||||
/// Apply the Hough Transform to find the circles
|
||||
HoughCircles( src_gray, circles, HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0 );
|
||||
|
||||
/// Draw the circles detected
|
||||
for( size_t i = 0; i < circles.size(); i++ )
|
||||
{
|
||||
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
|
||||
int radius = cvRound(circles[i][2]);
|
||||
// circle center
|
||||
circle( src, center, 3, Scalar(0,255,0), -1, 8, 0 );
|
||||
// circle outline
|
||||
circle( src, center, radius, Scalar(0,0,255), 3, 8, 0 );
|
||||
}
|
||||
|
||||
/// Show your results
|
||||
namedWindow( "Hough Circle Transform Demo", WINDOW_AUTOSIZE );
|
||||
imshow( "Hough Circle Transform Demo", src );
|
||||
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
||||
@endcode
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
1. Load an image
|
||||
-# Load an image
|
||||
@code{.cpp}
|
||||
src = imread( argv[1], 1 );
|
||||
|
||||
if( !src.data )
|
||||
{ return -1; }
|
||||
@endcode
|
||||
2. Convert it to grayscale:
|
||||
-# Convert it to grayscale:
|
||||
@code{.cpp}
|
||||
cvtColor( src, src_gray, COLOR_BGR2GRAY );
|
||||
@endcode
|
||||
3. Apply a Gaussian blur to reduce noise and avoid false circle detection:
|
||||
-# Apply a Gaussian blur to reduce noise and avoid false circle detection:
|
||||
@code{.cpp}
|
||||
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 );
|
||||
@endcode
|
||||
4. Proceed to apply Hough Circle Transform:
|
||||
-# Proceed to apply Hough Circle Transform:
|
||||
@code{.cpp}
|
||||
vector<Vec3f> circles;
|
||||
|
||||
@@ -129,7 +82,7 @@ Explanation
|
||||
- *min_radius = 0*: Minimum radio to be detected. If unknown, put zero as default.
|
||||
- *max_radius = 0*: Maximum radius to be detected. If unknown, put zero as default.
|
||||
|
||||
5. Draw the detected circles:
|
||||
-# Draw the detected circles:
|
||||
@code{.cpp}
|
||||
for( size_t i = 0; i < circles.size(); i++ )
|
||||
{
|
||||
@@ -143,19 +96,19 @@ Explanation
|
||||
@endcode
|
||||
You can see that we will draw the circle(s) on red and the center(s) with a small green dot
|
||||
|
||||
6. Display the detected circle(s):
|
||||
-# Display the detected circle(s):
|
||||
@code{.cpp}
|
||||
namedWindow( "Hough Circle Transform Demo", WINDOW_AUTOSIZE );
|
||||
imshow( "Hough Circle Transform Demo", src );
|
||||
@endcode
|
||||
7. Wait for the user to exit the program
|
||||
-# Wait for the user to exit the program
|
||||
@code{.cpp}
|
||||
waitKey(0);
|
||||
@endcode
|
||||
|
||||
Result
|
||||
------
|
||||
|
||||
The result of running the code above with a test image is shown below:
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
@@ -12,18 +12,22 @@ In this tutorial you will learn how to:
|
||||
Theory
|
||||
------
|
||||
|
||||
@note The explanation below belongs to the book **Learning OpenCV** by Bradski and Kaehler. Hough
|
||||
Line Transform ---------------------\#. The Hough Line Transform is a transform used to detect
|
||||
straight lines. \#. To apply the Transform, first an edge detection pre-processing is desirable.
|
||||
@note The explanation below belongs to the book **Learning OpenCV** by Bradski and Kaehler.
|
||||
|
||||
Hough Line Transform
|
||||
--------------------
|
||||
|
||||
-# The Hough Line Transform is a transform used to detect straight lines.
|
||||
-# To apply the Transform, first an edge detection pre-processing is desirable.
|
||||
|
||||
### How does it work?
|
||||
|
||||
1. As you know, a line in the image space can be expressed with two variables. For example:
|
||||
-# As you know, a line in the image space can be expressed with two variables. For example:
|
||||
|
||||
-# In the **Cartesian coordinate system:** Parameters: \f$(m,b)\f$.
|
||||
-# In the **Polar coordinate system:** Parameters: \f$(r,\theta)\f$
|
||||
|
||||

|
||||

|
||||
|
||||
For Hough Transforms, we will express lines in the *Polar system*. Hence, a line equation can be
|
||||
written as:
|
||||
@@ -32,7 +36,7 @@ straight lines. \#. To apply the Transform, first an edge detection pre-processi
|
||||
|
||||
Arranging the terms: \f$r = x \cos \theta + y \sin \theta\f$
|
||||
|
||||
1. In general for each point \f$(x_{0}, y_{0})\f$, we can define the family of lines that goes through
|
||||
-# In general for each point \f$(x_{0}, y_{0})\f$, we can define the family of lines that goes through
|
||||
that point as:
|
||||
|
||||
\f[r_{\theta} = x_{0} \cdot \cos \theta + y_{0} \cdot \sin \theta\f]
|
||||
@@ -40,30 +44,30 @@ Arranging the terms: \f$r = x \cos \theta + y \sin \theta\f$
|
||||
Meaning that each pair \f$(r_{\theta},\theta)\f$ represents each line that passes by
|
||||
\f$(x_{0}, y_{0})\f$.
|
||||
|
||||
2. If for a given \f$(x_{0}, y_{0})\f$ we plot the family of lines that goes through it, we get a
|
||||
-# If for a given \f$(x_{0}, y_{0})\f$ we plot the family of lines that goes through it, we get a
|
||||
sinusoid. For instance, for \f$x_{0} = 8\f$ and \f$y_{0} = 6\f$ we get the following plot (in a plane
|
||||
\f$\theta\f$ - \f$r\f$):
|
||||
|
||||

