Merge pull request #299 from branch 'bitwangyaoyao_ocl' into 2.4

This commit is contained in:
Andrey Kamaev 2013-01-23 14:49:36 +04:00
commit 311d799344
10 changed files with 2448 additions and 1236 deletions

View File

@ -2,18 +2,78 @@ if(APPLE)
set(OPENCL_FOUND YES)
set(OPENCL_LIBRARIES "-framework OpenCL")
else()
#find_package(OpenCL QUIET)
find_package(OpenCL QUIET)
if(WITH_OPENCLAMDFFT)
set(CLAMDFFT_SEARCH_PATH $ENV{CLAMDFFT_PATH})
if(NOT CLAMDFFT_SEARCH_PATH)
if(WIN32)
set( CLAMDFFT_SEARCH_PATH "C:\\Program Files (x86)\\AMD\\clAmdFft" )
endif()
endif()
set( CLAMDFFT_INCLUDE_SEARCH_PATH ${CLAMDFFT_SEARCH_PATH}/include )
if(UNIX)
if(CMAKE_SIZEOF_VOID_P EQUAL 4)
set(CLAMDFFT_LIB_SEARCH_PATH /usr/lib)
else()
set(CLAMDFFT_LIB_SEARCH_PATH /usr/lib64)
endif()
else()
if(CMAKE_SIZEOF_VOID_P EQUAL 4)
set(CLAMDFFT_LIB_SEARCH_PATH ${CLAMDFFT_SEARCH_PATH}\\lib32\\import)
else()
set(CLAMDFFT_LIB_SEARCH_PATH ${CLAMDFFT_SEARCH_PATH}\\lib64\\import)
endif()
endif()
find_path(CLAMDFFT_INCLUDE_DIR
NAMES clAmdFft.h)
find_library(CLAMDFFT_LIBRARIES
NAMES clAmdFft.Runtime)
NAMES clAmdFft.h
PATHS ${CLAMDFFT_INCLUDE_SEARCH_PATH}
PATH_SUFFIXES clAmdFft
NO_DEFAULT_PATH)
find_library(CLAMDFFT_LIBRARY
NAMES clAmdFft.Runtime
PATHS ${CLAMDFFT_LIB_SEARCH_PATH}
NO_DEFAULT_PATH)
if(CLAMDFFT_LIBRARY)
set(CLAMDFFT_LIBRARIES ${CLAMDFFT_LIBRARY})
else()
set(CLAMDFFT_LIBRARIES "")
endif()
endif()
if(WITH_OPENCLAMDBLAS)
set(CLAMDBLAS_SEARCH_PATH $ENV{CLAMDBLAS_PATH})
if(NOT CLAMDBLAS_SEARCH_PATH)
if(WIN32)
set( CLAMDBLAS_SEARCH_PATH "C:\\Program Files (x86)\\AMD\\clAmdBlas" )
endif()
endif()
set( CLAMDBLAS_INCLUDE_SEARCH_PATH ${CLAMDBLAS_SEARCH_PATH}/include )
if(UNIX)
if(CMAKE_SIZEOF_VOID_P EQUAL 4)
set(CLAMDBLAS_LIB_SEARCH_PATH /usr/lib)
else()
set(CLAMDBLAS_LIB_SEARCH_PATH /usr/lib64)
endif()
else()
if(CMAKE_SIZEOF_VOID_P EQUAL 4)
set(CLAMDBLAS_LIB_SEARCH_PATH ${CLAMDBLAS_SEARCH_PATH}\\lib32\\import)
else()
set(CLAMDBLAS_LIB_SEARCH_PATH ${CLAMDBLAS_SEARCH_PATH}\\lib64\\import)
endif()
endif()
find_path(CLAMDBLAS_INCLUDE_DIR
NAMES clAmdBlas.h)
find_library(CLAMDBLAS_LIBRARIES
NAMES clAmdBlas)
NAMES clAmdBlas.h
PATHS ${CLAMDBLAS_INCLUDE_SEARCH_PATH}
PATH_SUFFIXES clAmdBlas
NO_DEFAULT_PATH)
find_library(CLAMDBLAS_LIBRARY
NAMES clAmdBlas
PATHS ${CLAMDBLAS_LIB_SEARCH_PATH}
NO_DEFAULT_PATH)
if(CLAMDBLAS_LIBRARY)
set(CLAMDBLAS_LIBRARIES ${CLAMDBLAS_LIBRARY})
else()
set(CLAMDBLAS_LIBRARIES "")
endif()
endif()
# Try AMD/ATI Stream SDK
if (NOT OPENCL_FOUND)

View File

@ -41,8 +41,8 @@
//
//M*/
#ifndef __OPENCV_GPU_HPP__
#define __OPENCV_GPU_HPP__
#ifndef __OPENCV_OCL_HPP__
#define __OPENCV_OCL_HPP__
#include <memory>
#include <vector>

