All hdr functions as Algorithms
This commit is contained in:
parent
4d2ea847fa
commit
302bf23f82
@ -409,7 +409,7 @@ TEST(Highgui_WebP, encode_decode_lossy_webp)
|
|||||||
|
|
||||||
TEST(Highgui_Hdr, regression)
|
TEST(Highgui_Hdr, regression)
|
||||||
{
|
{
|
||||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "../cv/hdr/";
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "../cv/hdr/format/";
|
||||||
string name_rle = folder + "rle.hdr";
|
string name_rle = folder + "rle.hdr";
|
||||||
string name_no_rle = folder + "no_rle.hdr";
|
string name_no_rle = folder + "no_rle.hdr";
|
||||||
Mat img_rle = imread(name_rle, -1);
|
Mat img_rle = imread(name_rle, -1);
|
||||||
|
@ -138,6 +138,88 @@ public:
|
|||||||
CV_EXPORTS_W Ptr<TonemapReinhardDevlin>
|
CV_EXPORTS_W Ptr<TonemapReinhardDevlin>
|
||||||
createTonemapReinhardDevlin(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f);
|
createTonemapReinhardDevlin(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f);
|
||||||
|
|
||||||
|
class CV_EXPORTS_W ExposureAlign : public Algorithm
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArrayOfArrays dst,
|
||||||
|
const std::vector<float>& times, InputArray response) = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
class CV_EXPORTS_W AlignMTB : public ExposureAlign
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArrayOfArrays dst,
|
||||||
|
const std::vector<float>& times, InputArray response) = 0;
|
||||||
|
|
||||||
|
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArrayOfArrays dst) = 0;
|
||||||
|
|
||||||
|
CV_WRAP virtual void calculateShift(InputArray img0, InputArray img1, Point& shift) = 0;
|
||||||
|
CV_WRAP virtual void shiftMat(InputArray src, OutputArray dst, const Point shift) = 0;
|
||||||
|
|
||||||
|
CV_WRAP virtual int getMaxBits() const = 0;
|
||||||
|
CV_WRAP virtual void setMaxBits(int max_bits) = 0;
|
||||||
|
|
||||||
|
CV_WRAP virtual int getExcludeRange() const = 0;
|
||||||
|
CV_WRAP virtual void setExcludeRange(int exclude_range) = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
CV_EXPORTS_W Ptr<AlignMTB> createAlignMTB(int max_bits = 6, int exclude_range = 4);
|
||||||
|
|
||||||
|
class CV_EXPORTS_W ExposureCalibrate : public Algorithm
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times) = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
class CV_EXPORTS_W CalibrateDebevec : public ExposureCalibrate
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
CV_WRAP virtual float getLambda() const = 0;
|
||||||
|
CV_WRAP virtual void setLambda(float lambda) = 0;
|
||||||
|
|
||||||
|
CV_WRAP virtual int getSamples() const = 0;
|
||||||
|
CV_WRAP virtual void setSamples(int samples) = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
CV_EXPORTS_W Ptr<CalibrateDebevec> createCalibrateDebevec(int samples = 50, float lambda = 10.0f);
|
||||||
|
|
||||||
|
class CV_EXPORTS_W ExposureMerge : public Algorithm
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst,
|
||||||
|
const std::vector<float>& times, InputArray response) = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
class CV_EXPORTS_W MergeDebevec : public ExposureMerge
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst,
|
||||||
|
const std::vector<float>& times, InputArray response) = 0;
|
||||||
|
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, const std::vector<float>& times) = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
CV_EXPORTS_W Ptr<MergeDebevec> createMergeDebevec();
|
||||||
|
|
||||||
|
class CV_EXPORTS_W MergeMertens : public ExposureMerge
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst,
|
||||||
|
const std::vector<float>& times, InputArray response) = 0;
|
||||||
|
CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst) = 0;
|
||||||
|
|
||||||
|
CV_WRAP virtual float getContrastWeight() const = 0;
|
||||||
|
CV_WRAP virtual void setContrastWeight(float contrast_weiht) = 0;
|
||||||
|
|
||||||
|
CV_WRAP virtual float getSaturationWeight() const = 0;
|
||||||
|
CV_WRAP virtual void setSaturationWeight(float saturation_weight) = 0;
|
||||||
|
|
||||||
|
CV_WRAP virtual float getExposureWeight() const = 0;
|
||||||
|
CV_WRAP virtual void setExposureWeight(float exposure_weight) = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
CV_EXPORTS_W Ptr<MergeMertens>
|
||||||
|
createMergeMertens(float contrast_weight = 1.0f, float saturation_weight = 1.0f, float exposure_weight = 0.0f);