|
||||

|
||||
|
||||
We consider only points such that \f$r > 0\f$ and \f$0< \theta < 2 \pi\f$.
|
||||
|
||||
3. We can do the same operation above for all the points in an image. If the curves of two
|
||||
-# We can do the same operation above for all the points in an image. If the curves of two
|
||||
different points intersect in the plane \f$\theta\f$ - \f$r\f$, that means that both points belong to a
|
||||
same line. For instance, following with the example above and drawing the plot for two more
|
||||
points: \f$x_{1} = 9\f$, \f$y_{1} = 4\f$ and \f$x_{2} = 12\f$, \f$y_{2} = 3\f$, we get:
|
||||
|
||||

|
||||

|
||||
|
||||
The three plots intersect in one single point \f$(0.925, 9.6)\f$, these coordinates are the
|
||||
parameters (\f$\theta, r\f$) or the line in which \f$(x_{0}, y_{0})\f$, \f$(x_{1}, y_{1})\f$ and
|
||||
\f$(x_{2}, y_{2})\f$ lay.
|
||||
|
||||
4. What does all the stuff above mean? It means that in general, a line can be *detected* by
|
||||
-# What does all the stuff above mean? It means that in general, a line can be *detected* by
|
||||
finding the number of intersections between curves.The more curves intersecting means that the
|
||||
line represented by that intersection have more points. In general, we can define a *threshold*
|
||||
of the minimum number of intersections needed to *detect* a line.
|
||||
5. This is what the Hough Line Transform does. It keeps track of the intersection between curves of
|
||||
-# This is what the Hough Line Transform does. It keeps track of the intersection between curves of
|
||||
every point in the image. If the number of intersections is above some *threshold*, then it
|
||||
declares it as a line with the parameters \f$(\theta, r_{\theta})\f$ of the intersection point.
|
||||
|
||||
@@ -86,83 +90,20 @@ b. **The Probabilistic Hough Line Transform**
|
||||
Code
|
||||
----
|
||||
|
||||
1. **What does this program do?**
|
||||
-# **What does this program do?**
|
||||
- Loads an image
|
||||
- Applies either a *Standard Hough Line Transform* or a *Probabilistic Line Transform*.
|
||||
- Display the original image and the detected line in two windows.
|
||||
|
||||
2. The sample code that we will explain can be downloaded from here_. A slightly fancier version
|
||||
-# The sample code that we will explain can be downloaded from [here](https://github.com/Itseez/opencv/tree/master/samples/cpp/houghlines.cpp). A slightly fancier version
|
||||
(which shows both Hough standard and probabilistic with trackbars for changing the threshold
|
||||
values) can be found here_.
|
||||
@code{.cpp}
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
values) can be found [here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/HoughLines_Demo.cpp).
|
||||
@includelineno samples/cpp/houghlines.cpp
|
||||
|
||||
#include <iostream>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
void help()
|
||||
{
|
||||
cout << "\nThis program demonstrates line finding with the Hough transform.\n"
|
||||
"Usage:\n"
|
||||
"./houghlines <image_name>, Default is pic1.jpg\n" << endl;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
const char* filename = argc >= 2 ? argv[1] : "pic1.jpg";
|
||||
|
||||
Mat src = imread(filename, 0);
|
||||
if(src.empty())
|
||||
{
|
||||
help();
|
||||
cout << "can not open " << filename << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
Mat dst, cdst;
|
||||
Canny(src, dst, 50, 200, 3);
|
||||
cvtColor(dst, cdst, COLOR_GRAY2BGR);
|
||||
|
||||
#if 0
|
||||
vector<Vec2f> lines;
|
||||
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0 );
|
||||
|
||||
for( size_t i = 0; i < lines.size(); i++ )
|
||||
{
|
||||
float rho = lines[i][0], theta = lines[i][1];
|
||||
Point pt1, pt2;
|
||||
double a = cos(theta), b = sin(theta);
|
||||
double x0 = a*rho, y0 = b*rho;
|
||||
pt1.x = cvRound(x0 + 1000*(-b));
|
||||
pt1.y = cvRound(y0 + 1000*(a));
|
||||
pt2.x = cvRound(x0 - 1000*(-b));
|
||||
pt2.y = cvRound(y0 - 1000*(a));
|
||||
line( cdst, pt1, pt2, Scalar(0,0,255), 3, LINE_AA);
|
||||
}
|
||||
#else
|
||||
vector<Vec4i> lines;
|
||||
HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10 );
|
||||
for( size_t i = 0; i < lines.size(); i++ )
|
||||
{
|
||||
Vec4i l = lines[i];
|
||||
line( cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, CV_AA);
|
||||
}
|
||||
#endif
|
||||
imshow("source", src);
|
||||
imshow("detected lines", cdst);
|
||||
|
||||
waitKey();
|
||||
|
||||
return 0;
|
||||
}
|
||||
@endcode
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
1. Load an image
|
||||
-# Load an image
|
||||
@code{.cpp}
|
||||
Mat src = imread(filename, 0);
|
||||
if(src.empty())
|
||||
@@ -172,14 +113,14 @@ Explanation
|
||||
return -1;
|
||||
}
|
||||
@endcode
|
||||
2. Detect the edges of the image by using a Canny detector
|
||||
-# Detect the edges of the image by using a Canny detector
|
||||
@code{.cpp}
|
||||
Canny(src, dst, 50, 200, 3);
|
||||
@endcode
|
||||
Now we will apply the Hough Line Transform. We will explain how to use both OpenCV functions
|
||||
available for this purpose:
|
||||
|
||||
3. **Standard Hough Line Transform**
|
||||
-# **Standard Hough Line Transform**
|
||||
-# First, you apply the Transform:
|
||||
@code{.cpp}
|
||||
vector<Vec2f> lines;
|
||||
@@ -211,7 +152,7 @@ Explanation
|
||||
line( cdst, pt1, pt2, Scalar(0,0,255), 3, LINE_AA);
|
||||
}
|
||||
@endcode
|
||||
4. **Probabilistic Hough Line Transform**
|
||||
-# **Probabilistic Hough Line Transform**
|
||||
-# First you apply the transform:
|
||||
@code{.cpp}
|
||||
vector<Vec4i> lines;
|
||||
@@ -239,15 +180,16 @@ Explanation
|
||||
line( cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, LINE_AA);
|
||||
}
|
||||
@endcode
|
||||
5. Display the original image and the detected lines:
|
||||
-# Display the original image and the detected lines:
|
||||
@code{.cpp}
|
||||
imshow("source", src);
|
||||
imshow("detected lines", cdst);
|
||||
@endcode
|
||||
6. Wait until the user exits the program
|
||||
-# Wait until the user exits the program
|
||||
@code{.cpp}
|
||||
waitKey();
|
||||
@endcode
|
||||
|
||||
Result
|
||||
------
|
||||
|
||||
@@ -258,11 +200,11 @@ Result
|
||||
|
||||
Using an input image such as:
|
||||
|
||||