View File

@ -47,6 +47,7 @@
//M*/
#include "precomp.hpp"
#include "mcwutil.hpp"
#include <iostream>
using namespace std;
using namespace cv;
@ -194,7 +195,9 @@ namespace
inline void normalizeAnchor(int &anchor, int ksize)
{
if (anchor < 0)
{
anchor = ksize >> 1;
}
CV_Assert(0 <= anchor && anchor < ksize);
}
@ -208,7 +211,10 @@ namespace
inline void normalizeROI(Rect &roi, const Size &ksize, const Point &anchor, const Size &src_size)
{
if (roi == Rect(0, 0, -1, -1))
{
roi = Rect(0, 0, src_size.width, src_size.height);
}
CV_Assert(ksize.height > 0 && ksize.width > 0 && ((ksize.height & 1) == 1) && ((ksize.width & 1) == 1));
CV_Assert((anchor.x == -1 && anchor.y == -1) || (anchor.x == ksize.width >> 1 && anchor.y == ksize.height >> 1));
CV_Assert(roi.x >= 0 && roi.y >= 0 && roi.width <= src_size.width && roi.height <= src_size.height);
@ -218,7 +224,11 @@ namespace
inline void normalizeKernel(const Mat &kernel, oclMat &gpu_krnl, int type = CV_8U, int *nDivisor = 0, bool reverse = false)
{
int scale = nDivisor && (kernel.depth() == CV_32F || kernel.depth() == CV_64F) ? 256 : 1;
if (nDivisor) *nDivisor = scale;
if (nDivisor)
{
*nDivisor = scale;
}
Mat temp(kernel.size(), type);
kernel.convertTo(temp, type, scale);
@ -227,6 +237,7 @@ namespace
if (reverse)
{
int count = cont_krnl.cols >> 1;
for (int i = 0; i < count; ++i)
{
std::swap(cont_krnl.at<int>(0, i), cont_krnl.at<int>(0, cont_krnl.cols - 1 - i));
@ -353,7 +364,9 @@ void GPUErode(const oclMat &src, oclMat &dst, oclMat &mat_kernel, Size &ksize, c
kernelName = "morph";
CV_Assert(localThreads[0]*localThreads[1] * 2 >= (localThreads[0] + ksize.width - 1) * (localThreads[1] + ksize.height - 1));
}
char s[64];
switch (src.type())
{
case CV_8UC1:
@ -373,6 +386,7 @@ void GPUErode(const oclMat &src, oclMat &dst, oclMat &mat_kernel, Size &ksize, c
default:
CV_Error(CV_StsUnsupportedFormat, "unsupported type");
}
char compile_option[128];
sprintf(compile_option, "-D RADIUSX=%d -D RADIUSY=%d -D LSIZE0=%d -D LSIZE1=%d -D ERODE %s", anchor.x, anchor.y, localThreads[0], localThreads[1], s);
vector< pair<size_t, const void *> > args;
@ -425,7 +439,9 @@ void GPUDilate(const oclMat &src, oclMat &dst, oclMat &mat_kernel, Size &ksize,
kernelName = "morph";
CV_Assert(localThreads[0]*localThreads[1] * 2 >= (localThreads[0] + ksize.width - 1) * (localThreads[1] + ksize.height - 1));
}
char s[64];
switch (src.type())
{
case CV_8UC1:
@ -445,6 +461,7 @@ void GPUDilate(const oclMat &src, oclMat &dst, oclMat &mat_kernel, Size &ksize,
default:
CV_Error(CV_StsUnsupportedFormat, "unsupported type");
}
char compile_option[128];
sprintf(compile_option, "-D RADIUSX=%d -D RADIUSY=%d -D LSIZE0=%d -D LSIZE1=%d -D DILATE %s", anchor.x, anchor.y, localThreads[0], localThreads[1], s);
vector< pair<size_t, const void *> > args;
@ -492,6 +509,7 @@ namespace
virtual void apply(const oclMat &src, oclMat &dst)
{
Filter2DEngine_GPU::apply(src, dst);
//if (iters > 1)
//{
// Size wholesize;
@ -545,6 +563,7 @@ namespace
{
CV_Error(CV_StsBadArg, "unsupported border type");
}
Mat kernel;
Size ksize = _kernel.data ? _kernel.size() : Size(3, 3);
@ -572,7 +591,9 @@ namespace
iterations = 1;
}
else
{
kernel = _kernel;
}
Ptr<FilterEngine_GPU> f = createMorphologyFilter_GPU(op, src.type(), kernel, anchor, iterations);
@ -584,13 +605,18 @@ void cv::ocl::erode( const oclMat &src, oclMat &dst, const Mat &kernel, Point an
int borderType, const Scalar &borderValue)
{
bool allZero = true;
for (int i = 0; i < kernel.rows * kernel.cols; ++i)
if (kernel.data[i] != 0)
{
allZero = false;
}
if (allZero)
{
kernel.data[0] = 1;
}
morphOp(MORPH_ERODE, src, dst, kernel, anchor, iterations, borderType, borderValue);
}
@ -604,6 +630,7 @@ void cv::ocl::morphologyEx( const oclMat &src, oclMat &dst, int op, const Mat &k
int borderType, const Scalar &borderValue)
{
oclMat temp;
switch (op)
{
case MORPH_ERODE:
@ -751,7 +778,9 @@ void cv::ocl::filter2D(const oclMat &src, oclMat &dst, int ddepth, const Mat &ke
{
if (ddepth < 0)
{
ddepth = src.depth();
}
dst.create(src.size(), CV_MAKETYPE(ddepth, src.channels()));
@ -782,10 +811,10 @@ namespace
int cn = src.oclchannels();
//dst.create(src_size, src_type);
dst = Scalar(0.0);
//dst = Scalar(0.0);
//dstBuf.create(src_size, src_type);
dstBuf.create(src_size.height + ksize.height - 1, src_size.width, CV_MAKETYPE(CV_32F, cn));
dstBuf = Scalar(0.0);
//dstBuf = Scalar(0.0);
normalizeROI(roi, ksize, anchor, src_size);
@ -835,6 +864,7 @@ void GPUFilterBox_8u_C1R(const oclMat &src, oclMat &dst,
string kernelName = "boxFilter_C1_D0";
char btype[30];
switch (borderType)
{
case 0:
@ -896,6 +926,7 @@ void GPUFilterBox_8u_C4R(const oclMat &src, oclMat &dst,
string kernelName = "boxFilter_C4_D0";
char btype[30];
switch (borderType)
{
case 0:
@ -957,6 +988,7 @@ void GPUFilterBox_32F_C1R(const oclMat &src, oclMat &dst,
string kernelName = "boxFilter_C1_D5";
char btype[30];
switch (borderType)
{
case 0:
@ -1019,6 +1051,7 @@ void GPUFilterBox_32F_C4R(const oclMat &src, oclMat &dst,
string kernelName = "boxFilter_C4_D5";
char btype[30];
switch (borderType)
{
case 0:
@ -1095,8 +1128,11 @@ void cv::ocl::boxFilter(const oclMat &src, oclMat &dst, int ddepth, Size ksize,
Point anchor, int borderType)
{
int sdepth = src.depth(), cn = src.channels();
if (ddepth < 0)
{
ddepth = sdepth;
}
dst.create(src.size(), CV_MAKETYPE(ddepth, cn));
@ -1161,6 +1197,7 @@ void linearRowFilter_gpu(const oclMat &src, const oclMat &dst, oclMat mat_kernel
string kernelName = "row_filter";
char btype[30];
switch (bordertype)
{
case 0:
@ -1179,12 +1216,14 @@ void linearRowFilter_gpu(const oclMat &src, const oclMat &dst, oclMat mat_kernel
sprintf(btype, "BORDER_REFLECT_101");
break;
}
char compile_option[128];
sprintf(compile_option, "-D RADIUSX=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D %s", anchor, localThreads[0], localThreads[1], channels, btype);
size_t globalThreads[3];
globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1];
globalThreads[2] = (1 + localThreads[2] - 1) / localThreads[2] * localThreads[2];
if (src.depth() == CV_8U)
{
switch (channels)
@ -1205,6 +1244,7 @@ void linearRowFilter_gpu(const oclMat &src, const oclMat &dst, oclMat mat_kernel
{
globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0];
}
//sanity checks
CV_Assert(clCxt == dst.clCxt);
CV_Assert(src.cols == dst.cols);
@ -1232,7 +1272,7 @@ void linearRowFilter_gpu(const oclMat &src, const oclMat &dst, oclMat mat_kernel
args.push_back(make_pair(sizeof(cl_int), (void *)&ridusy));
args.push_back(make_pair(sizeof(cl_mem), (void *)&mat_kernel.data));
openCLExecuteKernel(clCxt, &filter_sep_row, kernelName, globalThreads, localThreads, args, channels, src.depth(), compile_option);
openCLExecuteKernel2(clCxt, &filter_sep_row, kernelName, globalThreads, localThreads, args, channels, src.depth(), compile_option, CLFLUSH);
}
Ptr<BaseRowFilter_GPU> cv::ocl::getLinearRowFilter_GPU(int srcType, int /*bufType*/, const Mat &rowKernel, int anchor, int bordertype)
@ -1289,6 +1329,7 @@ void linearColumnFilter_gpu(const oclMat &src, const oclMat &dst, oclMat mat_ker
string kernelName = "col_filter";
char btype[30];
switch (bordertype)
{
case 0:
@ -1307,12 +1348,14 @@ void linearColumnFilter_gpu(const oclMat &src, const oclMat &dst, oclMat mat_ker
sprintf(btype, "BORDER_REFLECT_101");
break;
}
char compile_option[256];
size_t globalThreads[3];
globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1];
globalThreads[2] = (1 + localThreads[2] - 1) / localThreads[2] * localThreads[2];
if (dst.depth() == CV_8U)
{
switch (channels)
@ -1338,6 +1381,7 @@ void linearColumnFilter_gpu(const oclMat &src, const oclMat &dst, oclMat mat_ker
else
{
globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0];
switch (dst.type())
{
case CV_32SC1:
@ -1446,6 +1490,7 @@ void cv::ocl::sepFilter2D(const oclMat &src, oclMat &dst, int ddepth, const Mat
if ((bordertype & cv::BORDER_ISOLATED) != 0)
{
bordertype &= ~cv::BORDER_ISOLATED;
if ((bordertype != cv::BORDER_CONSTANT) &&
(bordertype != cv::BORDER_REPLICATE))
{
@ -1453,8 +1498,12 @@ void cv::ocl::sepFilter2D(const oclMat &src, oclMat &dst, int ddepth, const Mat
}
}
}
if (ddepth < 0)
{
ddepth = src.depth();
}
//CV_Assert(ddepth == src.depth());
dst.create(src.size(), CV_MAKETYPE(ddepth, src.channels()));
@ -1482,10 +1531,15 @@ void cv::ocl::Sobel(const oclMat &src, oclMat &dst, int ddepth, int dx, int dy,
// usually the smoothing part is the slowest to compute,
// so try to scale it instead of the faster differenciating part
if (dx == 0)
{
kx *= scale;
}
else
{
ky *= scale;
}
}
// Mat kx_, ky_;
//ky.convertTo(ky_,CV_32S,1<<8);
//kx.convertTo(kx_,CV_32S,1<<8);
@ -1503,10 +1557,14 @@ void cv::ocl::Scharr(const oclMat &src, oclMat &dst, int ddepth, int dx, int dy,
// usually the smoothing part is the slowest to compute,
// so try to scale it instead of the faster differenciating part
if (dx == 0)
{
kx *= scale;
}
else
{
ky *= scale;
}
}
// Mat kx_, ky_;
//ky.convertTo(ky_,CV_32S,1<<8);
@ -1531,8 +1589,12 @@ void cv::ocl::Laplacian(const oclMat &src, oclMat &dst, int ddepth, int ksize, d
{2, 0, 2, 0, -8, 0, 2, 0, 2}
};
Mat kernel(3, 3, CV_32S, (void *)K[ksize == 3]);
if (scale != 1)
{
kernel *= scale;
}
filter2D(src, dst, ddepth, kernel, Point(-1, -1));
}
@ -1544,13 +1606,20 @@ Ptr<FilterEngine_GPU> cv::ocl::createGaussianFilter_GPU(int type, Size ksize, do
int depth = CV_MAT_DEPTH(type);
if (sigma2 <= 0)
{
sigma2 = sigma1;
}
// automatic detection of kernel size from sigma
if (ksize.width <= 0 && sigma1 > 0)
{
ksize.width = cvRound(sigma1 * (depth == CV_8U ? 3 : 4) * 2 + 1) | 1;
}
if (ksize.height <= 0 && sigma2 > 0)
{
ksize.height = cvRound(sigma2 * (depth == CV_8U ? 3 : 4) * 2 + 1) | 1;
}
CV_Assert(ksize.width > 0 && ksize.width % 2 == 1 && ksize.height > 0 && ksize.height % 2 == 1);
@ -1559,10 +1628,16 @@ Ptr<FilterEngine_GPU> cv::ocl::createGaussianFilter_GPU(int type, Size ksize, do
Mat kx = getGaussianKernel(ksize.width, sigma1, std::max(depth, CV_32F));
Mat ky;
if (ksize.height == ksize.width && std::abs(sigma1 - sigma2) < DBL_EPSILON)
{
ky = kx;
}
else
{
ky = getGaussianKernel(ksize.height, sigma2, std::max(depth, CV_32F));
}
//Mat kx_, ky_;
//kx.convertTo(kx_,CV_32S,1<<8);
//ky.convertTo(ky_,CV_32S,1<<8);
@ -1576,11 +1651,13 @@ void cv::ocl::GaussianBlur(const oclMat &src, oclMat &dst, Size ksize, double si
src.copyTo(dst);
return;
}
if ((dst.cols != dst.wholecols) || (dst.rows != dst.wholerows)) //has roi
{
if ((bordertype & cv::BORDER_ISOLATED) != 0)
{
bordertype &= ~cv::BORDER_ISOLATED;
if ((bordertype != cv::BORDER_CONSTANT) &&
(bordertype != cv::BORDER_REPLICATE))
{
@ -1588,14 +1665,22 @@ void cv::ocl::GaussianBlur(const oclMat &src, oclMat &dst, Size ksize, double si
}
}
}
dst.create(src.size(), src.type());
if (bordertype != BORDER_CONSTANT)
{
if (src.rows == 1)
{
ksize.height = 1;
}
if (src.cols == 1)
{
ksize.width = 1;
}
}
Ptr<FilterEngine_GPU> f = createGaussianFilter_GPU(src.type(), ksize, sigma1, sigma2, bordertype);
f->apply(src, dst);
}

View File

@ -883,13 +883,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
bool findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0;
// bool roughSearch = (flags & CV_HAAR_DO_ROUGH_SEARCH) != 0;
//the Intel HD Graphics is unsupported
if (gimg.clCxt->impl->devName.find("Intel(R) HD Graphics") != string::npos)
{
cout << " Intel HD GPU device unsupported " << endl;
return NULL;
}
//double t = 0;
if( maxSize.height == 0 || maxSize.width == 0 )
{
@ -937,7 +930,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
if( gimg.cols < minSize.width || gimg.rows < minSize.height )
CV_Error(CV_StsError, "Image too small");
if( flags & CV_HAAR_SCALE_IMAGE )
if( (flags & CV_HAAR_SCALE_IMAGE) && gimg.clCxt->impl->devName.find("Intel(R) HD Graphics") == string::npos )
{
CvSize winSize0 = cascade->orig_window_size;
//float scalefactor = 1.1f;

View File

@ -16,6 +16,7 @@
//
// @Authors
// Jia Haipeng, jiahaipeng95@gmail.com
// Dachuan Zhao, dachuan@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
@ -260,3 +261,22 @@ __kernel void arithm_mul_D6 (__global double *src1, int src1_step, int src1_offs
}
}
#endif
__kernel void arithm_muls_D5 (__global float *src1, int src1_step, int src1_offset,
__global float *dst, int dst_step, int dst_offset,
int rows, int cols, int dst_step1, float scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (x < cols && y < rows)
{
int src1_index = mad24(y, src1_step, (x << 2) + src1_offset);
int dst_index = mad24(y, dst_step, (x << 2) + dst_offset);
float data1 = *((__global float *)((__global char *)src1 + src1_index));
float tmp = data1 * scalar;
*((__global float *)((__global char *)dst + dst_index)) = tmp;
}
}