|
||||||
|
|
||||||
} // cv
|
} // cv
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -0,0 +1,235 @@
|
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other materials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include "precomp.hpp"
|
||||||
|
#include "opencv2/photo.hpp"
|
||||||
|
#include "opencv2/imgproc.hpp"
|
||||||
|
#include "hdr_common.hpp"
|
||||||
|
|
||||||
|
namespace cv
|
||||||
|
{
|
||||||
|
|
||||||
|
class AlignMTBImpl : public AlignMTB
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
AlignMTBImpl(int max_bits, int exclude_range) :
|
||||||
|
max_bits(max_bits),
|
||||||
|
exclude_range(exclude_range),
|
||||||
|
name("AlignMTB")
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
void process(InputArrayOfArrays src, OutputArrayOfArrays dst,
|
||||||
|
const std::vector<float>& times, InputArray response)
|
||||||
|
{
|
||||||
|
process(src, dst);
|
||||||
|
}
|
||||||
|
|
||||||
|
void process(InputArrayOfArrays _src, OutputArray _dst)
|
||||||
|
{
|
||||||
|
std::vector<Mat> src, dst;
|
||||||
|
_src.getMatVector(src);
|
||||||
|
_dst.getMatVector(dst);
|
||||||
|
|
||||||
|
checkImageDimensions(src);
|
||||||
|
dst.resize(src.size());
|
||||||
|
|
||||||
|
size_t pivot = src.size() / 2;
|
||||||
|
dst[pivot] = src[pivot];
|
||||||
|
Mat gray_base;
|
||||||
|
cvtColor(src[pivot], gray_base, COLOR_RGB2GRAY);
|
||||||
|
|
||||||
|
for(size_t i = 0; i < src.size(); i++) {
|
||||||
|
if(i == pivot) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
Mat gray;
|
||||||
|
cvtColor(src[i], gray, COLOR_RGB2GRAY);
|
||||||
|
Point shift;
|
||||||
|
calculateShift(gray_base, gray, shift);
|
||||||
|
shiftMat(src[i], dst[i], shift);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void calculateShift(InputArray _img0, InputArray _img1, Point& shift)
|
||||||
|
{
|
||||||
|
Mat img0 = _img0.getMat();
|
||||||
|
Mat img1 = _img1.getMat();
|
||||||
|
CV_Assert(img0.channels() == 1 && img0.type() == img1.type());
|
||||||
|
CV_Assert(img0.size() == img0.size());
|
||||||
|
|
||||||
|
int maxlevel = static_cast<int>(log((double)max(img0.rows, img0.cols)) / log(2.0)) - 1;
|
||||||
|
maxlevel = min(maxlevel, max_bits - 1);
|
||||||
|
|
||||||
|
std::vector<Mat> pyr0;
|
||||||
|
std::vector<Mat> pyr1;
|
||||||
|
buildPyr(img0, pyr0, maxlevel);
|
||||||
|
buildPyr(img1, pyr1, maxlevel);
|
||||||
|
|
||||||
|
shift = Point(0, 0);
|
||||||
|
for(int level = maxlevel; level >= 0; level--) {
|
||||||
|
|
||||||
|
shift *= 2;
|
||||||
|
Mat tb1, tb2, eb1, eb2;
|
||||||
|
computeBitmaps(pyr0[level], tb1, eb1, exclude_range);
|
||||||
|
computeBitmaps(pyr1[level], tb2, eb2, exclude_range);
|
||||||
|
|
||||||
|
int min_err = pyr0[level].total();
|
||||||
|
Point new_shift(shift);
|
||||||
|
for(int i = -1; i <= 1; i++) {
|
||||||
|
for(int j = -1; j <= 1; j++) {
|
||||||
|
Point test_shift = shift + Point(i, j);
|
||||||
|
Mat shifted_tb2, shifted_eb2, diff;
|
||||||
|
shiftMat(tb2, shifted_tb2, test_shift);
|
||||||
|
shiftMat(eb2, shifted_eb2, test_shift);
|
||||||
|
bitwise_xor(tb1, shifted_tb2, diff);
|
||||||
|
bitwise_and(diff, eb1, diff);
|
||||||
|
bitwise_and(diff, shifted_eb2, diff);
|
||||||
|
int err = countNonZero(diff);
|
||||||
|
if(err < min_err) {
|
||||||
|
new_shift = test_shift;
|
||||||
|
min_err = err;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
shift = new_shift;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void shiftMat(InputArray _src, OutputArray _dst, const Point shift)
|
||||||
|
{
|
||||||
|
Mat src = _src.getMat();
|
||||||
|
_dst.create(src.size(), src.type());
|
||||||
|
Mat dst = _dst.getMat();
|
||||||
|
|
||||||
|
dst = Mat::zeros(src.size(), src.type());
|
||||||
|
int width = src.cols - abs(shift.x);
|
||||||
|
int height = src.rows - abs(shift.y);
|
||||||
|
Rect dst_rect(max(shift.x, 0), max(shift.y, 0), width, height);
|
||||||
|
Rect src_rect(max(-shift.x, 0), max(-shift.y, 0), width, height);
|
||||||
|
src(src_rect).copyTo(dst(dst_rect));
|
||||||
|
}
|
||||||
|
|
||||||
|
int getMaxBits() const { return max_bits; }
|
||||||
|
void setMaxBits(int val) { max_bits = val; }
|
||||||
|
|
||||||
|
int getExcludeRange() const { return exclude_range; }
|
||||||
|
void setExcludeRange(int val) { exclude_range = val; }
|
||||||
|
|
||||||
|
void write(FileStorage& fs) const
|
||||||
|
{
|
||||||
|
fs << "name" << name
|
||||||
