Doxygen tutorials: cpp done
This commit is contained in:
@@ -4,10 +4,10 @@ AKAZE local features matching {#tutorial_akaze_matching}
|
||||
Introduction
|
||||
------------
|
||||
|
||||
In this tutorial we will learn how to use [AKAZE]_ local features to detect and match keypoints on
|
||||
In this tutorial we will learn how to use AKAZE @cite ANB13 local features to detect and match keypoints on
|
||||
two images.
|
||||
|
||||
We will find keypoints on a pair of images with given homography matrix, match them and count the
|
||||
|
||||
number of inliers (i. e. matches that fit in the given homography).
|
||||
|
||||
You can find expanded version of this example here:
|
||||
@@ -18,7 +18,7 @@ Data
|
||||
|
||||
We are going to use images 1 and 3 from *Graffity* sequence of Oxford dataset.
|
||||
|
||||

|
||||

|
||||
|
||||
Homography is given by a 3 by 3 matrix:
|
||||
@code{.none}
|
||||
@@ -35,92 +35,92 @@ You can find the images (*graf1.png*, *graf3.png*) and homography (*H1to3p.xml*)
|
||||
|
||||
### Explanation
|
||||
|
||||
1. **Load images and homography**
|
||||
@code{.cpp}
|
||||
Mat img1 = imread("graf1.png", IMREAD_GRAYSCALE);
|
||||
Mat img2 = imread("graf3.png", IMREAD_GRAYSCALE);
|
||||
-# **Load images and homography**
|
||||
@code{.cpp}
|
||||
Mat img1 = imread("graf1.png", IMREAD_GRAYSCALE);
|
||||
Mat img2 = imread("graf3.png", IMREAD_GRAYSCALE);
|
||||
|
||||
Mat homography;
|
||||
FileStorage fs("H1to3p.xml", FileStorage::READ);
|
||||
fs.getFirstTopLevelNode() >> homography;
|
||||
@endcode
|
||||
We are loading grayscale images here. Homography is stored in the xml created with FileStorage.
|
||||
Mat homography;
|
||||
FileStorage fs("H1to3p.xml", FileStorage::READ);
|
||||
fs.getFirstTopLevelNode() >> homography;
|
||||
@endcode
|
||||
We are loading grayscale images here. Homography is stored in the xml created with FileStorage.
|
||||
|
||||
1. **Detect keypoints and compute descriptors using AKAZE**
|
||||
@code{.cpp}
|
||||
vector<KeyPoint> kpts1, kpts2;
|
||||
Mat desc1, desc2;
|
||||
-# **Detect keypoints and compute descriptors using AKAZE**
|
||||
@code{.cpp}
|
||||
vector<KeyPoint> kpts1, kpts2;
|
||||
Mat desc1, desc2;
|
||||
|
||||
AKAZE akaze;
|
||||
akaze(img1, noArray(), kpts1, desc1);
|
||||
akaze(img2, noArray(), kpts2, desc2);
|
||||
@endcode
|
||||
We create AKAZE object and use it's *operator()* functionality. Since we don't need the *mask*
|
||||
parameter, *noArray()* is used.
|
||||
AKAZE akaze;
|
||||
akaze(img1, noArray(), kpts1, desc1);
|
||||
akaze(img2, noArray(), kpts2, desc2);
|
||||
@endcode
|
||||
We create AKAZE object and use it's *operator()* functionality. Since we don't need the *mask*
|
||||
parameter, *noArray()* is used.
|
||||
|
||||
1. **Use brute-force matcher to find 2-nn matches**
|
||||
@code{.cpp}
|
||||
BFMatcher matcher(NORM_HAMMING);
|
||||
vector< vector<DMatch> > nn_matches;
|
||||
matcher.knnMatch(desc1, desc2, nn_matches, 2);
|
||||
@endcode
|
||||
We use Hamming distance, because AKAZE uses binary descriptor by default.
|
||||
-# **Use brute-force matcher to find 2-nn matches**
|
||||
@code{.cpp}
|
||||
BFMatcher matcher(NORM_HAMMING);
|
||||
vector< vector<DMatch> > nn_matches;
|
||||
matcher.knnMatch(desc1, desc2, nn_matches, 2);
|
||||
@endcode
|
||||
We use Hamming distance, because AKAZE uses binary descriptor by default.
|
||||
|
||||
1. **Use 2-nn matches to find correct keypoint matches**
|
||||
@code{.cpp}
|
||||
for(size_t i = 0; i < nn_matches.size(); i++) {
|
||||
DMatch first = nn_matches[i][0];
|
||||
float dist1 = nn_matches[i][0].distance;
|
||||
float dist2 = nn_matches[i][1].distance;
|
||||
-# **Use 2-nn matches to find correct keypoint matches**
|
||||
@code{.cpp}
|
||||