|
||||

|
||||
|
||||
We get the following result by using the Probabilistic Hough Line Transform:
|
||||
|
||||

|
||||

|
||||
|
||||
You may observe that the number of lines detected vary while you change the *threshold*. The
|
||||
explanation is sort of evident: If you establish a higher threshold, fewer lines will be detected
|
||||
|
||||
@@ -12,16 +12,16 @@ In this tutorial you will learn how to:
|
||||
Theory
|
||||
------
|
||||
|
||||
1. In the previous tutorial we learned how to use the *Sobel Operator*. It was based on the fact
|
||||
-# In the previous tutorial we learned how to use the *Sobel Operator*. It was based on the fact
|
||||
that in the edge area, the pixel intensity shows a "jump" or a high variation of intensity.
|
||||
Getting the first derivative of the intensity, we observed that an edge is characterized by a
|
||||
maximum, as it can be seen in the figure:
|
||||
|
||||

|
||||

|
||||
|
||||
2. And...what happens if we take the second derivative?
|
||||
-# And...what happens if we take the second derivative?
|
||||
|
||||

|
||||

|
||||
|
||||
You can observe that the second derivative is zero! So, we can also use this criterion to
|
||||
attempt to detect edges in an image. However, note that zeros will not only appear in edges
|
||||
@@ -30,81 +30,34 @@ Theory
|
||||
|
||||
### Laplacian Operator
|
||||
|
||||
1. From the explanation above, we deduce that the second derivative can be used to *detect edges*.
|
||||
-# From the explanation above, we deduce that the second derivative can be used to *detect edges*.
|
||||
Since images are "*2D*", we would need to take the derivative in both dimensions. Here, the
|
||||
Laplacian operator comes handy.
|
||||
2. The *Laplacian operator* is defined by:
|
||||
-# The *Laplacian operator* is defined by:
|
||||
|
||||
\f[Laplace(f) = \dfrac{\partial^{2} f}{\partial x^{2}} + \dfrac{\partial^{2} f}{\partial y^{2}}\f]
|
||||
|
||||
1. The Laplacian operator is implemented in OpenCV by the function @ref cv::Laplacian . In fact,
|
||||
-# The Laplacian operator is implemented in OpenCV by the function @ref cv::Laplacian . In fact,
|
||||
since the Laplacian uses the gradient of images, it calls internally the *Sobel* operator to
|
||||
perform its computation.
|
||||
|
||||
Code
|
||||
----
|
||||
|
||||
1. **What does this program do?**
|
||||
-# **What does this program do?**
|
||||
- Loads an image
|
||||
- Remove noise by applying a Gaussian blur and then convert the original image to grayscale
|
||||
- Applies a Laplacian operator to the grayscale image and stores the output image
|
||||
- Display the result in a window
|
||||
|
||||
2. The tutorial code's is shown lines below. You can also download it from
|
||||
-# The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/Laplace_Demo.cpp)
|
||||
@code{.cpp}
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
@includelineno samples/cpp/tutorial_code/ImgTrans/Laplace_Demo.cpp
|
||||
|
||||
using namespace cv;
|
||||
|
||||
/* @function main */
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
Mat src, src_gray, dst;
|
||||
int kernel_size = 3;
|
||||
int scale = 1;
|
||||
int delta = 0;
|
||||
int ddepth = CV_16S;
|
||||
char* window_name = "Laplace Demo";
|
||||
|
||||
int c;
|
||||
|
||||
/// Load an image
|
||||
src = imread( argv[1] );
|
||||
|
||||
if( !src.data )
|
||||
{ return -1; }
|
||||
|
||||
/// Remove noise by blurring with a Gaussian filter
|
||||
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );
|
||||
|
||||
/// Convert the image to grayscale
|
||||
cvtColor( src, src_gray, COLOR_RGB2GRAY );
|
||||
|
||||
/// Create window
|
||||
namedWindow( window_name, WINDOW_AUTOSIZE );
|
||||
|
||||
/// Apply Laplace function
|
||||
Mat abs_dst;
|
||||
|
||||
Laplacian( src_gray, dst, ddepth, kernel_size, scale, delta, BORDER_DEFAULT );
|
||||
convertScaleAbs( dst, abs_dst );
|
||||
|
||||
/// Show what you got
|
||||
imshow( window_name, abs_dst );
|
||||
|
||||
waitKey(0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@endcode
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
1. Create some needed variables:
|
||||
-# Create some needed variables:
|
||||
@code{.cpp}
|
||||
Mat src, src_gray, dst;
|
||||
int kernel_size = 3;
|
||||
@@ -113,22 +66,22 @@ Explanation
|
||||
int ddepth = CV_16S;
|
||||
char* window_name = "Laplace Demo";
|
||||
@endcode
|
||||
2. Loads the source image:
|
||||
-# Loads the source image:
|
||||
@code{.cpp}
|
||||
src = imread( argv[1] );
|
||||
|
||||
if( !src.data )
|
||||
{ return -1; }
|
||||
@endcode
|
||||
3. Apply a Gaussian blur to reduce noise:
|
||||
-# Apply a Gaussian blur to reduce noise:
|
||||
@code{.cpp}
|
||||
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );
|
||||
@endcode
|
||||
4. Convert the image to grayscale using @ref cv::cvtColor
|
||||
-# Convert the image to grayscale using @ref cv::cvtColor
|
||||
@code{.cpp}
|
||||
cvtColor( src, src_gray, COLOR_RGB2GRAY );
|
||||
@endcode
|
||||
5. Apply the Laplacian operator to the grayscale image:
|
||||
-# Apply the Laplacian operator to the grayscale image:
|
||||
@code{.cpp}
|
||||
Laplacian( src_gray, dst, ddepth, kernel_size, scale, delta, BORDER_DEFAULT );
|
||||
@endcode
|
||||
@@ -142,27 +95,26 @@ Explanation
|
||||
this example.
|
||||
- *scale*, *delta* and *BORDER_DEFAULT*: We leave them as default values.
|
||||
|
||||
6. Convert the output from the Laplacian operator to a *CV_8U* image:
|
||||
-# Convert the output from the Laplacian operator to a *CV_8U* image:
|
||||
@code{.cpp}
|
||||
convertScaleAbs( dst, abs_dst );
|
||||
@endcode
|
||||
7. Display the result in a window:
|
||||
-# Display the result in a window:
|
||||
@code{.cpp}
|
||||
imshow( window_name, abs_dst );
|
||||
@endcode
|
||||
|
||||
Results
|
||||
-------
|
||||
|
||||
1. After compiling the code above, we can run it giving as argument the path to an image. For
|
||||
-# After compiling the code above, we can run it giving as argument the path to an image. For
|
||||
example, using as an input:
|
||||
|
||||