|
<< "max_bits" << max_bits
|
||||||
|
<< "exclude_range" << exclude_range;
|
||||||
|
}
|
||||||
|
|
||||||
|
void read(const FileNode& fn)
|
||||||
|
{
|
||||||
|
FileNode n = fn["name"];
|
||||||
|
CV_Assert(n.isString() && String(n) == name);
|
||||||
|
max_bits = fn["max_bits"];
|
||||||
|
exclude_range = fn["exclude_range"];
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
String name;
|
||||||
|
int max_bits, exclude_range;
|
||||||
|
|
||||||
|
void downsample(Mat& src, Mat& dst)
|
||||||
|
{
|
||||||
|
dst = Mat(src.rows / 2, src.cols / 2, CV_8UC1);
|
||||||
|
|
||||||
|
int offset = src.cols * 2;
|
||||||
|
uchar *src_ptr = src.ptr();
|
||||||
|
uchar *dst_ptr = dst.ptr();
|
||||||
|
for(int y = 0; y < dst.rows; y ++) {
|
||||||
|
uchar *ptr = src_ptr;
|
||||||
|
for(int x = 0; x < dst.cols; x++) {
|
||||||
|
dst_ptr[0] = ptr[0];
|
||||||
|
dst_ptr++;
|
||||||
|
ptr += 2;
|
||||||
|
}
|
||||||
|
src_ptr += offset;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void buildPyr(Mat& img, std::vector<Mat>& pyr, int maxlevel)
|
||||||
|
{
|
||||||
|
pyr.resize(maxlevel + 1);
|
||||||
|
pyr[0] = img.clone();
|
||||||
|
for(int level = 0; level < maxlevel; level++) {
|
||||||
|
downsample(pyr[level], pyr[level + 1]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int getMedian(Mat& img)
|
||||||
|
{
|
||||||
|
int channels = 0;
|
||||||
|
Mat hist;
|
||||||
|
int hist_size = 256;
|
||||||
|
float range[] = {0, 256} ;
|
||||||
|
const float* ranges[] = {range};
|
||||||
|
calcHist(&img, 1, &channels, Mat(), hist, 1, &hist_size, ranges);
|
||||||
|
float *ptr = hist.ptr<float>();
|
||||||
|
int median = 0, sum = 0;
|
||||||
|
int thresh = img.total() / 2;
|
||||||
|
while(sum < thresh && median < 256) {
|
||||||
|
sum += static_cast<int>(ptr[median]);
|
||||||
|
median++;
|
||||||
|
}
|
||||||
|
return median;
|
||||||
|
}
|
||||||
|
|
||||||
|
void computeBitmaps(Mat& img, Mat& tb, Mat& eb, int exclude_range)
|
||||||
|
{
|
||||||
|
int median = getMedian(img);
|
||||||
|
compare(img, median, tb, CMP_GT);
|
||||||
|
compare(abs(img - median), exclude_range, eb, CMP_GT);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
CV_EXPORTS_W Ptr<AlignMTB> createAlignMTB(int max_bits, int exclude_range)
|
||||||
|
{
|
||||||
|
return new AlignMTBImpl(max_bits, exclude_range);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
139
modules/photo/src/calibrate.cpp
Normal file
139
modules/photo/src/calibrate.cpp
Normal file
@ -0,0 +1,139 @@
|
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other materials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include "precomp.hpp"
|
||||||
|
#include "opencv2/photo.hpp"
|
||||||
|
#include "opencv2/imgproc.hpp"
|
||||||
|
#include "hdr_common.hpp"
|
||||||
|
|
||||||
|
namespace cv
|
||||||
|
{
|
||||||
|
|
||||||
|
class CalibrateDebevecImpl : public CalibrateDebevec
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
CalibrateDebevecImpl(int samples, float lambda) :
|
||||||
|
samples(samples),
|
||||||
|
lambda(lambda),
|
||||||
|
name("CalibrateDebevec"),
|
||||||
|
w(tringleWeights())
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
void process(InputArrayOfArrays src, OutputArray dst, std::vector<float>& times)
|
||||||
|
{
|
||||||
|
std::vector<Mat> images;
|
||||||
|
src.getMatVector(images);
|
||||||
|
dst.create(256, images[0].channels(), CV_32F);
|
||||||
|
Mat response = dst.getMat();
|
||||||
|
|
||||||
|
CV_Assert(!images.empty() && images.size() == times.size());
|
||||||
|
CV_Assert(images[0].depth() == CV_8U);
|
||||||
|
checkImageDimensions(images);
|
||||||
|
|
||||||
|
for(int channel = 0; channel < images[0].channels(); channel++) {
|
||||||
|
Mat A = Mat::zeros(samples * images.size() + 257, 256 + samples, CV_32F);
|
||||||
|
Mat B = Mat::zeros(A.rows, 1, CV_32F);
|
||||||
|
|
||||||
|
int eq = 0;
|
||||||
|
for(int i = 0; i < samples; i++) {
|
||||||
|
|
||||||
|
int pos = 3 * (rand() % images[0].total()) + channel;
|
||||||
|
for(size_t j = 0; j < images.size(); j++) {
|
||||||
|
|
||||||
|
int val = (images[j].ptr() + pos)[0];
|
||||||
|
A.at<float>(eq, val) = w.at<float>(val);
|
||||||
|
A.at<float>(eq, 256 + i) = -w.at<float>(val);
|
||||||
|
B.at<float>(eq, 0) = w.at<float>(val) * log(times[j]);
|
||||||
|
eq++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
A.at<float>(eq, 128) = 1;
|
||||||
|
eq++;
|
||||||
|
|
||||||
|
