Merge remote-tracking branch 'origin/2.4' into merge-2.4
Conflicts: modules/core/include/opencv2/core/internal.hpp modules/core/src/arithm.cpp modules/imgproc/src/imgwarp.cpp modules/objdetect/src/hog.cpp
This commit is contained in:
commit
313a0ad255
@ -55,7 +55,7 @@ Building the OpenCV library from scratch requires a couple of tools installed be
|
||||
.. |TortoiseGit| replace:: TortoiseGit
|
||||
.. _TortoiseGit: http://code.google.com/p/tortoisegit/wiki/Download
|
||||
.. |Python_Libraries| replace:: Python libraries
|
||||
.. _Python_Libraries: http://www.python.org/getit/
|
||||
.. _Python_Libraries: http://www.python.org/downloads/
|
||||
.. |Numpy| replace:: Numpy
|
||||
.. _Numpy: http://numpy.scipy.org/
|
||||
.. |IntelTBB| replace:: Intel |copy| Threading Building Blocks (*TBB*)
|
||||
|
@ -90,17 +90,25 @@ A full list, for the latest version would contain:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
opencv_core231d.lib
|
||||
opencv_imgproc231d.lib
|
||||
opencv_highgui231d.lib
|
||||
opencv_ml231d.lib
|
||||
opencv_video231d.lib
|
||||
opencv_features2d231d.lib
|
||||
opencv_calib3d231d.lib
|
||||
opencv_objdetect231d.lib
|
||||
opencv_contrib231d.lib
|
||||
opencv_legacy231d.lib
|
||||
opencv_flann231d.lib
|
||||
opencv_calib3d249d.lib
|
||||
opencv_contrib249d.lib
|
||||
opencv_core249d.lib
|
||||
opencv_features2d249d.lib
|
||||
opencv_flann249d.lib
|
||||
opencv_gpu249d.lib
|
||||
opencv_highgui249d.lib
|
||||
opencv_imgproc249d.lib
|
||||
opencv_legacy249d.lib
|
||||
opencv_ml249d.lib
|
||||
opencv_nonfree249d.lib
|
||||
opencv_objdetect249d.lib
|
||||
opencv_ocl249d.lib
|
||||
opencv_photo249d.lib
|
||||
opencv_stitching249d.lib
|
||||
opencv_superres249d.lib
|
||||
opencv_ts249d.lib
|
||||
opencv_video249d.lib
|
||||
opencv_videostab249d.lib
|
||||
|
||||
The letter *d* at the end just indicates that these are the libraries required for the debug. Now click ok to save and do the same with a new property inside the Release rule section. Make sure to omit the *d* letters from the library names and to save the property sheets with the save icon above them.
|
||||
|
||||
|
@ -1813,39 +1813,60 @@ void cv::add( InputArray src1, InputArray src2, OutputArray dst,
|
||||
arithm_op(src1, src2, dst, mask, dtype, getAddTab(), false, 0, OCL_OP_ADD );
|
||||
}
|
||||
|
||||
void cv::subtract( InputArray src1, InputArray src2, OutputArray dst,
|
||||
void cv::subtract( InputArray _src1, InputArray _src2, OutputArray _dst,
|
||||
InputArray mask, int dtype )
|
||||
{
|
||||
#ifdef HAVE_TEGRA_OPTIMIZATION
|
||||
if (mask.empty() && src1.depth() == CV_8U && src2.depth() == CV_8U)
|
||||
{
|
||||
if (dtype == -1 && dst.fixedType())
|
||||
dtype = dst.depth();
|
||||
int kind1 = _src1.kind(), kind2 = _src2.kind();
|
||||
Mat src1 = _src1.getMat(), src2 = _src2.getMat();
|
||||
bool src1Scalar = checkScalar(src1, _src2.type(), kind1, kind2);
|
||||
bool src2Scalar = checkScalar(src2, _src1.type(), kind2, kind1);
|
||||
|
||||
if (!dst.fixedType() || dtype == dst.depth())
|
||||
if (!src1Scalar && !src2Scalar &&
|
||||
src1.depth() == CV_8U && src2.type() == src1.type() &&
|
||||
src1.dims == 2 && src2.size() == src1.size() &&
|
||||
mask.empty())
|
||||
{
|
||||
if (dtype < 0)
|
||||
{
|
||||
if (_dst.fixedType())
|
||||
{
|
||||
dtype = _dst.depth();
|
||||
}
|
||||
else
|
||||
{
|
||||
dtype = src1.depth();
|
||||
}
|
||||
}
|
||||
|
||||
dtype = CV_MAT_DEPTH(dtype);
|
||||
|
||||