|
||||

|
||||
|
||||
2. We obtain the following result. Notice how the trees and the silhouette of the cow are
|
||||
-# We obtain the following result. Notice how the trees and the silhouette of the cow are
|
||||
approximately well defined (except in areas in which the intensity are very similar, i.e. around
|
||||
the cow's head). Also, note that the roof of the house behind the trees (right side) is
|
||||
notoriously marked. This is due to the fact that the contrast is higher in that region.
|
||||
|
||||

|
||||
|
||||
|
||||

|
||||
|
||||
@@ -33,146 +33,53 @@ Theory
|
||||
What would happen? It is easily seen that the image would flip in the \f$x\f$ direction. For
|
||||
instance, consider the input image:
|
||||
|
||||

|
||||

|
||||
|
||||
observe how the red circle changes positions with respect to x (considering \f$x\f$ the horizontal
|
||||
direction):
|
||||
|
||||

|
||||

|
||||
|
||||
- In OpenCV, the function @ref cv::remap offers a simple remapping implementation.
|
||||
|
||||
Code
|
||||
----
|
||||
|
||||
1. **What does this program do?**
|
||||
-# **What does this program do?**
|
||||
- Loads an image
|
||||
- Each second, apply 1 of 4 different remapping processes to the image and display them
|
||||
indefinitely in a window.
|
||||
- Wait for the user to exit the program
|
||||
|
||||
2. The tutorial code's is shown lines below. You can also download it from
|
||||
-# The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp)
|
||||
@code{.cpp}
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
|
||||
using namespace cv;
|
||||
|
||||
/// Global variables
|
||||
Mat src, dst;
|
||||
Mat map_x, map_y;
|
||||
char* remap_window = "Remap demo";
|
||||
int ind = 0;
|
||||
|
||||
/// Function Headers
|
||||
void update_map( void );
|
||||
|
||||
/*
|
||||
* @function main
|
||||
*/
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
/// Load the image
|
||||
src = imread( argv[1], 1 );
|
||||
|
||||
/// Create dst, map_x and map_y with the same size as src:
|
||||
dst.create( src.size(), src.type() );
|
||||
map_x.create( src.size(), CV_32FC1 );
|
||||
map_y.create( src.size(), CV_32FC1 );
|
||||
|
||||
/// Create window
|
||||
namedWindow( remap_window, WINDOW_AUTOSIZE );
|
||||
|
||||
/// Loop
|
||||
while( true )
|
||||
{
|
||||
/// Each 1 sec. Press ESC to exit the program
|
||||
int c = waitKey( 1000 );
|
||||
|
||||
if( (char)c == 27 )
|
||||
{ break; }
|
||||
|
||||
/// Update map_x & map_y. Then apply remap
|
||||
update_map();
|
||||
remap( src, dst, map_x, map_y, INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
|
||||
|
||||
/// Display results
|
||||
imshow( remap_window, dst );
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* @function update_map
|
||||
* @brief Fill the map_x and map_y matrices with 4 types of mappings
|
||||
*/
|
||||
void update_map( void )
|
||||
{
|
||||
ind = ind%4;
|
||||
|
||||
for( int j = 0; j < src.rows; j++ )
|
||||
{ for( int i = 0; i < src.cols; i++ )
|
||||
{
|
||||
switch( ind )
|
||||
{
|
||||
case 0:
|
||||
if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
|
||||
{
|
||||
map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ;
|
||||
map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ;
|
||||
}
|
||||
else
|
||||
{ map_x.at<float>(j,i) = 0 ;
|
||||
map_y.at<float>(j,i) = 0 ;
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
map_x.at<float>(j,i) = i ;
|
||||
map_y.at<float>(j,i) = src.rows - j ;
|
||||
break;
|
||||
case 2:
|
||||
map_x.at<float>(j,i) = src.cols - i ;
|
||||
map_y.at<float>(j,i) = j ;
|
||||
break;
|
||||
case 3:
|
||||
map_x.at<float>(j,i) = src.cols - i ;
|
||||
map_y.at<float>(j,i) = src.rows - j ;
|
||||
break;
|
||||
} // end of switch
|
||||
}
|
||||
}
|
||||
ind++;
|
||||
@endcode
|
||||
}
|
||||
@includelineno samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
1. Create some variables we will use:
|
||||
-# Create some variables we will use:
|
||||
@code{.cpp}
|
||||
Mat src, dst;
|
||||
Mat map_x, map_y;
|
||||
char* remap_window = "Remap demo";
|
||||
int ind = 0;
|
||||
@endcode
|
||||
2. Load an image:
|
||||
-# Load an image:
|
||||
@code{.cpp}
|
||||
src = imread( argv[1], 1 );
|
||||
@endcode
|
||||
3. Create the destination image and the two mapping matrices (for x and y )
|
||||
-# Create the destination image and the two mapping matrices (for x and y )
|
||||
@code{.cpp}
|
||||
dst.create( src.size(), src.type() );
|
||||
map_x.create( src.size(), CV_32FC1 );
|
||||
map_y.create( src.size(), CV_32FC1 );
|
||||
@endcode
|
||||
4. Create a window to display results
|
||||
-# Create a window to display results
|
||||
@code{.cpp}
|
||||
namedWindow( remap_window, WINDOW_AUTOSIZE );
|
||||
@endcode
|
||||
5. Establish a loop. Each 1000 ms we update our mapping matrices (*mat_x* and *mat_y*) and apply
|
||||
-# Establish a loop. Each 1000 ms we update our mapping matrices (*mat_x* and *mat_y*) and apply
|
||||
them to our source image:
|
||||
@code{.cpp}
|
||||
while( true )
|
||||
@@ -205,14 +112,11 @@ Explanation
|
||||
|
||||
How do we update our mapping matrices *mat_x* and *mat_y*? Go on reading:
|
||||
|
||||
6. **Updating the mapping matrices:** We are going to perform 4 different mappings:
|
||||
-# **Updating the mapping matrices:** We are going to perform 4 different mappings:
|
||||
-# Reduce the picture to half its size and will display it in the middle:
|
||||
|
||||
\f[h(i,j) = ( 2*i - src.cols/2 + 0.5, 2*j - src.rows/2 + 0.5)\f]
|
||||
|
||||
for all pairs \f$(i,j)\f$ such that: \f$\dfrac{src.cols}{4}<i<\dfrac{3 \cdot src.cols}{4}\f$ and
|
||||
\f$\dfrac{src.rows}{4}<j<\dfrac{3 \cdot src.rows}{4}\f$
|
||||
|
||||
-# Turn the image upside down: \f$h( i, j ) = (i, src.rows - j)\f$
|
||||
-# Reflect the image from left to right: \f$h(i,j) = ( src.cols - i, j )\f$
|
||||
-# Combination of b and c: \f$h(i,j) = ( src.cols - i, src.rows - j )\f$
|
||||
@@ -254,26 +158,27 @@ for( int j = 0; j < src.rows; j++ )
|
||||
ind++;
|
||||
}
|
||||
@endcode
|
||||
|
||||
Result
|
||||
------
|
||||
|
||||
1. After compiling the code above, you can execute it giving as argument an image path. For
|
||||
-# After compiling the code above, you can execute it giving as argument an image path. For
|
||||
instance, by using the following image:
|
||||
|
||||