for(int i = 0; i < 254; i++) {
|
||||||
|
A.at<float>(eq, i) = lambda * w.at<float>(i + 1);
|
||||||
|
A.at<float>(eq, i + 1) = -2 * lambda * w.at<float>(i + 1);
|
||||||
|
A.at<float>(eq, i + 2) = lambda * w.at<float>(i + 1);
|
||||||
|
eq++;
|
||||||
|
}
|
||||||
|
Mat solution;
|
||||||
|
solve(A, B, solution, DECOMP_SVD);
|
||||||
|
solution.rowRange(0, 256).copyTo(response.col(channel));
|
||||||
|
}
|
||||||
|
exp(response, response);
|
||||||
|
}
|
||||||
|
|
||||||
|
int getSamples() const { return samples; }
|
||||||
|
void setSamples(int val) { samples = val; }
|
||||||
|
|
||||||
|
float getLambda() const { return lambda; }
|
||||||
|
void setLambda(float val) { lambda = val; }
|
||||||
|
|
||||||
|
void write(FileStorage& fs) const
|
||||||
|
{
|
||||||
|
fs << "name" << name
|
||||||
|
<< "samples" << samples
|
||||||
|
<< "lambda" << lambda;
|
||||||
|
}
|
||||||
|
|
||||||
|
void read(const FileNode& fn)
|
||||||
|
{
|
||||||
|
FileNode n = fn["name"];
|
||||||
|
CV_Assert(n.isString() && String(n) == name);
|
||||||
|
samples = fn["samples"];
|
||||||
|
lambda = fn["lambda"];
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
String name;
|
||||||
|
int samples;
|
||||||
|
float lambda;
|
||||||
|
Mat w;
|
||||||
|
};
|
||||||
|
|
||||||
|
Ptr<CalibrateDebevec> createCalibrateDebevec(int samples, float lambda)
|
||||||
|
{
|
||||||
|
return new CalibrateDebevecImpl(samples, lambda);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
@ -116,7 +116,7 @@ static void fastNlMeansDenoisingMultiCheckPreconditions(
|
|||||||
int imgToDenoiseIndex, int temporalWindowSize,
|
int imgToDenoiseIndex, int temporalWindowSize,
|
||||||
int templateWindowSize, int searchWindowSize)
|
int templateWindowSize, int searchWindowSize)
|
||||||
{
|
{
|
||||||
int src_imgs_size = (int)srcImgs.size();
|
int src_imgs_size = static_cast<int>(srcImgs.size());
|
||||||
if (src_imgs_size == 0) {
|
if (src_imgs_size == 0) {
|
||||||
CV_Error(Error::StsBadArg, "Input images vector should not be empty!");
|
CV_Error(Error::StsBadArg, "Input images vector should not be empty!");
|
||||||
}
|
}
|
||||||
@ -198,7 +198,7 @@ void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputAr
|
|||||||
_dst.create(srcImgs[0].size(), srcImgs[0].type());
|
_dst.create(srcImgs[0].size(), srcImgs[0].type());
|
||||||
Mat dst = _dst.getMat();
|
Mat dst = _dst.getMat();
|
||||||
|
|
||||||
int src_imgs_size = (int)srcImgs.size();
|
int src_imgs_size = static_cast<int>(srcImgs.size());
|
||||||
|
|
||||||
if (srcImgs[0].type() != CV_8UC3) {
|
if (srcImgs[0].type() != CV_8UC3) {
|
||||||
CV_Error(Error::StsBadArg, "Type of input images should be CV_8UC3!");
|
CV_Error(Error::StsBadArg, "Type of input images should be CV_8UC3!");
|
||||||
|
74
modules/photo/src/hdr_common.cpp
Normal file
74
modules/photo/src/hdr_common.cpp
Normal file
@ -0,0 +1,74 @@
|
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other materials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include "precomp.hpp"
|
||||||
|
#include "opencv2/photo.hpp"
|
||||||
|
#include "hdr_common.hpp"
|
||||||
|
|
||||||
|
namespace cv
|
||||||
|
{
|
||||||
|
|
||||||
|
void checkImageDimensions(const std::vector<Mat>& images)
|
||||||
|
{
|
||||||
|
CV_Assert(!images.empty());
|
||||||
|
int width = images[0].cols;
|
||||||
|
int height = images[0].rows;
|
||||||
|
int type = images[0].type();
|
||||||
|
|
||||||
|
for(size_t i = 0; i < images.size(); i++) {
|
||||||
|
CV_Assert(images[i].cols == width && images[i].rows == height);
|
||||||
|
CV_Assert(images[i].type() == type);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Mat tringleWeights()
|
||||||
|
{
|
||||||
|
Mat w(256, 3, CV_32F);
|
||||||
|
for(int i = 0; i < 256; i++) {
|
||||||
|
for(int j = 0; j < 3; j++) {
|
||||||
|
w.at<float>(i, j) = i < 128 ? i + 1.0f : 256.0f - i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return w;
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
58
modules/photo/src/hdr_common.hpp
Normal file
58
modules/photo/src/hdr_common.hpp
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other materials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#ifndef __OPENCV_HDR_COMMON_HPP__
|
||||||
|
#define __OPENCV_HDR_COMMON_HPP__
|
||||||
|
|
||||||
|
#include "precomp.hpp"
|
||||||
|
#include "opencv2/photo.hpp"
|
||||||
|
|
||||||
|
namespace cv
|
||||||
|
{
|
||||||
|
|
||||||
|