View File

@ -44,7 +44,7 @@
//M*/
// Enter your kernel in this window
#pragma OPENCL EXTENSION cl_amd_printf:enable
//#pragma OPENCL EXTENSION cl_amd_printf:enable
#define CV_HAAR_FEATURE_MAX 3
typedef int sumtype;
typedef float sqsumtype;
@ -144,6 +144,7 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
candidate[outputoff + (lcl_id << 2) + 1] = (int4)0;
candidate[outputoff + (lcl_id << 2) + 2] = (int4)0;
candidate[outputoff + (lcl_id << 2) + 3] = (int4)0;
for (int scalei = 0; scalei < loopcount; scalei++)
{
int4 scaleinfo1;
@ -155,7 +156,9 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
float factor = as_float(scaleinfo1.w);
float correction_t = correction[scalei];
int ystep = (int)(max(2.0f, factor) + 0.5f);
for(int grploop=get_group_id(0);grploop<totalgrp;grploop+=grpnumx){
for (int grploop = get_group_id(0); grploop < totalgrp; grploop += grpnumx)
{
int4 cascadeinfo = p[scalei];
int grpidy = grploop / grpnumperline;
int grpidx = grploop - mul24(grpidy, grpnumperline);
@ -181,11 +184,13 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
variance_norm_factor = variance_norm_factor >= 0.f ? sqrt(variance_norm_factor) : 1.f;
result = 1;
nodecounter = startnode + nodecount * scalei;
for(int stageloop = start_stage; stageloop < split_stage&&result; stageloop++ )
for (int stageloop = start_stage; stageloop < end_stage && result; stageloop++)
{
float stage_sum = 0.f;
int4 stageinfo = *(global int4 *)(stagecascadeptr + stageloop);
float stagethreshold = as_float(stageinfo.y);
for (int nodeloop = 0; nodeloop < stageinfo.x; nodeloop++)
{
__global GpuHidHaarTreeNode *currentnodeptr = (nodeptr + nodecounter);
@ -210,80 +215,21 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
nodecounter++;
}
result = (stage_sum >= stagethreshold);
}
if (result && (ix < width) && (iy < height))
{
int queueindex = atomic_inc(lclcount);
lcloutindex[queueindex << 1] = (y << 16) | x;
lcloutindex[(queueindex << 1) + 1] = as_int(variance_norm_factor);
}
barrier(CLK_LOCAL_MEM_FENCE);
int queuecount = lclcount[0];
nodecounter = splitnode + nodecount * scalei;
for(int stageloop=split_stage;stageloop<end_stage&&queuecount>0;stageloop++)
{
lclcount[0]=0;
barrier(CLK_LOCAL_MEM_FENCE);
int2 stageinfo=*(global int2*)(stagecascadeptr+stageloop);
float stagethreshold=as_float(stageinfo.y);
int perfscale=queuecount>4?3:2;
int queuecount_loop=(queuecount+(1<<perfscale)-1)>>perfscale;
int lcl_compute_win=lcl_sz>>perfscale;
int lcl_compute_win_id=(lcl_id>>(6-perfscale));
int lcl_loops=(stageinfo.x+lcl_compute_win-1)>>(6-perfscale);
int lcl_compute_id=lcl_id-(lcl_compute_win_id<<(6-perfscale));
for(int queueloop=0;queueloop<queuecount_loop&&lcl_compute_win_id<queuecount;queueloop++)
{
float stage_sum=0.f;
int temp_coord=lcloutindex[lcl_compute_win_id<<1];
float variance_norm_factor=as_float(lcloutindex[(lcl_compute_win_id<<1)+1]);
int queue_offset=mad24(((temp_coord&(int)0xffff0000)>>16),step,temp_coord&0xffff);
int tempnodecounter=lcl_compute_id;
float part_sum=0.f;
for(int lcl_loop=0;lcl_loop<lcl_loops&&tempnodecounter<stageinfo.x;lcl_loop++)
{
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter + tempnodecounter);
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0]));
float nodethreshold = w.w * variance_norm_factor;
info1.x +=queue_offset;
info1.z +=queue_offset;
info2.x +=queue_offset;
info2.z +=queue_offset;
float classsum = (sum[mad24(info1.y,step,info1.x)] - sum[mad24(info1.y,step,info1.z)] -
sum[mad24(info1.w,step,info1.x)] + sum[mad24(info1.w,step,info1.z)]) * w.x;
classsum += (sum[mad24(info2.y,step,info2.x)] - sum[mad24(info2.y,step,info2.z)] -
sum[mad24(info2.w,step,info2.x)] + sum[mad24(info2.w,step,info2.z)]) * w.y;
info3.x +=queue_offset;
info3.z +=queue_offset;
classsum += (sum[mad24(info3.y,step,info3.x)] - sum[mad24(info3.y,step,info3.z)] -
sum[mad24(info3.w,step,info3.x)] + sum[mad24(info3.w,step,info3.z)]) * w.z;
part_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
tempnodecounter+=lcl_compute_win;
}
partialsum[lcl_id]=part_sum;
barrier(CLK_LOCAL_MEM_FENCE);
for(int i=0;i<lcl_compute_win&&(lcl_compute_id==0);i++)
{
stage_sum+=partialsum[lcl_id+i];
}
if(stage_sum>=stagethreshold&&(lcl_compute_id==0))
{
int queueindex=atomic_inc(lclcount);
lcloutindex[queueindex<<1]=temp_coord;
lcloutindex[(queueindex<<1)+1]=as_int(variance_norm_factor);
}
lcl_compute_win_id+=(1<<perfscale);
barrier(CLK_LOCAL_MEM_FENCE);
}
queuecount=lclcount[0];
nodecounter+=stageinfo.x;
}
if (lcl_id < queuecount)
{
int temp = lcloutindex[lcl_id << 1];
@ -297,6 +243,7 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
atomic_inc(glboutindex);
candidate[outputoff + temp + lcl_id] = candidate_result;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
@ -308,15 +255,19 @@ __kernel void gpuscaleclassifier(global GpuHidHaarTreeNode * orinode, global Gpu
int tr_x[3], tr_y[3], tr_h[3], tr_w[3], i = 0;
GpuHidHaarTreeNode t1 = *(orinode + counter);
#pragma unroll
for(i=0;i<3;i++){
for (i = 0; i < 3; i++)
{
tr_x[i] = (int)(t1.p[i][0] * scale + 0.5f);
tr_y[i] = (int)(t1.p[i][1] * scale + 0.5f);
tr_w[i] = (int)(t1.p[i][2] * scale + 0.5f);
tr_h[i] = (int)(t1.p[i][3] * scale + 0.5f);
}
t1.weight[0] = t1.p[2][0] ? -(t1.weight[1] * tr_h[1] * tr_w[1] + t1.weight[2] * tr_h[2] * tr_w[2]) / (tr_h[0] * tr_w[0]) : -t1.weight[1] * tr_h[1] * tr_w[1] / (tr_h[0] * tr_w[0]);
counter += nodenum;
#pragma unroll
for (i = 0; i < 3; i++)
{
newnode[counter].p[i][0] = tr_x[i];
@ -325,6 +276,7 @@ __kernel void gpuscaleclassifier(global GpuHidHaarTreeNode * orinode, global Gpu
newnode[counter].p[i][3] = tr_y[i] + tr_h[i];
newnode[counter].weight[i] = t1.weight[i] * weight_scale;
}
newnode[counter].left = t1.left;
newnode[counter].right = t1.right;
newnode[counter].threshold = t1.threshold;

