Doxygen tutorials: cpp done
This commit is contained in:
@@ -18,25 +18,18 @@ Theory
|
||||
- OpenCV implements the function @ref cv::compareHist to perform a comparison. It also offers 4
|
||||
different metrics to compute the matching:
|
||||
-# **Correlation ( CV_COMP_CORREL )**
|
||||
|
||||
\f[d(H_1,H_2) = \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\f]
|
||||
|
||||
where
|
||||
|
||||
\f[\bar{H_k} = \frac{1}{N} \sum _J H_k(J)\f]
|
||||
|
||||
and \f$N\f$ is the total number of histogram bins.
|
||||
|
||||
-# **Chi-Square ( CV_COMP_CHISQR )**
|
||||
|
||||
\f[d(H_1,H_2) = \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\f]
|
||||
|
||||
-# **Intersection ( method=CV_COMP_INTERSECT )**
|
||||
|
||||
\f[d(H_1,H_2) = \sum _I \min (H_1(I), H_2(I))\f]
|
||||
|
||||
-# **Bhattacharyya distance ( CV_COMP_BHATTACHARYYA )**
|
||||
|
||||
\f[d(H_1,H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\f]
|
||||
|
||||
Code
|
||||
@@ -59,7 +52,7 @@ Code
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
1. Declare variables such as the matrices to store the base image and the two other images to
|
||||
-# Declare variables such as the matrices to store the base image and the two other images to
|
||||
compare ( RGB and HSV )
|
||||
@code{.cpp}
|
||||
Mat src_base, hsv_base;
|
||||
@@ -67,7 +60,7 @@ Explanation
|
||||
Mat src_test2, hsv_test2;
|
||||
Mat hsv_half_down;
|
||||
@endcode
|
||||
2. Load the base image (src_base) and the other two test images:
|
||||
-# Load the base image (src_base) and the other two test images:
|
||||
@code{.cpp}
|
||||
if( argc < 4 )
|
||||
{ printf("** Error. Usage: ./compareHist_Demo <image_settings0> <image_setting1> <image_settings2>\n");
|
||||
@@ -78,17 +71,17 @@ Explanation
|
||||
src_test1 = imread( argv[2], 1 );
|
||||
src_test2 = imread( argv[3], 1 );
|
||||
@endcode
|
||||
3. Convert them to HSV format:
|
||||
-# Convert them to HSV format:
|
||||
@code{.cpp}
|
||||
cvtColor( src_base, hsv_base, COLOR_BGR2HSV );
|
||||
cvtColor( src_test1, hsv_test1, COLOR_BGR2HSV );
|
||||
cvtColor( src_test2, hsv_test2, COLOR_BGR2HSV );
|
||||
@endcode
|
||||
4. Also, create an image of half the base image (in HSV format):
|
||||
-# Also, create an image of half the base image (in HSV format):
|
||||
@code{.cpp}
|
||||
hsv_half_down = hsv_base( Range( hsv_base.rows/2, hsv_base.rows - 1 ), Range( 0, hsv_base.cols - 1 ) );
|
||||
@endcode
|
||||
5. Initialize the arguments to calculate the histograms (bins, ranges and channels H and S ).
|
||||
-# Initialize the arguments to calculate the histograms (bins, ranges and channels H and S ).
|
||||
@code{.cpp}
|
||||
int h_bins = 50; int s_bins = 60;
|
||||
int histSize[] = { h_bins, s_bins };
|
||||
@@ -100,14 +93,14 @@ Explanation
|
||||
|
||||
int channels[] = { 0, 1 };
|
||||
@endcode
|
||||
6. Create the MatND objects to store the histograms:
|
||||
-# Create the MatND objects to store the histograms:
|
||||
@code{.cpp}
|
||||
MatND hist_base;
|
||||
MatND hist_half_down;
|
||||
MatND hist_test1;
|
||||
MatND hist_test2;
|
||||
@endcode
|
||||
7. Calculate the Histograms for the base image, the 2 test images and the half-down base image:
|
||||
-# Calculate the Histograms for the base image, the 2 test images and the half-down base image:
|
||||
@code{.cpp}
|
||||
calcHist( &hsv_base, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false );
|
||||
normalize( hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat() );
|
||||
@@ -121,7 +114,7 @@ Explanation
|
||||
calcHist( &hsv_test2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false );
|
||||
normalize( hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat() );
|
||||
@endcode
|
||||
8. Apply sequentially the 4 comparison methods between the histogram of the base image (hist_base)
|
||||
-# Apply sequentially the 4 comparison methods between the histogram of the base image (hist_base)
|
||||
and the other histograms:
|
||||
@code{.cpp}
|
||||
for( int i = 0; i < 4; i++ )
|
||||
@@ -134,34 +127,32 @@ Explanation
|
||||
printf( " Method [%d] Perfect, Base-Half, Base-Test(1), Base-Test(2) : %f, %f, %f, %f \n", i, base_base, base_half , base_test1, base_test2 );
|
||||
}
|
||||
@endcode
|
||||
|
||||
Results
|
||||
-------
|
||||
|
||||
1. We use as input the following images:
|
||||
|
||||
----------- ----------- -----------
|
||||
|Base_0| |Test_1| |Test_2|
|
||||
----------- ----------- -----------
|
||||
|
||||
-# We use as input the following images:
|
||||