|
||||

|
||||
|
||||
2. This is the result of reducing it to half the size and centering it:
|
||||
-# This is the result of reducing it to half the size and centering it:
|
||||
|
||||

|
||||

|
||||
|
||||
3. Turning it upside down:
|
||||
-# Turning it upside down:
|
||||
|
||||

|
||||

|
||||
|
||||
4. Reflecting it in the x direction:
|
||||
-# Reflecting it in the x direction:
|
||||
|
||||

|
||||

|
||||
|
||||
5. Reflecting it in both directions:
|
||||
-# Reflecting it in both directions:
|
||||
|
||||

|
||||

|
||||
|
||||
@@ -15,45 +15,45 @@ Theory
|
||||
|
||||
@note The explanation below belongs to the book **Learning OpenCV** by Bradski and Kaehler.
|
||||
|
||||
1. In the last two tutorials we have seen applicative examples of convolutions. One of the most
|
||||
-# In the last two tutorials we have seen applicative examples of convolutions. One of the most
|
||||
important convolutions is the computation of derivatives in an image (or an approximation to
|
||||
them).
|
||||
2. Why may be important the calculus of the derivatives in an image? Let's imagine we want to
|
||||
-# Why may be important the calculus of the derivatives in an image? Let's imagine we want to
|
||||
detect the *edges* present in the image. For instance:
|
||||
|
||||

|
||||

|
||||
|
||||
You can easily notice that in an *edge*, the pixel intensity *changes* in a notorious way. A
|
||||
good way to express *changes* is by using *derivatives*. A high change in gradient indicates a
|
||||
major change in the image.
|
||||
|
||||
3. To be more graphical, let's assume we have a 1D-image. An edge is shown by the "jump" in
|
||||
-# To be more graphical, let's assume we have a 1D-image. An edge is shown by the "jump" in
|
||||
intensity in the plot below:
|
||||
|
||||

|
||||

|
||||
|
||||
4. The edge "jump" can be seen more easily if we take the first derivative (actually, here appears
|
||||
-# The edge "jump" can be seen more easily if we take the first derivative (actually, here appears
|
||||
as a maximum)
|
||||
|
||||