View File

@ -16,6 +16,7 @@
//
// @Authors
// Dachuan Zhao, dachuan@multicorewareinc.com
// Yao Wang, bitwangyaoyao@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
@ -45,26 +46,6 @@
//#pragma OPENCL EXTENSION cl_amd_printf : enable
__kernel void arithm_muls_D5 (__global float *src1, int src1_step, int src1_offset,
__global float *dst, int dst_step, int dst_offset,
int rows, int cols, int dst_step1, float scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (x < cols && y < rows)
{
int src1_index = mad24(y, src1_step, (x << 2) + src1_offset);
int dst_index = mad24(y, dst_step, (x << 2) + dst_offset);
float data1 = *((__global float *)((__global char *)src1 + src1_index));
float tmp = data1 * scalar;
*((__global float *)((__global char *)dst + dst_index)) = tmp;
}
}
__kernel void calcSharrDeriv_vertical_C1_D0(__global const uchar* src, int srcStep, int rows, int cols, int cn, __global short* dx_buf, int dx_bufStep, __global short* dy_buf, int dy_bufStep)
{
const int x = get_global_id(0);
@ -202,6 +183,7 @@ float linearFilter_float(__global const float* src, int srcStep, int cn, float2
return src_row[(int)x] * iw00 + src_row[(int)x + cn] * iw01 + src_row1[(int)x] * iw10 + src_row1[(int)x + cn] * iw11, W_BITS1 - 5;
}
#define BUFFER 64
void reduce3(float val1, float val2, float val3, __local float* smem1, __local float* smem2, __local float* smem3, int tid)
{
smem1[tid] = val1;
@ -209,6 +191,7 @@ void reduce3(float val1, float val2, float val3, __local float* smem1, __local f
smem3[tid] = val3;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
@ -216,7 +199,9 @@ void reduce3(float val1, float val2, float val3, __local float* smem1, __local f
smem3[tid] = val3 += smem3[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
@ -224,6 +209,7 @@ void reduce3(float val1, float val2, float val3, __local float* smem1, __local f
smem3[tid] = val3 += smem3[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
@ -263,19 +249,23 @@ void reduce2(float val1, float val2, __local float* smem1, __local float* smem2,
smem2[tid] = val2;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
smem2[tid] = val2 += smem2[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
smem2[tid] = val2 += smem2[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
@ -307,17 +297,21 @@ void reduce1(float val1, __local float* smem1, int tid)
smem1[tid] = val1;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
@ -333,60 +327,17 @@ void reduce1(float val1, __local float* smem1, int tid)
}
#define SCALE (1.0f / (1 << 20))
#define THRESHOLD 0.01f
#define DIMENSION 21
// Image read mode
__constant sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_LINEAR;
__kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
__global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status/*, __global float* err*/, const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr, char GET_MIN_EIGENVALS)
void SetPatch(image2d_t I, float x, float y,
float* Pch, float* Dx, float* Dy,
float* A11, float* A12, float* A22)
{
__local float smem1[256];
__local float smem2[256];
__local float smem3[256];
int c_halfWin_x = (c_winSize_x - 1) / 2;
int c_halfWin_y = (c_winSize_y - 1) / 2;
const int tid = get_local_id(1) * get_local_size(0) + get_local_id(0);
float2 prevPt = prevPts[get_group_id(0)];
prevPt.x *= (1.0f / (1 << level));
prevPt.y *= (1.0f / (1 << level));
if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
{
if (level == 0 && tid == 0)
{
status[get_group_id(0)] = 0;
//if (calcErr)
// err[get_group_id(0)] = 0;
}
return;
}
prevPt.x -= c_halfWin_x;
prevPt.y -= c_halfWin_y;
// extract the patch from the first image, compute covariation matrix of derivatives
float A11 = 0;
float A12 = 0;
float A22 = 0;
float I_patch[21][21];
float dIdx_patch[21][21];
float dIdy_patch[21][21];
for (int yBase = get_local_id(1), i = 0; yBase < c_winSize_y; yBase += get_local_size(1), ++i)
{
for (int xBase = get_local_id(0), j = 0; xBase < c_winSize_x; xBase += get_local_size(0), ++j)
{
float x = (prevPt.x + xBase + 0.5f);
float y = (prevPt.y + yBase + 0.5f);
I_patch[i][j] = read_imagef(I, sampler, (float2)(x, y)).x;
*Pch = read_imagef(I, sampler, (float2)(x, y)).x;
float dIdx = 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x + 1, y)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)).x -
(3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x - 1, y)).x + 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)).x);
@ -394,158 +345,104 @@ __kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
float dIdy = 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x, y + 1)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)).x -
(3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x, y - 1)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)).x);
dIdx_patch[i][j] = dIdx;
dIdy_patch[i][j] = dIdy;
A11 += dIdx * dIdx;
A12 += dIdx * dIdy;
A22 += dIdy * dIdy;
}
*Dx = dIdx;
*Dy = dIdy;
*A11 += dIdx * dIdx;
*A12 += dIdx * dIdy;
*A22 += dIdy * dIdy;
}
reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
barrier(CLK_LOCAL_MEM_FENCE);
A11 = smem1[0];
A12 = smem2[0];
A22 = smem3[0];
float D = A11 * A22 - A12 * A12;
//if (calcErr && GET_MIN_EIGENVALS && tid == 0)
// err[get_group_id(0)] = minEig;
if (D < 1.192092896e-07f)
void GetPatch(image2d_t J, float x, float y,
float* Pch, float* Dx, float* Dy,
float* b1, float* b2)
{
if (level == 0 && tid == 0)
status[get_group_id(0)] = 0;
return;
float J_val = read_imagef(J, sampler, (float2)(x, y)).x;
float diff = (J_val - *Pch) * 32.0f;
*b1 += diff**Dx;
*b2 += diff**Dy;
}
D = 1.f / D;
A11 *= D;
A12 *= D;
A22 *= D;
float2 nextPt = nextPts[get_group_id(0)];
nextPt.x *= 2.0f;
nextPt.y *= 2.0f;
nextPt.x -= c_halfWin_x;
nextPt.y -= c_halfWin_y;
for (int k = 0; k < c_iters; ++k)
void GetError(image2d_t J, const float x, const float y, const float* Pch, float* errval)
{
if (nextPt.x < -c_halfWin_x || nextPt.x >= cols || nextPt.y < -c_halfWin_y || nextPt.y >= rows)
float diff = read_imagef(J, sampler, (float2)(x,y)).x-*Pch;
*errval += fabs(diff);
}
void SetPatch4(image2d_t I, const float x, const float y,
float4* Pch, float4* Dx, float4* Dy,
float* A11, float* A12, float* A22)
{
if (tid == 0 && level == 0)
status[get_group_id(0)] = 0;
return;
*Pch = read_imagef(I, sampler, (float2)(x, y));
float4 dIdx = 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)) + 10.0f * read_imagef(I, sampler, (float2)(x + 1, y)) + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)) -
(3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)) + 10.0f * read_imagef(I, sampler, (float2)(x - 1, y)) + 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)));
float4 dIdy = 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)) + 10.0f * read_imagef(I, sampler, (float2)(x, y + 1)) + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)) -
(3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)) + 10.0f * read_imagef(I, sampler, (float2)(x, y - 1)) + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)));
*Dx = dIdx;
*Dy = dIdy;
float4 sqIdx = dIdx * dIdx;
*A11 += sqIdx.x + sqIdx.y + sqIdx.z;
sqIdx = dIdx * dIdy;
*A12 += sqIdx.x + sqIdx.y + sqIdx.z;
sqIdx = dIdy * dIdy;
*A22 += sqIdx.x + sqIdx.y + sqIdx.z;
}
float b1 = 0;
float b2 = 0;
for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
void GetPatch4(image2d_t J, const float x, const float y,
const float4* Pch, const float4* Dx, const float4* Dy,
float* b1, float* b2)
{
for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
float4 J_val = read_imagef(J, sampler, (float2)(x, y));
float4 diff = (J_val - *Pch) * 32.0f;
float4 xdiff = diff* *Dx;
*b1 += xdiff.x + xdiff.y + xdiff.z;
xdiff = diff* *Dy;
*b2 += xdiff.x + xdiff.y + xdiff.z;
}
void GetError4(image2d_t J, const float x, const float y, const float4* Pch, float* errval)
{
float a = (nextPt.x + x + 0.5f);
float b = (nextPt.y + y + 0.5f);
float I_val = I_patch[i][j];
float J_val = read_imagef(J, sampler, (float2)(a, b)).x;
float diff = (J_val - I_val) * 32.0f;
b1 += diff * dIdx_patch[i][j];
b2 += diff * dIdy_patch[i][j];
}
float4 diff = read_imagef(J, sampler, (float2)(x,y))-*Pch;
*errval += fabs(diff.x) + fabs(diff.y) + fabs(diff.z);
}
reduce2(b1, b2, smem1, smem2, tid);
barrier(CLK_LOCAL_MEM_FENCE);
b1 = smem1[0];
b2 = smem2[0];
float2 delta;
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
nextPt.x += delta.x;
nextPt.y += delta.y;
if (fabs(delta.x) < 0.01f && fabs(delta.y) < 0.01f)
break;
}
float errval = 0.0f;
if (calcErr)
__kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
__global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status, __global float* err,
const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{
for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
{
for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
{
float a = (nextPt.x + x + 0.5f);
float b = (nextPt.y + y + 0.5f);
__local float smem1[BUFFER];
__local float smem2[BUFFER];
__local float smem3[BUFFER];
float I_val = I_patch[i][j];
float J_val = read_imagef(J, sampler, (float2)(a, b)).x;
unsigned int xid=get_local_id(0);
unsigned int yid=get_local_id(1);
unsigned int gid=get_group_id(0);
unsigned int xsize=get_local_size(0);
unsigned int ysize=get_local_size(1);
int xBase, yBase, i, j, k;
float diff = J_val - I_val;
float2 c_halfWin = (float2)((c_winSize_x - 1)>>1, (c_winSize_y - 1)>>1);
errval += fabs((float)diff);
}
}
const int tid = mad24(yid, xsize, xid);
reduce1(errval, smem1, tid);
}
if (tid == 0)
{
nextPt.x += c_halfWin_x;
nextPt.y += c_halfWin_y;
nextPts[get_group_id(0)] = nextPt;
//if (calcErr && !GET_MIN_EIGENVALS)
// err[get_group_id(0)] = errval;
}
}
__kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
__global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status/*, __global float* err*/, const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr, char GET_MIN_EIGENVALS)
{
__local float smem1[256];
__local float smem2[256];
__local float smem3[256];
int c_halfWin_x = (c_winSize_x - 1) / 2;
int c_halfWin_y = (c_winSize_y - 1) / 2;
const int tid = get_local_id(1) * get_local_size(0) + get_local_id(0);
float2 prevPt = prevPts[get_group_id(0)];
prevPt.x *= (1.0f / (1 << level));
prevPt.y *= (1.0f / (1 << level));
float2 prevPt = prevPts[gid] / (1 << level);
if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
{
if (level == 0 && tid == 0)
if (tid == 0 && level == 0)
{
status[get_group_id(0)] = 0;
//if (calcErr)
// err[get_group_id(0)] = 0;
status[gid] = 0;
}
return;
}
prevPt.x -= c_halfWin_x;
prevPt.y -= c_halfWin_y;
prevPt -= c_halfWin;
// extract the patch from the first image, compute covariation matrix of derivatives
@ -553,34 +450,68 @@ __kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
float A12 = 0;
float A22 = 0;
float4 I_patch[21][21];
float4 dIdx_patch[21][21];
float4 dIdy_patch[21][21];
float I_patch[3][3];
float dIdx_patch[3][3];
float dIdy_patch[3][3];
for (int yBase = get_local_id(1), i = 0; yBase < c_winSize_y; yBase += get_local_size(1), ++i)
yBase=yid;
{
for (int xBase = get_local_id(0), j = 0; xBase < c_winSize_x; xBase += get_local_size(0), ++j)
xBase=xid;
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[0][0], &dIdx_patch[0][0], &dIdy_patch[0][0],
&A11, &A12, &A22);
xBase+=xsize;
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[0][1], &dIdx_patch[0][1], &dIdy_patch[0][1],
&A11, &A12, &A22);
xBase+=xsize;
if(xBase<c_winSize_x)
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[0][2], &dIdx_patch[0][2], &dIdy_patch[0][2],
&A11, &A12, &A22);
}
yBase+=ysize;
{
float x = (prevPt.x + xBase + 0.5f);
float y = (prevPt.y + yBase + 0.5f);
xBase=xid;
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[1][0], &dIdx_patch[1][0], &dIdy_patch[1][0],
