load from config xml and fix integral representation
This commit is contained in:
172
apps/sft/sft.cpp
172
apps/sft/sft.cpp
@@ -44,85 +44,119 @@
|
||||
|
||||
#include <sft/common.hpp>
|
||||
#include <sft/octave.hpp>
|
||||
#include <sft/config.hpp>
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
// hard coded now
|
||||
int nfeatures = 50;
|
||||
int npositives = 10;
|
||||
int nnegatives = 10;
|
||||
using namespace sft;
|
||||
|
||||
int shrinkage = 4;
|
||||
int octave = 0;
|
||||
const string keys =
|
||||
"{help h usage ? | | print this message }"
|
||||
"{config c | | path to configuration xml }"
|
||||
;
|
||||
|
||||
int nsamples = npositives + nnegatives;
|
||||
cv::Size model(64, 128);
|
||||
std::string path = "/home/kellan/cuda-dev/opencv_extra/testdata/sctrain/rescaled-train-2012-10-27-19-02-52";
|
||||
cv::CommandLineParser parser(argc, argv, keys);
|
||||
parser.about("Soft cascade training application.");
|
||||
|
||||
cv::Rect boundingBox(5, 5 ,16, 32);
|
||||
sft::Octave boost(boundingBox, npositives, nnegatives, octave, shrinkage);
|
||||
|
||||
sft::FeaturePool pool(model, nfeatures);
|
||||
sft::Dataset dataset(path, boost.logScale);
|
||||
|
||||
boost.train(dataset, pool);
|
||||
|
||||
cv::Mat train_data(nfeatures, nsamples, CV_32FC1);
|
||||
cv::RNG rng;
|
||||
|
||||
for (int y = 0; y < nfeatures; ++y)
|
||||
for (int x = 0; x < nsamples; ++x)
|
||||
train_data.at<float>(y, x) = rng.uniform(0.f, 1.f);
|
||||
// +
|
||||
int tflag = CV_COL_SAMPLE;
|
||||
cv::Mat responses(nsamples, 1, CV_32FC1);
|
||||
for (int y = 0; y < nsamples; ++y)
|
||||
responses.at<float>(y, 0) = (y < npositives) ? 1.f : 0.f;
|
||||
|
||||
|
||||
cv::Mat var_idx(1, nfeatures, CV_32SC1);
|
||||
for (int x = 0; x < nfeatures; ++x)
|
||||
var_idx.at<int>(0, x) = x;
|
||||
|
||||
// Mat sample_idx;
|
||||
cv::Mat sample_idx(1, nsamples, CV_32SC1);
|
||||
for (int x = 0; x < nsamples; ++x)
|
||||
sample_idx.at<int>(0, x) = x;
|
||||
|
||||
cv::Mat var_type(1, nfeatures + 1, CV_8UC1);
|
||||
for (int x = 0; x < nfeatures; ++x)
|
||||
var_type.at<uchar>(0, x) = CV_VAR_ORDERED;
|
||||
|
||||
var_type.at<uchar>(0, nfeatures) = CV_VAR_CATEGORICAL;
|
||||
|
||||
cv::Mat missing_mask;
|
||||
|
||||
CvBoostParams params;
|
||||
if (parser.has("help"))
|
||||
{
|
||||
params.max_categories = 10;
|
||||
params.max_depth = 2;
|
||||
params.min_sample_count = 2;
|
||||
params.cv_folds = 0;
|
||||
params.truncate_pruned_tree = false;
|
||||
|
||||
/// ??????????????????