|
||||

|
||||
|
||||
5. So, from the explanation above, we can deduce that a method to detect edges in an image can be
|
||||
-# So, from the explanation above, we can deduce that a method to detect edges in an image can be
|
||||
performed by locating pixel locations where the gradient is higher than its neighbors (or to
|
||||
generalize, higher than a threshold).
|
||||
6. More detailed explanation, please refer to **Learning OpenCV** by Bradski and Kaehler
|
||||
-# More detailed explanation, please refer to **Learning OpenCV** by Bradski and Kaehler
|
||||
|
||||
### Sobel Operator
|
||||
|
||||
1. The Sobel Operator is a discrete differentiation operator. It computes an approximation of the
|
||||
-# The Sobel Operator is a discrete differentiation operator. It computes an approximation of the
|
||||
gradient of an image intensity function.
|
||||
2. The Sobel Operator combines Gaussian smoothing and differentiation.
|
||||
-# The Sobel Operator combines Gaussian smoothing and differentiation.
|
||||
|
||||
#### Formulation
|
||||
|
||||
Assuming that the image to be operated is \f$I\f$:
|
||||
|
||||
1. We calculate two derivatives:
|
||||
1. **Horizontal changes**: This is computed by convolving \f$I\f$ with a kernel \f$G_{x}\f$ with odd
|
||||
-# We calculate two derivatives:
|
||||
-# **Horizontal changes**: This is computed by convolving \f$I\f$ with a kernel \f$G_{x}\f$ with odd
|
||||
size. For example for a kernel size of 3, \f$G_{x}\f$ would be computed as:
|
||||
|
||||
\f[G_{x} = \begin{bmatrix}
|
||||
@@ -62,7 +62,7 @@ Assuming that the image to be operated is \f$I\f$:
|
||||
-1 & 0 & +1
|
||||
\end{bmatrix} * I\f]
|
||||
|
||||
2. **Vertical changes**: This is computed by convolving \f$I\f$ with a kernel \f$G_{y}\f$ with odd
|
||||
-# **Vertical changes**: This is computed by convolving \f$I\f$ with a kernel \f$G_{y}\f$ with odd
|
||||
size. For example for a kernel size of 3, \f$G_{y}\f$ would be computed as:
|
||||
|
||||
\f[G_{y} = \begin{bmatrix}
|
||||
@@ -71,7 +71,7 @@ Assuming that the image to be operated is \f$I\f$:
|
||||
+1 & +2 & +1
|
||||
\end{bmatrix} * I\f]
|
||||
|
||||
2. At each point of the image we calculate an approximation of the *gradient* in that point by
|
||||
-# At each point of the image we calculate an approximation of the *gradient* in that point by
|
||||
combining both results above:
|
||||
|
||||
\f[G = \sqrt{ G_{x}^{2} + G_{y}^{2} }\f]
|
||||
@@ -83,7 +83,7 @@ Assuming that the image to be operated is \f$I\f$:
|
||||
@note
|
||||
When the size of the kernel is `3`, the Sobel kernel shown above may produce noticeable
|
||||
inaccuracies (after all, Sobel is only an approximation of the derivative). OpenCV addresses
|
||||
this inaccuracy for kernels of size 3 by using the :scharr:\`Scharr function. This is as fast
|
||||
this inaccuracy for kernels of size 3 by using the @ref cv::Scharr function. This is as fast
|
||||
but more accurate than the standar Sobel function. It implements the following kernels:
|
||||
\f[G_{x} = \begin{bmatrix}
|
||||
-3 & 0 & +3 \\
|
||||
@@ -103,18 +103,18 @@ Assuming that the image to be operated is \f$I\f$:
|
||||
Code
|
||||
----
|
||||
|
||||
1. **What does this program do?**
|
||||
-# **What does this program do?**
|
||||
- Applies the *Sobel Operator* and generates as output an image with the detected *edges*
|
||||
bright on a darker background.
|
||||
|
||||
2. The tutorial code's is shown lines below. You can also download it from
|
||||
-# The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp)
|
||||
@includelineno samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
1. First we declare the variables we are going to use:
|
||||
-# First we declare the variables we are going to use:
|
||||
@code{.cpp}
|
||||
Mat src, src_gray;
|
||||
Mat grad;
|
||||
@@ -123,22 +123,22 @@ Explanation
|
||||
int delta = 0;
|
||||
int ddepth = CV_16S;
|
||||
@endcode
|
||||
2. As usual we load our source image *src*:
|
||||
-# As usual we load our source image *src*:
|
||||
@code{.cpp}
|
||||
src = imread( argv[1] );
|
||||
|
||||
if( !src.data )
|
||||
{ return -1; }
|
||||
@endcode
|
||||
3. First, we apply a @ref cv::GaussianBlur to our image to reduce the noise ( kernel size = 3 )
|
||||
-# First, we apply a @ref cv::GaussianBlur to our image to reduce the noise ( kernel size = 3 )
|
||||
@code{.cpp}
|
||||
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );
|
||||
@endcode
|
||||
4. Now we convert our filtered image to grayscale:
|
||||
-# Now we convert our filtered image to grayscale:
|
||||
@code{.cpp}
|
||||
cvtColor( src, src_gray, COLOR_RGB2GRAY );
|
||||
@endcode
|
||||
5. Second, we calculate the "*derivatives*" in *x* and *y* directions. For this, we use the
|
||||
-# Second, we calculate the "*derivatives*" in *x* and *y* directions. For this, we use the
|
||||
function @ref cv::Sobel as shown below:
|
||||
@code{.cpp}
|
||||
Mat grad_x, grad_y;
|
||||
@@ -161,23 +161,24 @@ Explanation
|
||||
Notice that to calculate the gradient in *x* direction we use: \f$x_{order}= 1\f$ and
|
||||
\f$y_{order} = 0\f$. We do analogously for the *y* direction.
|
||||
|
||||
6. We convert our partial results back to *CV_8U*:
|
||||
-# We convert our partial results back to *CV_8U*:
|
||||
@code{.cpp}
|
||||
convertScaleAbs( grad_x, abs_grad_x );
|
||||
convertScaleAbs( grad_y, abs_grad_y );
|
||||
@endcode
|
||||
7. Finally, we try to approximate the *gradient* by adding both directional gradients (note that
|
||||
-# Finally, we try to approximate the *gradient* by adding both directional gradients (note that
|
||||
this is not an exact calculation at all! but it is good for our purposes).
|
||||
@code{.cpp}
|
||||
addWeighted( abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad );
|
||||
@endcode
|
||||
8. Finally, we show our result:
|
||||
-# Finally, we show our result:
|
||||
@code{.cpp}
|
||||
imshow( window_name, grad );
|
||||
@endcode
|
||||
|
||||
Results
|
||||
-------
|
||||
|
||||
1. Here is the output of applying our basic detector to *lena.jpg*:
|
||||
-# Here is the output of applying our basic detector to *lena.jpg*:
|
||||
|
||||