&A11, &A12, &A22);
I_patch[i][j] = read_imagef(I, sampler, (float2)(x, y)).x;
float4 dIdx = 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x + 1, y)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)).x -
(3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x - 1, y)).x + 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)).x);
xBase+=xsize;
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[1][1], &dIdx_patch[1][1], &dIdy_patch[1][1],
&A11, &A12, &A22);
float4 dIdy = 3.0f * read_imagef(I, sampler, (float2)(x - 1, y + 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x, y + 1)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y + 1)).x -
(3.0f * read_imagef(I, sampler, (float2)(x - 1, y - 1)).x + 10.0f * read_imagef(I, sampler, (float2)(x, y - 1)).x + 3.0f * read_imagef(I, sampler, (float2)(x + 1, y - 1)).x);
dIdx_patch[i][j] = dIdx;
dIdy_patch[i][j] = dIdy;
A11 += (dIdx * dIdx).x + (dIdx * dIdx).y + (dIdx * dIdx).z;
A12 += (dIdx * dIdy).x + (dIdx * dIdy).y + (dIdx * dIdy).z;
A22 += (dIdy * dIdy).x + (dIdy * dIdy).y + (dIdy * dIdy).z;
}
xBase+=xsize;
if(xBase<c_winSize_x)
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[1][2], &dIdx_patch[1][2], &dIdy_patch[1][2],
&A11, &A12, &A22);
}
yBase+=ysize;
if(yBase<c_winSize_y)
{
xBase=xid;
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[2][0], &dIdx_patch[2][0], &dIdy_patch[2][0],
&A11, &A12, &A22);
xBase+=xsize;
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[2][1], &dIdx_patch[2][1], &dIdy_patch[2][1],
&A11, &A12, &A22);
xBase+=xsize;
if(xBase<c_winSize_x)
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[2][2], &dIdx_patch[2][2], &dIdy_patch[2][2],
&A11, &A12, &A22);
}
reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
barrier(CLK_LOCAL_MEM_FENCE);
@ -590,57 +521,89 @@ __kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
float D = A11 * A22 - A12 * A12;
//if (calcErr && GET_MIN_EIGENVALS && tid == 0)
// err[get_group_id(0)] = minEig;
if (D < 1.192092896e-07f)
{
if (level == 0 && tid == 0)
status[get_group_id(0)] = 0;
if (tid == 0 && level == 0)
status[gid] = 0;
return;
}
D = 1.f / D;
A11 /= D;
A12 /= D;
A22 /= D;
A11 *= D;
A12 *= D;
A22 *= D;
prevPt = nextPts[gid] * 2.0f - c_halfWin;
float2 nextPt = nextPts[get_group_id(0)];
nextPt.x *= 2.0f;
nextPt.y *= 2.0f;
nextPt.x -= c_halfWin_x;
nextPt.y -= c_halfWin_y;
for (int k = 0; k < c_iters; ++k)
for (k = 0; k < c_iters; ++k)
{
if (nextPt.x < -c_halfWin_x || nextPt.x >= cols || nextPt.y < -c_halfWin_y || nextPt.y >= rows)
if (prevPt.x < -c_halfWin.x || prevPt.x >= cols || prevPt.y < -c_halfWin.y || prevPt.y >= rows)
{
if (tid == 0 && level == 0)
status[get_group_id(0)] = 0;
status[gid] = 0;
return;
}
float b1 = 0;
float b2 = 0;
for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
yBase=yid;
{
for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
{
float a = (nextPt.x + x + 0.5f);
float b = (nextPt.y + y + 0.5f);
xBase=xid;
GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[0][0], &dIdx_patch[0][0], &dIdy_patch[0][0],
&b1, &b2);
float4 I_val = I_patch[i][j];
float4 J_val = read_imagef(J, sampler, (float2)(a, b)).x;
float4 diff = (J_val - I_val) * 32.0f;
xBase+=xsize;
GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[0][1], &dIdx_patch[0][1], &dIdy_patch[0][1],
&b1, &b2);
b1 += (diff * dIdx_patch[i][j]).x + (diff * dIdx_patch[i][j]).y + (diff * dIdx_patch[i][j]).z;
b2 += (diff * dIdy_patch[i][j]).x + (diff * dIdy_patch[i][j]).y + (diff * dIdy_patch[i][j]).z;
xBase+=xsize;
if(xBase<c_winSize_x)
GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[0][2], &dIdx_patch[0][2], &dIdy_patch[0][2],
&b1, &b2);
}
yBase+=ysize;
{
xBase=xid;
GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[1][0], &dIdx_patch[1][0], &dIdy_patch[1][0],
&b1, &b2);
xBase+=xsize;
GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[1][1], &dIdx_patch[1][1], &dIdy_patch[1][1],
&b1, &b2);
xBase+=xsize;
if(xBase<c_winSize_x)
GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[1][2], &dIdx_patch[1][2], &dIdy_patch[1][2],
&b1, &b2);
}
yBase+=ysize;
if(yBase<c_winSize_y)
{
xBase=xid;
GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[2][0], &dIdx_patch[2][0], &dIdy_patch[2][0],
&b1, &b2);
xBase+=xsize;
GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[2][1], &dIdx_patch[2][1], &dIdy_patch[2][1],
&b1, &b2);
xBase+=xsize;
if(xBase<c_winSize_x)
GetPatch(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[2][2], &dIdx_patch[2][2], &dIdy_patch[2][2],
&b1, &b2);
}
reduce2(b1, b2, smem1, smem2, tid);
@ -653,44 +616,358 @@ __kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
nextPt.x += delta.x;
nextPt.y += delta.y;
prevPt += delta;
if (fabs(delta.x) < 0.01f && fabs(delta.y) < 0.01f)
if (fabs(delta.x) < THRESHOLD && fabs(delta.y) < THRESHOLD)
break;
}
float errval = 0.0f;
D = 0.0f;
if (calcErr)
{
for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
yBase=yid;
{
for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
{
float a = (nextPt.x + x + 0.5f);
float b = (nextPt.y + y + 0.5f);
xBase=xid;
GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[0][0], &D);
float4 I_val = I_patch[i][j];
float4 J_val = read_imagef(J, sampler, (float2)(a, b)).x;
float4 diff = J_val - I_val;
xBase+=xsize;
GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[0][1], &D);
errval += fabs(diff.x) + fabs(diff.y) + fabs(diff.z);
xBase+=xsize;
if(xBase<c_winSize_x)
GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[0][2], &D);
}
yBase+=ysize;
{
xBase=xid;
GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[1][0], &D);
xBase+=xsize;
GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[1][1], &D);
xBase+=xsize;
if(xBase<c_winSize_x)
GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[1][2], &D);
}
yBase+=ysize;
if(yBase<c_winSize_y)
{
xBase=xid;
GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[2][0], &D);
xBase+=xsize;
GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[2][1], &D);
xBase+=xsize;
if(xBase<c_winSize_x)
GetError(J, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[2][2], &D);
}
reduce1(errval, smem1, tid);
reduce1(D, smem1, tid);
}
if (tid == 0)
{
nextPt.x += c_halfWin_x;
nextPt.y += c_halfWin_y;
prevPt += c_halfWin;
nextPts[get_group_id(0)] = nextPt;
nextPts[gid] = prevPt;
//if (calcErr && !GET_MIN_EIGENVALS)
// err[get_group_id(0)] = errval;
if (calcErr)
err[gid] = smem1[0] / (c_winSize_x * c_winSize_y);
}
}
__kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
__global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status, __global float* err,
const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{
__local float smem1[BUFFER];
__local float smem2[BUFFER];
__local float smem3[BUFFER];
unsigned int xid=get_local_id(0);
unsigned int yid=get_local_id(1);
unsigned int gid=get_group_id(0);
unsigned int xsize=get_local_size(0);
unsigned int ysize=get_local_size(1);
int xBase, yBase, i, j, k;
float2 c_halfWin = (float2)((c_winSize_x - 1)>>1, (c_winSize_y - 1)>>1);
const int tid = mad24(yid, xsize, xid);
float2 nextPt = prevPts[gid]/(1<<level);
if (nextPt.x < 0 || nextPt.x >= cols || nextPt.y < 0 || nextPt.y >= rows)
{
if (tid == 0 && level == 0)
{
status[gid] = 0;
}
return;
}
nextPt -= c_halfWin;
// extract the patch from the first image, compute covariation matrix of derivatives
float A11 = 0;
float A12 = 0;
float A22 = 0;
float4 I_patch[8];
float4 dIdx_patch[8];
float4 dIdy_patch[8];
float4 I_add,Dx_add,Dy_add;
yBase=yid;
{
xBase=xid;
SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[0], &dIdx_patch[0], &dIdy_patch[0],
&A11, &A12, &A22);
xBase+=xsize;
SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[1], &dIdx_patch[1], &dIdy_patch[1],
&A11, &A12, &A22);
xBase+=xsize;
if(xBase<c_winSize_x)
SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[2], &dIdx_patch[2], &dIdy_patch[2],
&A11, &A12, &A22);
}
yBase+=ysize;
{
xBase=xid;
SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[3], &dIdx_patch[3], &dIdy_patch[3],
&A11, &A12, &A22);
xBase+=xsize;
SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[4], &dIdx_patch[4], &dIdy_patch[4],
&A11, &A12, &A22);
xBase+=xsize;
if(xBase<c_winSize_x)
SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[5], &dIdx_patch[5], &dIdy_patch[5],
&A11, &A12, &A22);
}
yBase+=ysize;
if(yBase<c_winSize_y)
{
xBase=xid;
SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[6], &dIdx_patch[6], &dIdy_patch[6],
&A11, &A12, &A22);
xBase+=xsize;
SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[7], &dIdx_patch[7], &dIdy_patch[7],
&A11, &A12, &A22);
xBase+=xsize;
if(xBase<c_winSize_x)
SetPatch4(I, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_add, &Dx_add, &Dy_add,
&A11, &A12, &A22);
}
reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
barrier(CLK_LOCAL_MEM_FENCE);
A11 = smem1[0];
A12 = smem2[0];
A22 = smem3[0];
float D = A11 * A22 - A12 * A12;
if (D < 1.192092896e-07f)
{
if (tid == 0 && level == 0)
status[gid] = 0;
return;
}
A11 /= D;
A12 /= D;
A22 /= D;
nextPt = nextPts[gid] * 2.0f - c_halfWin;
for (k = 0; k < c_iters; ++k)
{
if (nextPt.x < -c_halfWin.x || nextPt.x >= cols || nextPt.y < -c_halfWin.y || nextPt.y >= rows)
{
if (tid == 0 && level == 0)
status[gid] = 0;
return;
}
float b1 = 0;
float b2 = 0;
yBase=yid;
{
xBase=xid;
GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[0], &dIdx_patch[0], &dIdy_patch[0],
&b1, &b2);
xBase+=xsize;
GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[1], &dIdx_patch[1], &dIdy_patch[1],
&b1, &b2);
xBase+=xsize;
if(xBase<c_winSize_x)
GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[2], &dIdx_patch[2], &dIdy_patch[2],
&b1, &b2);
}
yBase+=ysize;
{
xBase=xid;
GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[3], &dIdx_patch[3], &dIdy_patch[3],
&b1, &b2);
xBase+=xsize;
GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[4], &dIdx_patch[4], &dIdy_patch[4],
&b1, &b2);
xBase+=xsize;
if(xBase<c_winSize_x)
GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[5], &dIdx_patch[5], &dIdy_patch[5],
&b1, &b2);
}
yBase+=ysize;
if(yBase<c_winSize_y)
{
xBase=xid;
GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[6], &dIdx_patch[6], &dIdy_patch[6],
&b1, &b2);
xBase+=xsize;
GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[7], &dIdx_patch[7], &dIdy_patch[7],
&b1, &b2);
xBase+=xsize;
if(xBase<c_winSize_x)
GetPatch4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_add, &Dx_add, &Dy_add,
&b1, &b2);
}
reduce2(b1, b2, smem1, smem2, tid);
barrier(CLK_LOCAL_MEM_FENCE);
b1 = smem1[0];
b2 = smem2[0];
float2 delta;
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
nextPt +=delta;
if (fabs(delta.x) < THRESHOLD && fabs(delta.y) < THRESHOLD)
break;
}
D = 0.0f;
if (calcErr)
{
yBase=yid;
{
xBase=xid;
GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[0], &D);
xBase+=xsize;
GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[1], &D);
xBase+=xsize;
if(xBase<c_winSize_x)
GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[2], &D);
}
yBase+=ysize;
{
xBase=xid;
GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[3], &D);
xBase+=xsize;
GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[4], &D);
xBase+=xsize;
if(xBase<c_winSize_x)
GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[5], &D);
}
yBase+=ysize;
if(yBase<c_winSize_y)
{
xBase=xid;
GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[6], &D);
xBase+=xsize;
GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_patch[7], &D);
xBase+=xsize;
if(xBase<c_winSize_x)
GetError4(J, nextPt.x + xBase + 0.5f, nextPt.y + yBase + 0.5f,
&I_add, &D);
}
reduce1(D, smem1, tid);
}
if (tid == 0)
{
nextPt += c_halfWin;
nextPts[gid] = nextPt;
if (calcErr)
err[gid] = smem1[0] / (3 * c_winSize_x * c_winSize_y);
}
}