void checkImageDimensions(const std::vector<Mat>& images);
|
||||||
|
|
||||||
|
Mat tringleWeights();
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif
|
263
modules/photo/src/merge.cpp
Normal file
263
modules/photo/src/merge.cpp
Normal file
@ -0,0 +1,263 @@
|
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other materials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include "precomp.hpp"
|
||||||
|
#include "opencv2/photo.hpp"
|
||||||
|
#include "opencv2/imgproc.hpp"
|
||||||
|
#include "hdr_common.hpp"
|
||||||
|
#include <iostream>
|
||||||
|
|
||||||
|
namespace cv
|
||||||
|
{
|
||||||
|
|
||||||
|
class MergeDebevecImpl : public MergeDebevec
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
MergeDebevecImpl() :
|
||||||
|
name("MergeDebevec"),
|
||||||
|
weights(tringleWeights())
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
void process(InputArrayOfArrays src, OutputArray dst, const std::vector<float>& times, InputArray input_response)
|
||||||
|
{
|
||||||
|
std::vector<Mat> images;
|
||||||
|
src.getMatVector(images);
|
||||||
|
dst.create(images[0].size(), CV_MAKETYPE(CV_32F, images[0].channels()));
|
||||||
|
Mat result = dst.getMat();
|
||||||
|
|
||||||
|
CV_Assert(images.size() == times.size());
|
||||||
|
CV_Assert(images[0].depth() == CV_8U);
|
||||||
|
checkImageDimensions(images);
|
||||||
|
|
||||||
|
Mat response = input_response.getMat();
|
||||||
|
CV_Assert(response.rows == 256 && response.cols >= images[0].channels());
|
||||||
|
Mat log_response;
|
||||||
|
log(response, log_response);
|
||||||
|
|
||||||
|
std::vector<float> exp_times(times.size());
|
||||||
|
for(size_t i = 0; i < exp_times.size(); i++) {
|
||||||
|
exp_times[i] = logf(times[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
int channels = images[0].channels();
|
||||||
|
float *res_ptr = result.ptr<float>();
|
||||||
|
for(size_t pos = 0; pos < result.total(); pos++, res_ptr += channels) {
|
||||||
|
|
||||||
|
std::vector<float> sum(channels, 0);
|
||||||
|
float weight_sum = 0;
|
||||||
|
for(size_t im = 0; im < images.size(); im++) {
|
||||||
|
|
||||||
|
uchar *img_ptr = images[im].ptr() + channels * pos;
|
||||||
|
float w = 0;
|
||||||
|
for(int channel = 0; channel < channels; channel++) {
|
||||||
|
w += weights.at<float>(img_ptr[channel]);
|
||||||
|
}
|
||||||
|
w /= channels;
|
||||||
|
weight_sum += w;
|
||||||
|
for(int channel = 0; channel < channels; channel++) {
|
||||||
|
sum[channel] += w * (log_response.at<float>(img_ptr[channel], channel) - exp_times[im]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for(int channel = 0; channel < channels; channel++) {
|
||||||
|
res_ptr[channel] = exp(sum[channel] / weight_sum);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void process(InputArrayOfArrays src, OutputArray dst, const std::vector<float>& times)
|
||||||
|
{
|
||||||
|
Mat response(256, 3, CV_32F);
|
||||||
|
for(int i = 0; i < 256; i++) {
|
||||||
|
for(int j = 0; j < 3; j++) {
|
||||||
|
response.at<float>(i, j) = max(i, 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
process(src, dst, times, response);
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
String name;
|
||||||
|
Mat weights;
|
||||||
|
};
|
||||||
|
|
||||||
|
Ptr<MergeDebevec> createMergeDebevec()
|
||||||
|
{
|
||||||
|
return new MergeDebevecImpl;
|
||||||
|
}
|
||||||
|
|
||||||
|
class MergeMertensImpl : public MergeMertens
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
MergeMertensImpl(float wcon, float wsat, float wexp) :
|
||||||
|
wcon(wcon),
|
||||||
|
wsat(wsat),
|
||||||
|
wexp(wexp),
|
||||||
|
name("MergeMertens")
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
void process(InputArrayOfArrays src, OutputArrayOfArrays dst, const std::vector<float>& times, InputArray response)
|
||||||
|
{
|
||||||
|
process(src, dst);
|
||||||
|
}
|
||||||
|
|
||||||
|
void process(InputArrayOfArrays src, OutputArray dst)
|
||||||
|
{
|
||||||
|
std::vector<Mat> images;
|
||||||
|
src.getMatVector(images);
|
||||||
|
checkImageDimensions(images);
|
||||||
|
|
||||||
|
std::vector<Mat> weights(images.size());
|
||||||
|
Mat weight_sum = Mat::zeros(images[0].size(), CV_32FC1);
|
||||||
|
for(size_t im = 0; im < images.size(); im++) {
|
||||||
|
Mat img, gray, contrast, saturation, wellexp;
|
||||||
|
std::vector<Mat> channels(3);
|
||||||
|
|
||||||
|
images[im].convertTo(img, CV_32FC3, 1.0/255.0);
|