|
||||

|
||||
|
||||
@@ -6,17 +6,17 @@ Goal
|
||||
|
||||
In this tutorial you will learn how to:
|
||||
|
||||
a. Use the OpenCV function @ref cv::warpAffine to implement simple remapping routines.
|
||||
b. Use the OpenCV function @ref cv::getRotationMatrix2D to obtain a \f$2 \times 3\f$ rotation matrix
|
||||
- Use the OpenCV function @ref cv::warpAffine to implement simple remapping routines.
|
||||
- Use the OpenCV function @ref cv::getRotationMatrix2D to obtain a \f$2 \times 3\f$ rotation matrix
|
||||
|
||||
Theory
|
||||
------
|
||||
|
||||
### What is an Affine Transformation?
|
||||
|
||||
1. It is any transformation that can be expressed in the form of a *matrix multiplication* (linear
|
||||
-# It is any transformation that can be expressed in the form of a *matrix multiplication* (linear
|
||||
transformation) followed by a *vector addition* (translation).
|
||||
2. From the above, We can use an Affine Transformation to express:
|
||||
-# From the above, We can use an Affine Transformation to express:
|
||||
|
||||
-# Rotations (linear transformation)
|
||||
-# Translations (vector addition)
|
||||
@@ -25,24 +25,28 @@ Theory
|
||||
you can see that, in essence, an Affine Transformation represents a **relation** between two
|
||||
images.
|
||||
|
||||
3. The usual way to represent an Affine Transform is by using a \f$2 \times 3\f$ matrix.
|
||||
-# The usual way to represent an Affine Transform is by using a \f$2 \times 3\f$ matrix.
|
||||
|
||||
\f[A = \begin{bmatrix}
|
||||
\f[
|
||||
A = \begin{bmatrix}
|
||||
a_{00} & a_{01} \\
|
||||
a_{10} & a_{11}
|
||||
\end{bmatrix}_{2 \times 2}
|
||||
B = \begin{bmatrix}
|
||||
b_{00} \\
|
||||
b_{10}
|
||||
\end{bmatrix}_{2 \times 1}\f]\f[M = \begin{bmatrix}
|
||||
\end{bmatrix}_{2 \times 1}
|
||||
\f]
|
||||
\f[
|
||||
M = \begin{bmatrix}
|
||||
A & B
|
||||
\end{bmatrix}
|
||||
=\f]
|
||||
|
||||
begin{bmatrix}
|
||||
a_{00} & a_{01} & b_{00} \\ a_{10} & a_{11} & b_{10}
|
||||
|
||||
end{bmatrix}_{2 times 3}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
a_{00} & a_{01} & b_{00} \\
|
||||
a_{10} & a_{11} & b_{10}
|
||||
\end{bmatrix}_{2 \times 3}
|
||||
\f]
|
||||
|
||||
Considering that we want to transform a 2D vector \f$X = \begin{bmatrix}x \\ y\end{bmatrix}\f$ by
|
||||
using \f$A\f$ and \f$B\f$, we can do it equivalently with:
|
||||
@@ -56,17 +60,17 @@ Theory
|
||||
|
||||
### How do we get an Affine Transformation?
|
||||
|
||||
1. Excellent question. We mentioned that an Affine Transformation is basically a **relation**
|
||||
-# Excellent question. We mentioned that an Affine Transformation is basically a **relation**
|
||||
between two images. The information about this relation can come, roughly, in two ways:
|
||||
-# We know both \f$X\f$ and T and we also know that they are related. Then our job is to find \f$M\f$
|
||||
-# We know \f$M\f$ and \f$X\f$. To obtain \f$T\f$ we only need to apply \f$T = M \cdot X\f$. Our information
|
||||
for \f$M\f$ may be explicit (i.e. have the 2-by-3 matrix) or it can come as a geometric relation
|
||||
between points.
|
||||
|
||||
2. Let's explain a little bit better (b). Since \f$M\f$ relates 02 images, we can analyze the simplest
|
||||
-# Let's explain a little bit better (b). Since \f$M\f$ relates 02 images, we can analyze the simplest
|
||||
case in which it relates three points in both images. Look at the figure below:
|
||||
|
||||