View File

@ -0,0 +1,764 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Sen Liu, sen@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define BUFFER 256
void reduce3(float val1, float val2, float val3, __local float *smem1, __local float *smem2, __local float *smem3, int tid)
{
smem1[tid] = val1;
smem2[tid] = val2;
smem3[tid] = val3;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
smem2[tid] = val2 += smem2[tid + 128];
smem3[tid] = val3 += smem3[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
smem2[tid] = val2 += smem2[tid + 64];
smem3[tid] = val3 += smem3[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
smem1[tid] = val1 += smem1[tid + 32];
smem2[tid] = val2 += smem2[tid + 32];
smem3[tid] = val3 += smem3[tid + 32];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16)
{
smem1[tid] = val1 += smem1[tid + 16];
smem2[tid] = val2 += smem2[tid + 16];
smem3[tid] = val3 += smem3[tid + 16];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8)
{
volatile __local float *vmem1 = smem1;
volatile __local float *vmem2 = smem2;
volatile __local float *vmem3 = smem3;
vmem1[tid] = val1 += vmem1[tid + 8];
vmem2[tid] = val2 += vmem2[tid + 8];
vmem3[tid] = val3 += vmem3[tid + 8];
vmem1[tid] = val1 += vmem1[tid + 4];
vmem2[tid] = val2 += vmem2[tid + 4];
vmem3[tid] = val3 += vmem3[tid + 4];
vmem1[tid] = val1 += vmem1[tid + 2];
vmem2[tid] = val2 += vmem2[tid + 2];
vmem3[tid] = val3 += vmem3[tid + 2];
vmem1[tid] = val1 += vmem1[tid + 1];
vmem2[tid] = val2 += vmem2[tid + 1];
vmem3[tid] = val3 += vmem3[tid + 1];
}
}
void reduce2(float val1, float val2, __local float *smem1, __local float *smem2, int tid)
{
smem1[tid] = val1;
smem2[tid] = val2;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
smem2[tid] = val2 += smem2[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
smem2[tid] = val2 += smem2[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
smem1[tid] = val1 += smem1[tid + 32];
smem2[tid] = val2 += smem2[tid + 32];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16)
{
smem1[tid] = val1 += smem1[tid + 16];
smem2[tid] = val2 += smem2[tid + 16];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8)
{
volatile __local float *vmem1 = smem1;
volatile __local float *vmem2 = smem2;
vmem1[tid] = val1 += vmem1[tid + 8];
vmem2[tid] = val2 += vmem2[tid + 8];
vmem1[tid] = val1 += vmem1[tid + 4];
vmem2[tid] = val2 += vmem2[tid + 4];
vmem1[tid] = val1 += vmem1[tid + 2];
vmem2[tid] = val2 += vmem2[tid + 2];
vmem1[tid] = val1 += vmem1[tid + 1];
vmem2[tid] = val2 += vmem2[tid + 1];
}
}
void reduce1(float val1, __local float *smem1, int tid)
{
smem1[tid] = val1;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
smem1[tid] = val1 += smem1[tid + 32];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16)
{
volatile __local float *vmem1 = smem1;
vmem1[tid] = val1 += vmem1[tid + 16];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8)
{
volatile __local float *vmem1 = smem1;
vmem1[tid] = val1 += vmem1[tid + 8];
vmem1[tid] = val1 += vmem1[tid + 4];
vmem1[tid] = val1 += vmem1[tid + 2];
vmem1[tid] = val1 += vmem1[tid + 1];
}
}
#define SCALE (1.0f / (1 << 20))
#define THRESHOLD 0.01f
#define DIMENSION 21
float readImage2Df_C1(__global const float *image, const float x, const float y, const int rows, const int cols, const int elemCntPerRow)
{
float2 coor = (float2)(x, y);
int i0 = clamp((int)floor(coor.x), 0, cols - 1);
int j0 = clamp((int)floor(coor.y), 0, rows - 1);
int i1 = clamp((int)floor(coor.x) + 1, 0, cols - 1);
int j1 = clamp((int)floor(coor.y) + 1, 0, rows - 1);
float a = coor.x - floor(coor.x);
float b = coor.y - floor(coor.y);
return (1 - a) * (1 - b) * image[mad24(j0, elemCntPerRow, i0)]
+ a * (1 - b) * image[mad24(j0, elemCntPerRow, i1)]
+ (1 - a) * b * image[mad24(j1, elemCntPerRow, i0)]
+ a * b * image[mad24(j1, elemCntPerRow, i1)];
}
__kernel void lkSparse_C1_D5(__global const float *I, __global const float *J,
__global const float2 *prevPts, int prevPtsStep, __global float2 *nextPts, int nextPtsStep, __global uchar *status, __global float *err,
const int level, const int rows, const int cols, const int elemCntPerRow,
int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{
__local float smem1[BUFFER];
__local float smem2[BUFFER];
__local float smem3[BUFFER];
float2 c_halfWin = (float2)((c_winSize_x - 1) >> 1, (c_winSize_y - 1) >> 1);
const int tid = mad24(get_local_id(1), get_local_size(0), get_local_id(0));
float2 prevPt = prevPts[get_group_id(0)] * (1.0f / (1 << level));
if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
{
if (tid == 0 && level == 0)
{
status[get_group_id(0)] = 0;
}
return;
}
prevPt -= c_halfWin;
// extract the patch from the first image, compute covariation matrix of derivatives
float A11 = 0;
float A12 = 0;
float A22 = 0;
float I_patch[1][3];
float dIdx_patch[1][3];
float dIdy_patch[1][3];
for (int yBase = get_local_id(1), i = 0; yBase < c_winSize_y; yBase += get_local_size(1), ++i)
{
for (int xBase = get_local_id(0), j = 0; xBase < c_winSize_x; xBase += get_local_size(0), ++j)
{
float x = (prevPt.x + xBase);
float y = (prevPt.y + yBase);
I_patch[i][j] = readImage2Df_C1(I, x, y, rows, cols, elemCntPerRow);
float dIdx = 3.0f * readImage2Df_C1(I, x + 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x + 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x + 1, y + 1, rows, cols, elemCntPerRow) -
(3.0f * readImage2Df_C1(I, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x - 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x - 1, y + 1, rows, cols, elemCntPerRow));
float dIdy = 3.0f * readImage2Df_C1(I, x - 1, y + 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x, y + 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x + 1, y + 1, rows, cols, elemCntPerRow) -
(3.0f * readImage2Df_C1(I, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C1(I, x, y - 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C1(I, x + 1, y - 1, rows, cols, elemCntPerRow));
dIdx_patch[i][j] = dIdx;
dIdy_patch[i][j] = dIdy;
A11 += dIdx * dIdx;
A12 += dIdx * dIdy;
A22 += dIdy * dIdy;
}
}
reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
barrier(CLK_LOCAL_MEM_FENCE);
A11 = smem1[0];
A12 = smem2[0];
A22 = smem3[0];
float D = A11 * A22 - A12 * A12;
if (D < 1.192092896e-07f)
{
if (tid == 0 && level == 0)
{
status[get_group_id(0)] = 0;
}
return;
}
D = 1.f / D;
A11 *= D;
A12 *= D;
A22 *= D;
float2 nextPt = nextPts[get_group_id(0)];
nextPt = nextPt * 2.0f - c_halfWin;
for (int k = 0; k < c_iters; ++k)
{
if (nextPt.x < -c_halfWin.x || nextPt.x >= cols || nextPt.y < -c_halfWin.y || nextPt.y >= rows)
{
if (tid == 0 && level == 0)
{
status[get_group_id(0)] = 0;
}
return;
}
float b1 = 0;
float b2 = 0;
for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
{
for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
{
float diff = (readImage2Df_C1(J, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j]) * 32.0f;
b1 += diff * dIdx_patch[i][j];
b2 += diff * dIdy_patch[i][j];
}
}
reduce2(b1, b2, smem1, smem2, tid);
barrier(CLK_LOCAL_MEM_FENCE);
b1 = smem1[0];
b2 = smem2[0];
float2 delta;
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
nextPt += delta;
//if (fabs(delta.x) < THRESHOLD && fabs(delta.y) < THRESHOLD)
// break;
}
float errval = 0.0f;
if (calcErr)
{
for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
{
for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
{
float diff = readImage2Df_C1(J, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j];
errval += fabs(diff);
}
}
reduce1(errval, smem1, tid);
}
if (tid == 0)
{
nextPt += c_halfWin;
nextPts[get_group_id(0)] = nextPt;
if (calcErr)
{
err[get_group_id(0)] = smem1[0] / (c_winSize_x * c_winSize_y);
}
}
}
float4 readImage2Df_C4(__global const float4 *image, const float x, const float y, const int rows, const int cols, const int elemCntPerRow)
{
float2 coor = (float2)(x, y);
int i0 = clamp((int)floor(coor.x), 0, cols - 1);
int j0 = clamp((int)floor(coor.y), 0, rows - 1);
int i1 = clamp((int)floor(coor.x) + 1, 0, cols - 1);
int j1 = clamp((int)floor(coor.y) + 1, 0, rows - 1);
float a = coor.x - floor(coor.x);
float b = coor.y - floor(coor.y);
return (1 - a) * (1 - b) * image[mad24(j0, elemCntPerRow, i0)]
+ a * (1 - b) * image[mad24(j0, elemCntPerRow, i1)]
+ (1 - a) * b * image[mad24(j1, elemCntPerRow, i0)]
+ a * b * image[mad24(j1, elemCntPerRow, i1)];
}
__kernel void lkSparse_C4_D5(__global const float *I, __global const float *J,
__global const float2 *prevPts, int prevPtsStep, __global float2 *nextPts, int nextPtsStep, __global uchar *status, __global float *err,
const int level, const int rows, const int cols, const int elemCntPerRow,
int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{