||||||
|
cvtColor(img, gray, COLOR_RGB2GRAY);
|
||||||
|
split(img, channels);
|
||||||
|
|
||||||
|
Laplacian(gray, contrast, CV_32F);
|
||||||
|
contrast = abs(contrast);
|
||||||
|
|
||||||
|
Mat mean = (channels[0] + channels[1] + channels[2]) / 3.0f;
|
||||||
|
saturation = Mat::zeros(channels[0].size(), CV_32FC1);
|
||||||
|
for(int i = 0; i < 3; i++) {
|
||||||
|
Mat deviation = channels[i] - mean;
|
||||||
|
pow(deviation, 2.0, deviation);
|
||||||
|
saturation += deviation;
|
||||||
|
}
|
||||||
|
sqrt(saturation, saturation);
|
||||||
|
|
||||||
|
wellexp = Mat::ones(gray.size(), CV_32FC1);
|
||||||
|
for(int i = 0; i < 3; i++) {
|
||||||
|
Mat exp = channels[i] - 0.5f;
|
||||||
|
pow(exp, 2, exp);
|
||||||
|
exp = -exp / 0.08;
|
||||||
|
wellexp = wellexp.mul(exp);
|
||||||
|
}
|
||||||
|
|
||||||
|
pow(contrast, wcon, contrast);
|
||||||
|
pow(saturation, wsat, saturation);
|
||||||
|
pow(wellexp, wexp, wellexp);
|
||||||
|
|
||||||
|
weights[im] = contrast;
|
||||||
|
weights[im] = weights[im].mul(saturation);
|
||||||
|
weights[im] = weights[im].mul(wellexp);
|
||||||
|
weight_sum += weights[im];
|
||||||
|
}
|
||||||
|
int maxlevel = static_cast<int>(logf(static_cast<float>(max(images[0].rows, images[0].cols))) / logf(2.0)) - 1;
|
||||||
|
std::vector<Mat> res_pyr(maxlevel + 1);
|
||||||
|
|
||||||
|
for(size_t im = 0; im < images.size(); im++) {
|
||||||
|
weights[im] /= weight_sum;
|
||||||
|
Mat img;
|
||||||
|
images[im].convertTo(img, CV_32FC3, 1/255.0);
|
||||||
|
std::vector<Mat> img_pyr, weight_pyr;
|
||||||
|
buildPyramid(img, img_pyr, maxlevel);
|
||||||
|
buildPyramid(weights[im], weight_pyr, maxlevel);
|
||||||
|
for(int lvl = 0; lvl < maxlevel; lvl++) {
|
||||||
|
Mat up;
|
||||||
|
pyrUp(img_pyr[lvl + 1], up, img_pyr[lvl].size());
|
||||||
|
img_pyr[lvl] -= up;
|
||||||
|
}
|
||||||
|
for(int lvl = 0; lvl <= maxlevel; lvl++) {
|
||||||
|
std::vector<Mat> channels(3);
|
||||||
|
split(img_pyr[lvl], channels);
|
||||||
|
for(int i = 0; i < 3; i++) {
|
||||||
|
channels[i] = channels[i].mul(weight_pyr[lvl]);
|
||||||
|
}
|
||||||
|
merge(channels, img_pyr[lvl]);
|
||||||
|
if(res_pyr[lvl].empty()) {
|
||||||
|
res_pyr[lvl] = img_pyr[lvl];
|
||||||
|
} else {
|
||||||
|
res_pyr[lvl] += img_pyr[lvl];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for(int lvl = maxlevel; lvl > 0; lvl--) {
|
||||||
|
Mat up;
|
||||||
|
pyrUp(res_pyr[lvl], up, res_pyr[lvl - 1].size());
|
||||||
|
res_pyr[lvl - 1] += up;
|
||||||
|
}
|
||||||
|
dst.create(images[0].size(), CV_32FC3);
|
||||||
|
res_pyr[0].copyTo(dst.getMat());
|
||||||
|
}
|
||||||
|
|
||||||
|
float getContrastWeight() const { return wcon; }
|
||||||
|
void setContrastWeight(float val) { wcon = val; }
|
||||||
|
|
||||||
|
float getSaturationWeight() const { return wsat; }
|
||||||
|
void setSaturationWeight(float val) { wsat = val; }
|
||||||
|
|
||||||
|
float getExposureWeight() const { return wexp; }
|
||||||
|
void setExposureWeight(float val) { wexp = val; }
|
||||||
|
|
||||||
|
void write(FileStorage& fs) const
|
||||||
|
{
|
||||||
|
fs << "name" << name
|
||||||
|
<< "contrast_weight" << wcon
|
||||||
|
<< "saturation_weight" << wsat
|
||||||
|
<< "exposure_weight" << wexp;
|
||||||
|
}
|
||||||
|
|
||||||
|
void read(const FileNode& fn)
|
||||||
|
{
|
||||||
|
FileNode n = fn["name"];
|
||||||
|
CV_Assert(n.isString() && String(n) == name);
|
||||||
|
wcon = fn["contrast_weight"];
|
||||||
|
wsat = fn["saturation_weight"];
|
||||||
|
wexp = fn["exposure_weight"];
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
String name;
|
||||||
|
float wcon, wsat, wexp;
|
||||||
|
};
|
||||||
|
|
||||||
|
Ptr<MergeMertens> createMergeMertens(float wcon, float wsat, float wexp)
|
||||||
|
{
|
||||||
|
return new MergeMertensImpl(wcon, wsat, wexp);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
@ -132,7 +132,7 @@ public:
|
|||||||
Mat map;
|
Mat map;
|
||||||
log(gray_img + 1.0f, map);
|
log(gray_img + 1.0f, map);
|
||||||
Mat div;
|
Mat div;
|
||||||
pow(gray_img / (float)max, logf(bias) / logf(0.5f), div);
|
pow(gray_img / static_cast<float>(max), logf(bias) / logf(0.5f), div);
|
||||||
log(2.0f + 8.0f * div, div);
|
log(2.0f + 8.0f * div, div);
|
||||||
map = map.mul(1.0f / div);
|
map = map.mul(1.0f / div);
|
||||||
map = map.mul(1.0f / gray_img);
|
map = map.mul(1.0f / gray_img);
|
||||||
@ -210,7 +210,7 @@ public:
|
|||||||
|
|
||||||