if (!_dst.fixedType() || dtype == _dst.depth())
|
||||
{
|
||||
_dst.create(src1.size(), CV_MAKE_TYPE(dtype, src1.channels()));
|
||||
|
||||
if (dtype == CV_16S)
|
||||
{
|
||||
Mat _dst = dst.getMat();
|
||||
if(tegra::subtract_8u8u16s(src1.getMat(), src2.getMat(), _dst))
|
||||
Mat dst = _dst.getMat();
|
||||
if(tegra::subtract_8u8u16s(src1, src2, dst))
|
||||
return;
|
||||
}
|
||||
else if (dtype == CV_32F)
|
||||
{
|
||||
Mat _dst = dst.getMat();
|
||||
if(tegra::subtract_8u8u32f(src1.getMat(), src2.getMat(), _dst))
|
||||
Mat dst = _dst.getMat();
|
||||
if(tegra::subtract_8u8u32f(src1, src2, dst))
|
||||
return;
|
||||
}
|
||||
else if (dtype == CV_8S)
|
||||
{
|
||||
Mat _dst = dst.getMat();
|
||||
if(tegra::subtract_8u8u8s(src1.getMat(), src2.getMat(), _dst))
|
||||
Mat dst = _dst.getMat();
|
||||
if(tegra::subtract_8u8u8s(src1, src2, dst))
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
arithm_op(src1, src2, dst, mask, dtype, getSubTab(), false, 0, OCL_OP_SUB );
|
||||
arithm_op(_src1, _src2, _dst, mask, dtype, getSubTab(), false, 0, OCL_OP_SUB );
|
||||
}
|
||||
|
||||
void cv::absdiff( InputArray src1, InputArray src2, OutputArray dst )
|
||||
|
@ -1578,3 +1578,216 @@ TEST_P(Mul1, One)
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Arithm, Mul1, testing::Values(Size(2, 2), Size(1, 1)));
|
||||
|
||||
class SubtractOutputMatNotEmpty : public testing::TestWithParam< std::tr1::tuple<cv::Size, perf::MatType, perf::MatDepth, bool> >
|
||||
{
|
||||
public:
|
||||
cv::Size size;
|
||||
int src_type;
|
||||
int dst_depth;
|
||||
bool fixed;
|
||||
|
||||
void SetUp()
|
||||
{
|
||||
size = std::tr1::get<0>(GetParam());
|
||||
src_type = std::tr1::get<1>(GetParam());
|
||||
dst_depth = std::tr1::get<2>(GetParam());
|
||||
fixed = std::tr1::get<3>(GetParam());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(SubtractOutputMatNotEmpty, Mat_Mat)
|
||||
{
|
||||
cv::Mat src1(size, src_type, cv::Scalar::all(16));
|
||||
cv::Mat src2(size, src_type, cv::Scalar::all(16));
|
||||
|
||||
cv::Mat dst;
|
||||
|
||||
if (!fixed)
|
||||
{
|
||||
cv::subtract(src1, src2, dst, cv::noArray(), dst_depth);
|
||||
}
|
||||
else
|
||||
{
|
||||
const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src1.channels()));
|
||||
cv::subtract(src1, src2, fixed_dst, cv::noArray(), dst_depth);
|
||||
dst = fixed_dst;
|
||||
dst_depth = fixed_dst.depth();
|
||||
}
|
||||
|
||||
ASSERT_FALSE(dst.empty());
|
||||
ASSERT_EQ(src1.size(), dst.size());
|
||||
ASSERT_EQ(dst_depth > 0 ? dst_depth : src1.depth(), dst.depth());
|
||||
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
|
||||
}
|
||||
|
||||
TEST_P(SubtractOutputMatNotEmpty, Mat_Mat_WithMask)
|
||||
{
|
||||
cv::Mat src1(size, src_type, cv::Scalar::all(16));
|
||||
cv::Mat src2(size, src_type, cv::Scalar::all(16));
|
||||
cv::Mat mask(size, CV_8UC1, cv::Scalar::all(255));
|
||||
|
||||
cv::Mat dst;
|
||||
|
||||
if (!fixed)
|
||||
{
|
||||
cv::subtract(src1, src2, dst, mask, dst_depth);
|
||||
}
|
||||
else
|
||||
{
|
||||
const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src1.channels()));
|
||||
cv::subtract(src1, src2, fixed_dst, mask, dst_depth);
|
||||
dst = fixed_dst;
|
||||
dst_depth = fixed_dst.depth();
|
||||
}
|
||||
|
||||
ASSERT_FALSE(dst.empty());
|
||||
ASSERT_EQ(src1.size(), dst.size());
|
||||
ASSERT_EQ(dst_depth > 0 ? dst_depth : src1.depth(), dst.depth());
|
||||
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