__local float smem1[BUFFER];
__local float smem2[BUFFER];
__local float smem3[BUFFER];
float2 c_halfWin = (float2)((c_winSize_x - 1) >> 1, (c_winSize_y - 1) >> 1);
const int tid = mad24(get_local_id(1), get_local_size(0), get_local_id(0));
float2 prevPt = prevPts[get_group_id(0)] * (1.0f / (1 << level));
if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
{
if (tid == 0 && level == 0)
{
status[get_group_id(0)] = 0;
}
return;
}
prevPt -= c_halfWin;
// extract the patch from the first image, compute covariation matrix of derivatives
float A11 = 0;
float A12 = 0;
float A22 = 0;
float4 I_patch[1][3];
float4 dIdx_patch[1][3];
float4 dIdy_patch[1][3];
__global float4 *ptrI = (__global float4 *)I;
for (int yBase = get_local_id(1), i = 0; yBase < c_winSize_y; yBase += get_local_size(1), ++i)
{
for (int xBase = get_local_id(0), j = 0; xBase < c_winSize_x; xBase += get_local_size(0), ++j)
{
float x = (prevPt.x + xBase);
float y = (prevPt.y + yBase);
I_patch[i][j] = readImage2Df_C4(ptrI, x, y, rows, cols, elemCntPerRow);
float4 dIdx = 3.0f * readImage2Df_C4(ptrI, x + 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x + 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x + 1, y + 1, rows, cols, elemCntPerRow) -
(3.0f * readImage2Df_C4(ptrI, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x - 1, y, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x - 1, y + 1, rows, cols, elemCntPerRow));
float4 dIdy = 3.0f * readImage2Df_C4(ptrI, x - 1, y + 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x, y + 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x + 1, y + 1, rows, cols, elemCntPerRow) -
(3.0f * readImage2Df_C4(ptrI, x - 1, y - 1, rows, cols, elemCntPerRow) + 10.0f * readImage2Df_C4(ptrI, x, y - 1, rows, cols, elemCntPerRow) + 3.0f * readImage2Df_C4(ptrI, x + 1, y - 1, rows, cols, elemCntPerRow));
dIdx_patch[i][j] = dIdx;
dIdy_patch[i][j] = dIdy;
A11 += (dIdx * dIdx).x + (dIdx * dIdx).y + (dIdx * dIdx).z;
A12 += (dIdx * dIdy).x + (dIdx * dIdy).y + (dIdx * dIdy).z;
A22 += (dIdy * dIdy).x + (dIdy * dIdy).y + (dIdy * dIdy).z;
}
}
reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
barrier(CLK_LOCAL_MEM_FENCE);
A11 = smem1[0];
A12 = smem2[0];
A22 = smem3[0];
float D = A11 * A22 - A12 * A12;
//pD[get_group_id(0)] = D;
if (D < 1.192092896e-07f)
{
if (tid == 0 && level == 0)
{
status[get_group_id(0)] = 0;
}
return;
}
D = 1.f / D;
A11 *= D;
A12 *= D;
A22 *= D;
float2 nextPt = nextPts[get_group_id(0)];
nextPt = nextPt * 2.0f - c_halfWin;
__global float4 *ptrJ = (__global float4 *)J;
for (int k = 0; k < c_iters; ++k)
{
if (nextPt.x < -c_halfWin.x || nextPt.x >= cols || nextPt.y < -c_halfWin.y || nextPt.y >= rows)
{
if (tid == 0 && level == 0)
{
status[get_group_id(0)] = 0;
}
return;
}
float b1 = 0;
float b2 = 0;
for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
{
for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
{
float4 diff = (readImage2Df_C4(ptrJ, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j]) * 32.0f;
b1 += (diff * dIdx_patch[i][j]).x + (diff * dIdx_patch[i][j]).y + (diff * dIdx_patch[i][j]).z;
b2 += (diff * dIdy_patch[i][j]).x + (diff * dIdy_patch[i][j]).y + (diff * dIdy_patch[i][j]).z;
}
}
reduce2(b1, b2, smem1, smem2, tid);
barrier(CLK_LOCAL_MEM_FENCE);
b1 = smem1[0];
b2 = smem2[0];
float2 delta;
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
nextPt += delta;
//if (fabs(delta.x) < THRESHOLD && fabs(delta.y) < THRESHOLD)
// break;
}
float errval = 0.0f;
if (calcErr)
{
for (int y = get_local_id(1), i = 0; y < c_winSize_y; y += get_local_size(1), ++i)
{
for (int x = get_local_id(0), j = 0; x < c_winSize_x; x += get_local_size(0), ++j)
{
float4 diff = readImage2Df_C4(ptrJ, nextPt.x + x, nextPt.y + y, rows, cols, elemCntPerRow) - I_patch[i][j];
errval += fabs(diff.x) + fabs(diff.y) + fabs(diff.z);
}
}
reduce1(errval, smem1, tid);
}
if (tid == 0)
{
nextPt += c_halfWin;
nextPts[get_group_id(0)] = nextPt;
if (calcErr)
{
err[get_group_id(0)] = smem1[0] / (3 * c_winSize_x * c_winSize_y);
}
}
}
int readImage2Di_C1(__global const int *image, float2 coor, int2 size, const int elemCntPerRow)
{
int i = clamp((int)floor(coor.x), 0, size.x - 1);
int j = clamp((int)floor(coor.y), 0, size.y - 1);
return image[mad24(j, elemCntPerRow, i)];
}
__kernel void lkDense_C1_D0(__global const int *I, __global const int *J, __global float *u, int uStep, __global float *v, int vStep, __global const float *prevU, int prevUStep, __global const float *prevV, int prevVStep,
const int rows, const int cols, /*__global float* err, int errStep, int cn,*/
const int elemCntPerRow, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{
int c_halfWin_x = (c_winSize_x - 1) / 2;
int c_halfWin_y = (c_winSize_y - 1) / 2;
const int patchWidth = get_local_size(0) + 2 * c_halfWin_x;
const int patchHeight = get_local_size(1) + 2 * c_halfWin_y;
__local int smem[8192];
__local int *I_patch = smem;
__local int *dIdx_patch = I_patch + patchWidth * patchHeight;
__local int *dIdy_patch = dIdx_patch + patchWidth * patchHeight;
const int xBase = get_group_id(0) * get_local_size(0);
const int yBase = get_group_id(1) * get_local_size(1);
int2 size = (int2)(cols, rows);
for (int i = get_local_id(1); i < patchHeight; i += get_local_size(1))
{
for (int j = get_local_id(0); j < patchWidth; j += get_local_size(0))
{
float x = xBase - c_halfWin_x + j + 0.5f;
float y = yBase - c_halfWin_y + i + 0.5f;
I_patch[i * patchWidth + j] = readImage2Di_C1(I, (float2)(x, y), size, elemCntPerRow);
// Sharr Deriv
dIdx_patch[i * patchWidth + j] = 3 * readImage2Di_C1(I, (float2)(x + 1, y - 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x + 1, y), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x + 1, y + 1), size, elemCntPerRow) -
(3 * readImage2Di_C1(I, (float2)(x - 1, y - 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x - 1, y), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x - 1, y + 1), size, elemCntPerRow));
dIdy_patch[i * patchWidth + j] = 3 * readImage2Di_C1(I, (float2)(x - 1, y + 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x, y + 1), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x + 1, y + 1), size, elemCntPerRow) -
(3 * readImage2Di_C1(I, (float2)(x - 1, y - 1), size, elemCntPerRow) + 10 * readImage2Di_C1(I, (float2)(x, y - 1), size, elemCntPerRow) + 3 * readImage2Di_C1(I, (float2)(x + 1, y - 1), size, elemCntPerRow));
}
}
barrier(CLK_LOCAL_MEM_FENCE);
// extract the patch from the first image, compute covariation matrix of derivatives
const int x = get_global_id(0);
const int y = get_global_id(1);
if (x >= cols || y >= rows)
{
return;
}
int A11i = 0;
int A12i = 0;
int A22i = 0;
for (int i = 0; i < c_winSize_y; ++i)
{
for (int j = 0; j < c_winSize_x; ++j)
{
int dIdx = dIdx_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];
int dIdy = dIdy_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];
A11i += dIdx * dIdx;
A12i += dIdx * dIdy;
A22i += dIdy * dIdy;
}
}
float A11 = A11i;
float A12 = A12i;
float A22 = A22i;
float D = A11 * A22 - A12 * A12;
//if (calcErr && GET_MIN_EIGENVALS)
// (err + y * errStep)[x] = minEig;
if (D < 1.192092896e-07f)
{
//if (calcErr)
// err(y, x) = 3.402823466e+38f;
return;
}
D = 1.f / D;
A11 *= D;
A12 *= D;
A22 *= D;
float2 nextPt;
nextPt.x = x + prevU[y / 2 * prevUStep / 4 + x / 2] * 2.0f;
nextPt.y = y + prevV[y / 2 * prevVStep / 4 + x / 2] * 2.0f;
for (int k = 0; k < c_iters; ++k)
{
if (nextPt.x < 0 || nextPt.x >= cols || nextPt.y < 0 || nextPt.y >= rows)
{
//if (calcErr)
// err(y, x) = 3.402823466e+38f;
return;
}
int b1 = 0;
int b2 = 0;
for (int i = 0; i < c_winSize_y; ++i)
{
for (int j = 0; j < c_winSize_x; ++j)
{
int iI = I_patch[(get_local_id(1) + i) * patchWidth + get_local_id(0) + j];
int iJ = readImage2Di_C1(J, (float2)(nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f), size, elemCntPerRow);
int diff = (iJ - iI) * 32;
int dIdx = dIdx_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];
int dIdy = dIdy_patch[(get_local_id(1) + i) * patchWidth + (get_local_id(0) + j)];
b1 += diff * dIdx;
b2 += diff * dIdy;
}
}
float2 delta;
delta.x = A12 * b2 - A22 * b1;
delta.y = A12 * b1 - A11 * b2;
nextPt.x += delta.x;
nextPt.y += delta.y;
if (fabs(delta.x) < 0.01f && fabs(delta.y) < 0.01f)
{
break;
}
}
u[y * uStep / 4 + x] = nextPt.x - x;
v[y * vStep / 4 + x] = nextPt.y - y;
if (calcErr)
{
int errval = 0;
for (int i = 0; i < c_winSize_y; ++i)
{
for (int j = 0; j < c_winSize_x; ++j)
{
int iI = I_patch[(get_local_id(1) + i) * patchWidth + get_local_id(0) + j];
int iJ = readImage2Di_C1(J, (float2)(nextPt.x - c_halfWin_x + j + 0.5f, nextPt.y - c_halfWin_y + i + 0.5f), size, elemCntPerRow);
errval += abs(iJ - iI);
}
}
//err[y * errStep / 4 + x] = static_cast<float>(errval) / (c_winSize_x * c_winSize_y);
}
}