for(size_t i = 0; i < nn_matches.size(); i++) {
|
||||
DMatch first = nn_matches[i][0];
|
||||
float dist1 = nn_matches[i][0].distance;
|
||||
float dist2 = nn_matches[i][1].distance;
|
||||
|
||||
if(dist1 < nn_match_ratio * dist2) {
|
||||
matched1.push_back(kpts1[first.queryIdx]);
|
||||
matched2.push_back(kpts2[first.trainIdx]);
|
||||
if(dist1 < nn_match_ratio * dist2) {
|
||||
matched1.push_back(kpts1[first.queryIdx]);
|
||||
matched2.push_back(kpts2[first.trainIdx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
@endcode
|
||||
If the closest match is *ratio* closer than the second closest one, then the match is correct.
|
||||
@endcode
|
||||
If the closest match is *ratio* closer than the second closest one, then the match is correct.
|
||||
|
||||
1. **Check if our matches fit in the homography model**
|
||||
@code{.cpp}
|
||||
for(int i = 0; i < matched1.size(); i++) {
|
||||
Mat col = Mat::ones(3, 1, CV_64F);
|
||||
col.at<double>(0) = matched1[i].pt.x;
|
||||
col.at<double>(1) = matched1[i].pt.y;
|
||||
-# **Check if our matches fit in the homography model**
|
||||
@code{.cpp}
|
||||
for(int i = 0; i < matched1.size(); i++) {
|
||||
Mat col = Mat::ones(3, 1, CV_64F);
|
||||
col.at<double>(0) = matched1[i].pt.x;
|
||||
col.at<double>(1) = matched1[i].pt.y;
|
||||
|
||||
col = homography * col;
|
||||
col /= col.at<double>(2);
|
||||
float dist = sqrt( pow(col.at<double>(0) - matched2[i].pt.x, 2) +
|
||||
pow(col.at<double>(1) - matched2[i].pt.y, 2));
|
||||
col = homography * col;
|
||||
col /= col.at<double>(2);
|
||||
float dist = sqrt( pow(col.at<double>(0) - matched2[i].pt.x, 2) +
|
||||
pow(col.at<double>(1) - matched2[i].pt.y, 2));
|
||||
|
||||
if(dist < inlier_threshold) {
|
||||
int new_i = inliers1.size();
|
||||
inliers1.push_back(matched1[i]);
|
||||
inliers2.push_back(matched2[i]);
|
||||
good_matches.push_back(DMatch(new_i, new_i, 0));
|
||||
if(dist < inlier_threshold) {
|
||||
int new_i = inliers1.size();
|
||||
inliers1.push_back(matched1[i]);
|
||||
inliers2.push_back(matched2[i]);
|
||||
good_matches.push_back(DMatch(new_i, new_i, 0));
|
||||
}
|
||||
}
|
||||
}
|
||||
@endcode
|
||||
If the distance from first keypoint's projection to the second keypoint is less than threshold,
|
||||
then it it fits in the homography.
|
||||
@endcode
|
||||
If the distance from first keypoint's projection to the second keypoint is less than threshold,
|
||||
then it it fits in the homography.
|
||||
|
||||
We create a new set of matches for the inliers, because it is required by the drawing function.
|
||||
We create a new set of matches for the inliers, because it is required by the drawing function.
|
||||
|
||||
1. **Output results**
|
||||
@code{.cpp}
|
||||
Mat res;
|
||||
drawMatches(img1, inliers1, img2, inliers2, good_matches, res);
|
||||
imwrite("res.png", res);
|
||||
...
|
||||
@endcode
|
||||
Here we save the resulting image and print some statistics.
|
||||
-# **Output results**
|
||||
@code{.cpp}
|
||||
Mat res;
|
||||
drawMatches(img1, inliers1, img2, inliers2, good_matches, res);
|
||||
imwrite("res.png", res);
|
||||
...
|
||||
@endcode
|
||||
Here we save the resulting image and print some statistics.
|
||||
|
||||
### Results
|
||||
|
||||
Found matches
|
||||
-------------
|
||||
|
||||

|
||||

|
||||
|
||||
A-KAZE Matching Results
|
||||
-----------------------
|
||||
|
@@ -152,8 +152,9 @@ A-KAZE Matching Results
|
||||
--------------------------
|
||||
|
||||
.. code-block:: none
|
||||
Keypoints 1: 2943
|
||||
Keypoints 2: 3511
|
||||
Matches: 447
|
||||
Inliers: 308
|
||||
Inlier Ratio: 0.689038
|
||||
|
||||
Keypoints 1 2943
|
||||
Keypoints 2 3511
|
||||
Matches 447
|
||||
Inliers 308
|
||||
Inlier Ratio 0.689038
|
||||
|
Reference in New Issue
Block a user