|
||||
}
|
||||
|
||||
TEST_P(SubtractOutputMatNotEmpty, Mat_Mat_Expr)
|
||||
{
|
||||
cv::Mat src1(size, src_type, cv::Scalar::all(16));
|
||||
cv::Mat src2(size, src_type, cv::Scalar::all(16));
|
||||
|
||||
cv::Mat dst = src1 - src2;
|
||||
|
||||
ASSERT_FALSE(dst.empty());
|
||||
ASSERT_EQ(src1.size(), dst.size());
|
||||
ASSERT_EQ(src1.depth(), dst.depth());
|
||||
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
|
||||
}
|
||||
|
||||
TEST_P(SubtractOutputMatNotEmpty, Mat_Scalar)
|
||||
{
|
||||
cv::Mat src(size, src_type, cv::Scalar::all(16));
|
||||
|
||||
cv::Mat dst;
|
||||
|
||||
if (!fixed)
|
||||
{
|
||||
cv::subtract(src, cv::Scalar::all(16), dst, cv::noArray(), dst_depth);
|
||||
}
|
||||
else
|
||||
{
|
||||
const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src.channels()));
|
||||
cv::subtract(src, cv::Scalar::all(16), fixed_dst, cv::noArray(), dst_depth);
|
||||
dst = fixed_dst;
|
||||
dst_depth = fixed_dst.depth();
|
||||
}
|
||||
|
||||
ASSERT_FALSE(dst.empty());
|
||||
ASSERT_EQ(src.size(), dst.size());
|
||||
ASSERT_EQ(dst_depth > 0 ? dst_depth : src.depth(), dst.depth());
|
||||
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
|
||||
}
|
||||
|
||||
TEST_P(SubtractOutputMatNotEmpty, Mat_Scalar_WithMask)
|
||||
{
|
||||
cv::Mat src(size, src_type, cv::Scalar::all(16));
|
||||
cv::Mat mask(size, CV_8UC1, cv::Scalar::all(255));
|
||||
|
||||
cv::Mat dst;
|
||||
|
||||
if (!fixed)
|
||||
{
|
||||
cv::subtract(src, cv::Scalar::all(16), dst, mask, dst_depth);
|
||||
}
|
||||
else
|
||||
{
|
||||
const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src.channels()));
|
||||
cv::subtract(src, cv::Scalar::all(16), fixed_dst, mask, dst_depth);
|
||||
dst = fixed_dst;
|
||||
dst_depth = fixed_dst.depth();
|
||||
}
|
||||
|
||||
ASSERT_FALSE(dst.empty());
|
||||
ASSERT_EQ(src.size(), dst.size());
|
||||
ASSERT_EQ(dst_depth > 0 ? dst_depth : src.depth(), dst.depth());
|
||||
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
|
||||
}
|
||||
|
||||
TEST_P(SubtractOutputMatNotEmpty, Scalar_Mat)
|
||||
{
|
||||
cv::Mat src(size, src_type, cv::Scalar::all(16));
|
||||
|
||||
cv::Mat dst;
|
||||
|
||||
if (!fixed)
|
||||
{
|
||||
cv::subtract(cv::Scalar::all(16), src, dst, cv::noArray(), dst_depth);
|
||||
}
|
||||
else
|
||||
{
|
||||
const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src.channels()));
|
||||
cv::subtract(cv::Scalar::all(16), src, fixed_dst, cv::noArray(), dst_depth);
|
||||
dst = fixed_dst;
|
||||
dst_depth = fixed_dst.depth();
|
||||
}
|
||||
|
||||
ASSERT_FALSE(dst.empty());
|
||||
ASSERT_EQ(src.size(), dst.size());
|
||||
ASSERT_EQ(dst_depth > 0 ? dst_depth : src.depth(), dst.depth());
|
||||
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
|
||||
}
|
||||
|
||||
TEST_P(SubtractOutputMatNotEmpty, Scalar_Mat_WithMask)
|
||||
{
|
||||
cv::Mat src(size, src_type, cv::Scalar::all(16));
|
||||
cv::Mat mask(size, CV_8UC1, cv::Scalar::all(255));
|
||||
|
||||
cv::Mat dst;
|
||||
|
||||
if (!fixed)
|
||||
{
|
||||
cv::subtract(cv::Scalar::all(16), src, dst, mask, dst_depth);
|
||||
}
|
||||
else
|
||||
{
|
||||
const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src.channels()));
|
||||
cv::subtract(cv::Scalar::all(16), src, fixed_dst, mask, dst_depth);
|
||||
dst = fixed_dst;
|
||||
dst_depth = fixed_dst.depth();
|
||||
}
|
||||
|
||||
ASSERT_FALSE(dst.empty());
|
||||
ASSERT_EQ(src.size(), dst.size());
|
||||