double min, max;
|
double min, max;
|
||||||
minMaxLoc(map_img, &min, &max);
|
minMaxLoc(map_img, &min, &max);
|
||||||
float scale = contrast / (float)(max - min);
|
float scale = contrast / static_cast<float>(max - min);
|
||||||
|
|
||||||
exp(map_img * (scale - 1.0f) + log_img, map_img);
|
exp(map_img * (scale - 1.0f) + log_img, map_img);
|
||||||
log_img.release();
|
log_img.release();
|
||||||
@ -294,22 +294,22 @@ public:
|
|||||||
Mat log_img;
|
Mat log_img;
|
||||||
log(gray_img, log_img);
|
log(gray_img, log_img);
|
||||||
|
|
||||||
float log_mean = (float)sum(log_img)[0] / log_img.total();
|
float log_mean = static_cast<float>(sum(log_img)[0] / log_img.total());
|
||||||
double log_min, log_max;
|
double log_min, log_max;
|
||||||
minMaxLoc(log_img, &log_min, &log_max);
|
minMaxLoc(log_img, &log_min, &log_max);
|
||||||
log_img.release();
|
log_img.release();
|
||||||
|
|
||||||
double key = (float)((log_max - log_mean) / (log_max - log_min));
|
double key = static_cast<float>((log_max - log_mean) / (log_max - log_min));
|
||||||
float map_key = 0.3f + 0.7f * pow((float)key, 1.4f);
|
float map_key = 0.3f + 0.7f * pow(static_cast<float>(key), 1.4f);
|
||||||
intensity = exp(-intensity);
|
intensity = exp(-intensity);
|
||||||
Scalar chan_mean = mean(img);
|
Scalar chan_mean = mean(img);
|
||||||
float gray_mean = (float)mean(gray_img)[0];
|
float gray_mean = static_cast<float>(mean(gray_img)[0]);
|
||||||
|
|
||||||
std::vector<Mat> channels(3);
|
std::vector<Mat> channels(3);
|
||||||
split(img, channels);
|
split(img, channels);
|
||||||
|
|
||||||
for(int i = 0; i < 3; i++) {
|
for(int i = 0; i < 3; i++) {
|
||||||
float global = color_adapt * (float)chan_mean[i] + (1.0f - color_adapt) * gray_mean;
|
float global = color_adapt * static_cast<float>(chan_mean[i]) + (1.0f - color_adapt) * gray_mean;
|
||||||
Mat adapt = color_adapt * channels[i] + (1.0f - color_adapt) * gray_img;
|
Mat adapt = color_adapt * channels[i] + (1.0f - color_adapt) * gray_img;
|
||||||
adapt = light_adapt * adapt + (1.0f - light_adapt) * global;
|
adapt = light_adapt * adapt + (1.0f - light_adapt) * global;
|
||||||
pow(intensity * adapt, map_key, adapt);
|
pow(intensity * adapt, map_key, adapt);
|
||||||
|
@ -58,7 +58,35 @@ void checkEqual(Mat img0, Mat img1, double threshold)
|
|||||||
{
|
{
|
||||||
double max = 1.0;
|
double max = 1.0;
|
||||||
minMaxLoc(abs(img0 - img1), NULL, &max);
|
minMaxLoc(abs(img0 - img1), NULL, &max);
|
||||||
ASSERT_FALSE(max > threshold);
|
ASSERT_FALSE(max > threshold) << max;
|
||||||
|
}
|
||||||
|
|
||||||
|
void loadExposureSeq(String path, vector<Mat>& images, vector<float>& times = vector<float>())
|
||||||
|
{
|
||||||
|
ifstream list_file(path + "list.txt");
|
||||||
|
ASSERT_TRUE(list_file.is_open());
|
||||||
|
string name;
|
||||||
|
float val;
|
||||||
|
while(list_file >> name >> val) {
|
||||||
|
Mat img = imread(path + name);
|
||||||
|
ASSERT_FALSE(img.empty()) << "Could not load input image " << path + name;
|
||||||
|
images.push_back(img);
|
||||||
|
times.push_back(1 / val);
|
||||||
|
}
|
||||||
|
list_file.close();
|
||||||
|
}
|
||||||
|
|
||||||
|
void loadResponseCSV(String path, Mat& response)
|
||||||
|
{
|
||||||
|
response = Mat(256, 3, CV_32F);
|
||||||
|
ifstream resp_file(path);
|
||||||
|
for(int i = 0; i < 256; i++) {
|
||||||
|
for(int channel = 0; channel < 3; channel++) {
|
||||||
|
resp_file >> response.at<float>(i, channel);
|
||||||
|
resp_file.ignore(1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
resp_file.close();
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST(Photo_Tonemap, regression)
|
TEST(Photo_Tonemap, regression)
|
||||||
@ -90,130 +118,85 @@ TEST(Photo_Tonemap, regression)
|
|||||||
|
|
||||||
Ptr<TonemapReinhardDevlin> reinhard_devlin = createTonemapReinhardDevlin(gamma);
|
Ptr<TonemapReinhardDevlin> reinhard_devlin = createTonemapReinhardDevlin(gamma);
|
||||||
reinhard_devlin->process(img, result);
|
reinhard_devlin->process(img, result);
|
||||||
loadImage(test_path + "reinhard_devlin.png", expected);
|
loadImage(test_path + "reinharddevlin.png", expected);
|
||||||
result.convertTo(result, CV_8UC3, 255);
|
result.convertTo(result, CV_8UC3, 255);
|
||||||
checkEqual(result, expected, 0);
|
checkEqual(result, expected, 0);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST(Photo_AlignMTB, regression)
|
||||||
|
{
|
||||||
|