|
||||

|
||||

|
||||
where the first one is the base (to be compared to the others), the other 2 are the test images.
|
||||
We will also compare the first image with respect to itself and with respect of half the base
|
||||
image.
|
||||
|
||||
2. We should expect a perfect match when we compare the base image histogram with itself. Also,
|
||||
-# We should expect a perfect match when we compare the base image histogram with itself. Also,
|
||||
compared with the histogram of half the base image, it should present a high match since both
|
||||
are from the same source. For the other two test images, we can observe that they have very
|
||||
different lighting conditions, so the matching should not be very good:
|
||||
3. Here the numeric results:
|
||||
|
||||
*Method* Base - Base Base - Half Base - Test 1 Base - Test 2
|
||||
----------------- ------------- ------------- --------------- ---------------
|
||||
*Correlation* 1.000000 0.930766 0.182073 0.120447
|
||||
*Chi-square* 0.000000 4.940466 21.184536 49.273437
|
||||
*Intersection* 24.391548 14.959809 3.889029 5.775088
|
||||
*Bhattacharyya* 0.000000 0.222609 0.646576 0.801869
|
||||
|
||||
For the *Correlation* and *Intersection* methods, the higher the metric, the more accurate the
|
||||
match. As we can see, the match *base-base* is the highest of all as expected. Also we can observe
|
||||
that the match *base-half* is the second best match (as we predicted). For the other two metrics,
|
||||
the less the result, the better the match. We can observe that the matches between the test 1 and
|
||||
test 2 with respect to the base are worse, which again, was expected.
|
||||
-# Here the numeric results:
|
||||
*Method* | Base - Base | Base - Half | Base - Test 1 | Base - Test 2
|
||||
----------------- | ------------ | ------------ | -------------- | ---------------
|
||||
*Correlation* | 1.000000 | 0.930766 | 0.182073 | 0.120447
|
||||
*Chi-square* | 0.000000 | 4.940466 | 21.184536 | 49.273437
|
||||
*Intersection* | 24.391548 | 14.959809 | 3.889029 | 5.775088
|
||||
*Bhattacharyya* | 0.000000 | 0.222609 | 0.646576 | 0.801869
|
||||
For the *Correlation* and *Intersection* methods, the higher the metric, the more accurate the
|
||||
match. As we can see, the match *base-base* is the highest of all as expected. Also we can observe
|
||||
that the match *base-half* is the second best match (as we predicted). For the other two metrics,
|
||||
the less the result, the better the match. We can observe that the matches between the test 1 and
|
||||
test 2 with respect to the base are worse, which again, was expected.
|
||||
|
||||
Reference in New Issue
Block a user