View File

@ -48,7 +48,7 @@ using namespace cv::ocl;
#if !defined (HAVE_OPENCL)
void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &, const oclMat &, const oclMat &, oclMat &, oclMat &, oclMat *) { }
void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &, const oclMat &, const oclMat &, oclMat &, oclMat &, oclMat &) { }
void cv::ocl::PyrLKOpticalFlow::dense(const oclMat &, const oclMat &, oclMat &, oclMat &, oclMat *) { }
#else /* !defined (HAVE_OPENCL) */
@ -59,6 +59,7 @@ namespace cv
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *pyrlk;
extern const char *pyrlk_no_image;
extern const char *operator_setTo;
extern const char *operator_convertTo;
extern const char *operator_copyToM;
@ -530,7 +531,7 @@ void arithmetic_run(const oclMat &src1, oclMat &dst, string kernelName, const ch
void multiply_cus(const oclMat &src1, oclMat &dst, float scalar)
{
arithmetic_run(src1, dst, "arithm_muls", &pyrlk, (void *)(&scalar));
arithmetic_run(src1, dst, "arithm_muls", &arithm_mul, (void *)(&scalar));
}
void pyrdown_run_cus(const oclMat &src, const oclMat &dst)
@ -735,46 +736,69 @@ void releaseTexture(cl_mem texture)
}
void lkSparse_run(oclMat &I, oclMat &J,
const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat *err, bool GET_MIN_EIGENVALS, int ptcount,
const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat& err, bool /*GET_MIN_EIGENVALS*/, int ptcount,
int level, /*dim3 block, */dim3 patch, Size winSize, int iters)
{
Context *clCxt = I.clCxt;
char platform[256] = {0};
cl_platform_id pid;
clGetDeviceInfo(*clCxt->impl->devices, CL_DEVICE_PLATFORM, sizeof(pid), &pid, NULL);
clGetPlatformInfo(pid, CL_PLATFORM_NAME, 256, platform, NULL);
std::string namestr = platform;
bool isImageSupported = true;
if(namestr.find("NVIDIA")!=string::npos || namestr.find("Intel")!=string::npos)
isImageSupported = false;
int elemCntPerRow = I.step / I.elemSize();
string kernelName = "lkSparse";
size_t localThreads[3] = { 8, 32, 1 };
size_t globalThreads[3] = { 8 * ptcount, 32, 1};
size_t localThreads[3] = { 8, isImageSupported?8:32, 1 };
size_t globalThreads[3] = { 8 * ptcount, isImageSupported?8:32, 1};
int cn = I.oclchannels();
bool calcErr;
if (err)
char calcErr;
if (level == 0)
{
calcErr = true;
calcErr = 1;
}
else
{
calcErr = false;
calcErr = 0;
}
calcErr = true;
cl_mem ITex = bindTexture(I, I.depth(), cn);
cl_mem JTex = bindTexture(J, J.depth(), cn);
vector<pair<size_t , const void *> > args;
cl_mem ITex;
cl_mem JTex;
if (isImageSupported)
{
ITex = bindTexture(I, I.depth(), cn);
JTex = bindTexture(J, J.depth(), cn);
}
else
{
ITex = (cl_mem)I.data;
JTex = (cl_mem)J.data;
}
args.push_back( make_pair( sizeof(cl_mem), (void *)&ITex ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&JTex ));
//cl_mem clmD = clCreateBuffer(clCxt, CL_MEM_READ_WRITE, ptcount * sizeof(float), NULL, NULL);
args.push_back( make_pair( sizeof(cl_mem), (void *)&prevPts.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&prevPts.step ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&nextPts.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&nextPts.step ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&status.data ));
//args.push_back( make_pair( sizeof(cl_mem), (void *)&(err->data) ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&err.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&level ));
args.push_back( make_pair( sizeof(cl_int), (void *)&I.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&I.cols ));
if (!isImageSupported)
{
args.push_back( make_pair( sizeof(cl_int), (void *)&elemCntPerRow ) );
}
args.push_back( make_pair( sizeof(cl_int), (void *)&patch.x ));
args.push_back( make_pair( sizeof(cl_int), (void *)&patch.y ));
args.push_back( make_pair( sizeof(cl_int), (void *)&cn ));
@ -782,27 +806,29 @@ void lkSparse_run(oclMat &I, oclMat &J,
args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.height ));
args.push_back( make_pair( sizeof(cl_int), (void *)&iters ));
args.push_back( make_pair( sizeof(cl_char), (void *)&calcErr ));
args.push_back( make_pair( sizeof(cl_char), (void *)&GET_MIN_EIGENVALS ));
//args.push_back( make_pair( sizeof(cl_char), (void *)&GET_MIN_EIGENVALS ));
if (isImageSupported)
{
openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
releaseTexture(ITex);
releaseTexture(JTex);
}
else
{
//printf("Warning: The image2d_t is not supported by the device. Using alternative method!\n");
openCLExecuteKernel2(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
}
}
void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &nextImg, const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat *err)
{
if (prevImg.clCxt->impl->devName.find("Intel(R) HD Graphics") != string::npos)
{
cout << " Intel HD GPU device unsupported " << endl;
return;
}
if (prevPts.empty())
{
nextPts.release();
status.release();
if (err) err->release();
//if (err) err->release();
return;
}
@ -836,8 +862,15 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
//status.setTo(Scalar::all(1));
setTo(status, Scalar::all(1));
//if (err)
// ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
bool errMat = false;
if (!err)
{
err = new oclMat(1, prevPts.cols, CV_32FC1);
errMat = true;
}
else
ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
//ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, err);
// build the image pyramids.
@ -872,17 +905,22 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
for (int level = maxLevel; level >= 0; level--)
{
lkSparse_run(prevPyr_[level], nextPyr_[level],
prevPts, nextPts, status, level == 0 && err ? err : 0, getMinEigenVals, prevPts.cols,
prevPts, nextPts, status, *err, getMinEigenVals, prevPts.cols,
level, /*block, */patch, winSize, iters);
}
clFinish(prevImg.clCxt->impl->clCmdQueue);
if(errMat)
delete err;
}
void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v,
oclMat &prevU, oclMat &prevV, oclMat *err, Size winSize, int iters)
{
Context *clCxt = I.clCxt;
bool isImageSupported = clCxt->impl->devName.find("Intel(R) HD Graphics") == string::npos;
int elemCntPerRow = I.step / I.elemSize();
string kernelName = "lkDense";
@ -901,8 +939,19 @@ void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v,
calcErr = false;
}
cl_mem ITex = bindTexture(I, I.depth(), cn);
cl_mem JTex = bindTexture(J, J.depth(), cn);
cl_mem ITex;
cl_mem JTex;
if (isImageSupported)
{
ITex = bindTexture(I, I.depth(), cn);
JTex = bindTexture(J, J.depth(), cn);
}
else
{
ITex = (cl_mem)I.data;
JTex = (cl_mem)J.data;
}
//int2 halfWin = {(winSize.width - 1) / 2, (winSize.height - 1) / 2};
//const int patchWidth = 16 + 2 * halfWin.x;
@ -926,16 +975,28 @@ void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v,
args.push_back( make_pair( sizeof(cl_int), (void *)&I.cols ));
//args.push_back( make_pair( sizeof(cl_mem), (void *)&(*err).data ));
//args.push_back( make_pair( sizeof(cl_int), (void *)&(*err).step ));
if (!isImageSupported)
{
args.push_back( make_pair( sizeof(cl_int), (void *)&elemCntPerRow ) );
}
args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.width ));
args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.height ));
args.push_back( make_pair( sizeof(cl_int), (void *)&iters ));
args.push_back( make_pair( sizeof(cl_char), (void *)&calcErr ));
if (isImageSupported)
{
openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
releaseTexture(ITex);
releaseTexture(JTex);
}
else
{
//printf("Warning: The image2d_t is not supported by the device. Using alternative method!\n");
openCLExecuteKernel2(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
}
}
void cv::ocl::PyrLKOpticalFlow::dense(const oclMat &prevImg, const oclMat &nextImg, oclMat &u, oclMat &v, oclMat *err)
{

View File

@ -118,9 +118,9 @@ TEST_P(Sparse, Mat)
cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void *)&status[0]);
d_status.download(status_mat);
//std::vector<float> err(d_err.cols);
//cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]);
//d_err.download(err_mat);
std::vector<float> err(d_err.cols);
cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]);
d_err.download(err_mat);
std::vector<cv::Point2f> nextPts_gold;
std::vector<unsigned char> status_gold;
@ -153,9 +153,9 @@ TEST_P(Sparse, Mat)
}
}
double bad_ratio = static_cast<double>(mistmatch) / (nextPts.size() * 2);
double bad_ratio = static_cast<double>(mistmatch) / (nextPts.size());
ASSERT_LE(bad_ratio, 0.05f);
ASSERT_LE(bad_ratio, 0.02f);
}