|
||||

|
||||
|
||||
the points 1, 2 and 3 (forming a triangle in image 1) are mapped into image 2, still forming a
|
||||
triangle, but now they have changed notoriously. If we find the Affine Transformation with these
|
||||
@@ -76,7 +80,7 @@ Theory
|
||||
Code
|
||||
----
|
||||
|
||||
1. **What does this program do?**
|
||||
-# **What does this program do?**
|
||||
- Loads an image
|
||||
- Applies an Affine Transform to the image. This Transform is obtained from the relation
|
||||
between three points. We use the function @ref cv::warpAffine for that purpose.
|
||||
@@ -84,86 +88,14 @@ Code
|
||||
the image center
|
||||
- Waits until the user exits the program
|
||||
|
||||
2. The tutorial code's is shown lines below. You can also download it from
|
||||
-# The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/Geometric_Transforms_Demo.cpp)
|
||||
@code{.cpp}
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
@includelineno samples/cpp/tutorial_code/ImgTrans/Geometric_Transforms_Demo.cpp
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
/// Global variables
|
||||
char* source_window = "Source image";
|
||||
char* warp_window = "Warp";
|
||||
char* warp_rotate_window = "Warp + Rotate";
|
||||
|
||||
/* @function main */
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
Point2f srcTri[3];
|
||||
Point2f dstTri[3];
|
||||
|
||||
Mat rot_mat( 2, 3, CV_32FC1 );
|
||||
Mat warp_mat( 2, 3, CV_32FC1 );
|
||||
Mat src, warp_dst, warp_rotate_dst;
|
||||
|
||||
/// Load the image
|
||||
src = imread( argv[1], 1 );
|
||||
|
||||
/// Set the dst image the same type and size as src
|
||||
warp_dst = Mat::zeros( src.rows, src.cols, src.type() );
|
||||
|
||||
/// Set your 3 points to calculate the Affine Transform
|
||||
srcTri[0] = Point2f( 0,0 );
|
||||
srcTri[1] = Point2f( src.cols - 1, 0 );
|
||||
srcTri[2] = Point2f( 0, src.rows - 1 );
|
||||
|
||||
dstTri[0] = Point2f( src.cols*0.0, src.rows*0.33 );
|
||||
dstTri[1] = Point2f( src.cols*0.85, src.rows*0.25 );
|
||||
dstTri[2] = Point2f( src.cols*0.15, src.rows*0.7 );
|
||||
|
||||
/// Get the Affine Transform
|
||||
warp_mat = getAffineTransform( srcTri, dstTri );
|
||||
|
||||
/// Apply the Affine Transform just found to the src image
|
||||
warpAffine( src, warp_dst, warp_mat, warp_dst.size() );
|
||||
|
||||
/* Rotating the image after Warp */
|
||||
|
||||
/// Compute a rotation matrix with respect to the center of the image
|
||||
Point center = Point( warp_dst.cols/2, warp_dst.rows/2 );
|
||||
double angle = -50.0;
|
||||
double scale = 0.6;
|
||||
|
||||
/// Get the rotation matrix with the specifications above
|
||||
rot_mat = getRotationMatrix2D( center, angle, scale );
|
||||
|
||||
/// Rotate the warped image
|
||||
warpAffine( warp_dst, warp_rotate_dst, rot_mat, warp_dst.size() );
|
||||
|
||||
/// Show what you got
|
||||
namedWindow( source_window, WINDOW_AUTOSIZE );
|
||||
imshow( source_window, src );
|
||||
|
||||
namedWindow( warp_window, WINDOW_AUTOSIZE );
|
||||
imshow( warp_window, warp_dst );
|
||||
|
||||
namedWindow( warp_rotate_window, WINDOW_AUTOSIZE );
|
||||
imshow( warp_rotate_window, warp_rotate_dst );
|
||||
|
||||
/// Wait until user exits the program
|
||||
waitKey(0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@endcode
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
1. Declare some variables we will use, such as the matrices to store our results and 2 arrays of
|
||||
-# Declare some variables we will use, such as the matrices to store our results and 2 arrays of
|
||||
points to store the 2D points that define our Affine Transform.
|
||||
@code{.cpp}
|
||||
Point2f srcTri[3];
|
||||
@@ -173,15 +105,15 @@ Explanation
|
||||
Mat warp_mat( 2, 3, CV_32FC1 );
|
||||
Mat src, warp_dst, warp_rotate_dst;
|
||||
@endcode
|
||||
2. Load an image:
|
||||
-# Load an image:
|
||||
@code{.cpp}
|
||||
src = imread( argv[1], 1 );
|
||||
@endcode
|
||||
3. Initialize the destination image as having the same size and type as the source:
|
||||
-# Initialize the destination image as having the same size and type as the source:
|
||||
@code{.cpp}
|
||||
warp_dst = Mat::zeros( src.rows, src.cols, src.type() );
|
||||
@endcode
|
||||
4. **Affine Transform:** As we explained lines above, we need two sets of 3 points to derive the
|
||||
-# **Affine Transform:** As we explained lines above, we need two sets of 3 points to derive the
|
||||
affine transform relation. Take a look:
|
||||
@code{.cpp}
|
||||
srcTri[0] = Point2f( 0,0 );
|
||||
@@ -196,14 +128,14 @@ Explanation
|
||||
approximately the same as the ones depicted in the example figure (in the Theory section). You
|
||||
may note that the size and orientation of the triangle defined by the 3 points change.
|
||||
|
||||
5. Armed with both sets of points, we calculate the Affine Transform by using OpenCV function @ref
|
||||
-# Armed with both sets of points, we calculate the Affine Transform by using OpenCV function @ref
|
||||
cv::getAffineTransform :
|
||||
@code{.cpp}
|
||||
warp_mat = getAffineTransform( srcTri, dstTri );
|
||||
@endcode
|
||||
We get as an output a \f$2 \times 3\f$ matrix (in this case **warp_mat**)
|
||||
|
||||
6. We apply the Affine Transform just found to the src image
|
||||
-# We apply the Affine Transform just found to the src image
|
||||
@code{.cpp}
|
||||
warpAffine( src, warp_dst, warp_mat, warp_dst.size() );
|
||||
@endcode
|
||||
@@ -217,7 +149,7 @@ Explanation
|
||||
We just got our first transformed image! We will display it in one bit. Before that, we also
|
||||
want to rotate it...
|
||||
|
||||
7. **Rotate:** To rotate an image, we need to know two things:
|
||||
-# **Rotate:** To rotate an image, we need to know two things:
|
||||
|
||||
-# The center with respect to which the image will rotate
|
||||
-# The angle to be rotated. In OpenCV a positive angle is counter-clockwise
|
||||
@@ -229,16 +161,16 @@ Explanation
|
||||
double angle = -50.0;
|
||||
double scale = 0.6;
|
||||
@endcode
|
||||
8. We generate the rotation matrix with the OpenCV function @ref cv::getRotationMatrix2D , which
|
||||
-# We generate the rotation matrix with the OpenCV function @ref cv::getRotationMatrix2D , which
|
||||
returns a \f$2 \times 3\f$ matrix (in this case *rot_mat*)
|
||||
@code{.cpp}
|
||||
rot_mat = getRotationMatrix2D( center, angle, scale );
|
||||
@endcode
|
||||
9. We now apply the found rotation to the output of our previous Transformation.
|
||||
-# We now apply the found rotation to the output of our previous Transformation.
|
||||
@code{.cpp}
|
||||
warpAffine( warp_dst, warp_rotate_dst, rot_mat, warp_dst.size() );
|
||||
@endcode
|
||||
10. Finally, we display our results in two windows plus the original image for good measure:
|
||||
-# Finally, we display our results in two windows plus the original image for good measure:
|
||||
@code{.cpp}
|
||||
namedWindow( source_window, WINDOW_AUTOSIZE );
|
||||
imshow( source_window, src );
|
||||
@@ -249,23 +181,24 @@ Explanation
|
||||
namedWindow( warp_rotate_window, WINDOW_AUTOSIZE );
|
||||
imshow( warp_rotate_window, warp_rotate_dst );
|
||||
@endcode
|
||||
11. We just have to wait until the user exits the program
|
||||
-# We just have to wait until the user exits the program
|
||||
@code{.cpp}
|
||||
waitKey(0);
|
||||
@endcode
|
||||
|
||||
Result
|
||||
------
|
||||
|
||||
1. After compiling the code above, we can give it the path of an image as argument. For instance,
|
||||
-# After compiling the code above, we can give it the path of an image as argument. For instance,
|
||||
for a picture like:
|
||||
|
||||

|
||||

|
||||
|
||||
after applying the first Affine Transform we obtain:
|
||||
|
||||

|
||||

|
||||
|
||||
and finally, after applying a negative rotation (remember negative means clockwise) and a scale
|
||||
factor, we get:
|
||||
|
||||

|
||||

|
||||
|
||||
Reference in New Issue
Block a user