|
||||
params.regression_accuracy = 0.01;
|
||||
params.use_surrogates = false;
|
||||
params.use_1se_rule = false;
|
||||
|
||||
///////// boost params
|
||||
params.boost_type = CvBoost::GENTLE;
|
||||
params.weak_count = 1;
|
||||
params.split_criteria = CvBoost::SQERR;
|
||||
params.weight_trim_rate = 0.95;
|
||||
parser.printMessage();
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool update = false;
|
||||
if (!parser.check())
|
||||
{
|
||||
parser.printErrors();
|
||||
return 1;
|
||||
}
|
||||
|
||||
// boost.train(train_data, responses, var_idx, sample_idx, var_type, missing_mask);
|
||||
string configPath = parser.get<string>("config");
|
||||
if (configPath.empty())
|
||||
{
|
||||
std::cout << "Configuration file is missing or empty. Could not start training." << std::endl << std::flush;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// CvFileStorage* fs = cvOpenFileStorage( "/home/kellan/train_res.xml", 0, CV_STORAGE_WRITE );
|
||||
// boost.write(fs, "test_res");
|
||||
std::cout << "Read configuration from file " << configPath << std::endl;
|
||||
cv::FileStorage fs(configPath, cv::FileStorage::READ);
|
||||
if(!fs.isOpened())
|
||||
{
|
||||
std::cout << "Configuration file " << configPath << " can't be opened." << std::endl << std::flush;
|
||||
return 1;
|
||||
}
|
||||
|
||||
// cvReleaseFileStorage( &fs );
|
||||
// 1. load config
|
||||
sft::Config cfg;
|
||||
fs["config"] >> cfg;
|
||||
std::cout << std::endl << "Training will be executed for configuration:" << std::endl << cfg << std::endl;
|
||||
|
||||
// 2. check and open output file
|
||||
cv::FileStorage fso(cfg.outXmlPath, cv::FileStorage::WRITE);
|
||||
if(!fs.isOpened())
|
||||
{
|
||||
std::cout << "Training stopped. Output classifier Xml file " << cfg.outXmlPath << " can't be opened." << std::endl << std::flush;
|
||||
return 1;
|
||||
}
|
||||
|
||||
// ovector strong;
|
||||
// strong.reserve(cfg.octaves.size());
|
||||
|
||||
// fso << "softcascade" << "{" << "octaves" << "[";
|
||||
|
||||
// 3. Train all octaves
|
||||
for (ivector::const_iterator it = cfg.octaves.begin(); it != cfg.octaves.end(); ++it)
|
||||
{
|
||||
int nfeatures = cfg.poolSize;
|
||||
int npositives = cfg.positives;
|
||||
int nnegatives = cfg.negatives;
|
||||
|
||||
int shrinkage = cfg.shrinkage;
|
||||
int octave = *it;
|
||||
|
||||
cv::Size model = cfg.modelWinSize;
|
||||
std::string path = cfg.trainPath;
|
||||
|
||||
cv::Rect boundingBox(cfg.offset.x / cfg.shrinkage, cfg.offset.y / cfg.shrinkage,
|
||||
cfg.modelWinSize.width / cfg.shrinkage, cfg.modelWinSize.height / cfg.shrinkage);
|
||||
|
||||
sft::Octave boost(boundingBox, npositives, nnegatives, octave, shrinkage);
|
||||
|
||||
sft::FeaturePool pool(model, nfeatures);
|
||||
sft::Dataset dataset(path, boost.logScale);
|
||||
|
||||
if (boost.train(dataset, pool))
|
||||
{
|
||||
}
|
||||
std::cout << "Octave " << octave << " was successfully trained..." << std::endl;
|
||||
// // d. crain octave
|
||||
// if (octave.train(pool, cfg.positives, cfg.negatives, cfg.weaks))
|
||||
// {
|
||||
// strong.push_back(octave);
|
||||
// }
|
||||
}
|
||||
|
||||
// fso << "]" << "}";
|
||||
|
||||
// // 3. create Soft Cascade
|
||||
// // sft::SCascade cascade(cfg.modelWinSize, cfg.octs, cfg.shrinkage);
|
||||
|
||||
// // // 4. Generate feature pool
|
||||
// // std::vector<sft::ICF> pool;
|
||||
// // sft::fillPool(pool, cfg.poolSize, cfg.modelWinSize / cfg.shrinkage, cfg.seed);
|
||||
|
||||
// // // 5. Train all octaves
|
||||
// // cascade.train(cfg.trainPath);
|
||||
|
||||
// // // 6. Set thresolds
|
||||
// // cascade.prune();
|
||||
|
||||
// // // 7. Postprocess
|
||||
// // cascade.normolize();
|
||||
|
||||
// // // 8. Write result xml
|
||||
// // cv::FileStorage ofs(cfg.outXmlPath, cv::FileStorage::WRITE);
|
||||
// // ofs << cfg.cascadeName << cascade;
|
||||
|
||||
std::cout << "Training complete..." << std::endl;
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user