ASSERT_EQ(dst_depth > 0 ? dst_depth : src.depth(), dst.depth());
|
||||
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
|
||||
}
|
||||
|
||||
TEST_P(SubtractOutputMatNotEmpty, Mat_Mat_3d)
|
||||
{
|
||||
int dims[] = {5, size.height, size.width};
|
||||
|
||||
cv::Mat src1(3, dims, src_type, cv::Scalar::all(16));
|
||||
cv::Mat src2(3, dims, src_type, cv::Scalar::all(16));
|
||||
|
||||
cv::Mat dst;
|
||||
|
||||
if (!fixed)
|
||||
{
|
||||
cv::subtract(src1, src2, dst, cv::noArray(), dst_depth);
|
||||
}
|
||||
else
|
||||
{
|
||||
const cv::Mat fixed_dst(3, dims, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src1.channels()));
|
||||
cv::subtract(src1, src2, fixed_dst, cv::noArray(), dst_depth);
|
||||
dst = fixed_dst;
|
||||
dst_depth = fixed_dst.depth();
|
||||
}
|
||||
|
||||
ASSERT_FALSE(dst.empty());
|
||||
ASSERT_EQ(src1.dims, dst.dims);
|
||||
ASSERT_EQ(src1.size, dst.size);
|
||||
ASSERT_EQ(dst_depth > 0 ? dst_depth : src1.depth(), dst.depth());
|
||||
ASSERT_EQ(0, cv::countNonZero(dst.reshape(1)));
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Arithm, SubtractOutputMatNotEmpty, testing::Combine(
|
||||
testing::Values(cv::Size(16, 16), cv::Size(13, 13), cv::Size(16, 13), cv::Size(13, 16)),
|
||||
testing::Values(perf::MatType(CV_8UC1), CV_8UC3, CV_8UC4, CV_16SC1, CV_16SC3),
|
||||
testing::Values(-1, CV_16S, CV_32S, CV_32F),
|
||||
testing::Bool()));
|
||||
|
@ -4385,7 +4385,6 @@ class WarpPerspectiveInvoker :
|
||||
public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
|
||||
WarpPerspectiveInvoker(const Mat &_src, Mat &_dst, double *_M, int _interpolation,
|
||||
int _borderType, const Scalar &_borderValue) :
|
||||
ParallelLoopBody(), src(_src), dst(_dst), M(_M), interpolation(_interpolation),
|
||||
@ -4479,7 +4478,7 @@ class IPPWarpPerspectiveInvoker :
|
||||
{
|
||||
public:
|
||||
IPPWarpPerspectiveInvoker(Mat &_src, Mat &_dst, double (&_coeffs)[3][3], int &_interpolation,
|
||||
int &_borderType, const Scalar &_borderValue, ippiWarpPerspectiveFunc _func, bool *_ok) :
|
||||
int &_borderType, const Scalar &_borderValue, ippiWarpPerspectiveFunc _func, bool *_ok) :
|
||||
ParallelLoopBody(), src(_src), dst(_dst), mode(_interpolation), coeffs(_coeffs),
|
||||
borderType(_borderType), borderValue(_borderValue), func(_func), ok(_ok)
|
||||
{
|
||||
|
@ -1288,7 +1288,7 @@ static bool IPPMorphOp(int op, InputArray _src, OutputArray _dst,
|
||||
return false;
|
||||
}
|
||||
}
|
||||
for( x = 0; y < kernel.cols; x++ )
|
||||
for( x = 0; x < kernel.cols; x++ )
|
||||
{
|
||||
if( kernel.at<uchar>(anchor.y, x) != 0 )
|
||||
continue;
|
||||
|
@ -103,6 +103,7 @@ macro(ios_include_3party_libs)
|
||||
list(APPEND objlist "\"${objpath3}\"")
|
||||
endforeach() # (srcname ${sources})
|
||||
endforeach()
|
||||
ocv_list_filterout(objlist jmemansi) # <<= dirty fix
|
||||
endmacro()
|
||||
|
||||
if(IOS AND WITH_PNG)
|
||||
|
@ -40,6 +40,7 @@ def build_opencv(srcroot, buildroot, target, arch):
|
||||
"-DCMAKE_BUILD_TYPE=Release " +
|
||||
"-DCMAKE_TOOLCHAIN_FILE=%s/platforms/ios/cmake/Toolchains/Toolchain-%s_Xcode.cmake " +
|
||||
"-DBUILD_opencv_world=ON " +
|
||||
"-DCMAKE_C_FLAGS=\"-Wno-implicit-function-declaration\" " +
|
||||
"-DCMAKE_INSTALL_PREFIX=install") % (srcroot, target)
|
||||
# if cmake cache exists, just rerun cmake to update OpenCV.xproj if necessary
|
||||
if os.path.isfile(os.path.join(builddir, "CMakeCache.txt")):
|
||||
|
Loading…
x
Reference in New Issue
Block a user