const int TESTS_COUNT = 100;
|
||||||
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "shared/";
|
||||||
|
|
||||||
|
string file_name = folder + "lena.png";
|
||||||
|
Mat img;
|
||||||
|
loadImage(file_name, img);
|
||||||
|
cvtColor(img, img, COLOR_RGB2GRAY);
|
||||||
|
|
||||||
|
int max_bits = 5;
|
||||||
|
int max_shift = 32;
|
||||||
|
srand(static_cast<unsigned>(time(0)));
|
||||||
|
int errors = 0;
|
||||||
|
|
||||||
//void loadExposureSeq(String fuse_path, vector<Mat>& images, vector<float>& times = vector<float>())
|
Ptr<AlignMTB> align = createAlignMTB(max_bits);
|
||||||
//{
|
|
||||||
// ifstream list_file(fuse_path + "list.txt");
|
for(int i = 0; i < TESTS_COUNT; i++) {
|
||||||
// ASSERT_TRUE(list_file.is_open());
|
Point shift(rand() % max_shift, rand() % max_shift);
|
||||||
// string name;
|
Mat res;
|
||||||
// float val;
|
align->shiftMat(img, res, shift);
|
||||||
// while(list_file >> name >> val) {
|
Point calc;
|
||||||
// Mat img = imread(fuse_path + name);
|
align->calculateShift(img, res, calc);
|
||||||
// ASSERT_FALSE(img.empty()) << "Could not load input image " << fuse_path + name;
|
errors += (calc != -shift);
|
||||||
// images.push_back(img);
|
}
|
||||||
// times.push_back(1 / val);
|
ASSERT_TRUE(errors < 5) << errors << " errors";
|
||||||
// }
|
}
|
||||||
// list_file.close();
|
|
||||||
//}
|
TEST(Photo_MergeMertens, regression)
|
||||||
////
|
{
|
||||||
////TEST(Photo_MergeMertens, regression)
|
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
||||||
////{
|
|
||||||
//// string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
vector<Mat> images;
|
||||||
//// string fuse_path = test_path + "fusion/";
|
loadExposureSeq(test_path + "exposures/", images);
|
||||||
////
|
|
||||||
//// vector<Mat> images;
|
Ptr<MergeMertens> merge = createMergeMertens();
|
||||||
//// loadExposureSeq(fuse_path, images);
|
|
||||||
////
|
Mat result, expected;
|
||||||
//// MergeMertens merge;
|
loadImage(test_path + "merge/mertens.png", expected);
|
||||||
////
|
merge->process(images, result);
|
||||||
//// Mat result, expected;
|
result.convertTo(result, CV_8UC3, 255);
|
||||||
//// loadImage(test_path + "exp_fusion.png", expected);
|
checkEqual(expected, result, 0);
|
||||||
//// merge.process(images, result);
|
}
|
||||||
//// result.convertTo(result, CV_8UC3, 255);
|
|
||||||
//// checkEqual(expected, result, 0);
|
TEST(Photo_MergeDebevec, regression)
|
||||||
////}
|
{
|
||||||
//
|
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
||||||
//TEST(Photo_Debevec, regression)
|
|
||||||
//{
|
vector<Mat> images;
|
||||||
// string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
vector<float> times;
|
||||||
// string fuse_path = test_path + "fusion/";
|
Mat response;
|
||||||
//
|
loadExposureSeq(test_path + "exposures/", images, times);
|
||||||
// vector<float> times;
|
loadResponseCSV(test_path + "exposures/response.csv", response);
|
||||||
// vector<Mat> images;
|
|
||||||
//
|
Ptr<MergeDebevec> merge = createMergeDebevec();
|
||||||
// loadExposureSeq(fuse_path, images, times);
|
|
||||||
//
|
Mat result, expected;
|
||||||
// Mat response, expected(256, 3, CV_32F);
|
loadImage(test_path + "merge/debevec.exr", expected);
|
||||||
// ifstream resp_file(test_path + "response.csv");
|
merge->process(images, result, times, response);
|
||||||
// for(int i = 0; i < 256; i++) {
|
checkEqual(expected, result, 1e-3f);
|
||||||
// for(int channel = 0; channel < 3; channel++) {
|
}
|
||||||
// resp_file >> expected.at<float>(i, channel);
|
|
||||||
// resp_file.ignore(1);
|
TEST(Photo_CalibrateDebevec, regression)
|
||||||
// }
|
{
|
||||||
// }
|
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
||||||
// resp_file.close();
|
|
||||||
//
|
vector<Mat> images;
|
||||||
// CalibrateDebevec calib;
|
vector<float> times;
|
||||||
// MergeDebevec merge;
|
Mat expected, response;
|
||||||
//
|
loadExposureSeq(test_path + "exposures/", images, times);
|
||||||
// //calib.process(images, response, times);
|
loadResponseCSV(test_path + "calibrate/debevec.csv", expected);
|
||||||
// //checkEqual(expected, response, 0.001);
|
|
||||||
// //
|
Ptr<CalibrateDebevec> calibrate = createCalibrateDebevec();
|
||||||
// Mat result;
|
srand(1);
|
||||||
// loadImage(test_path + "no_calibration.hdr", expected);
|
calibrate->process(images, response, times);
|
||||||
// merge.process(images, result, times);
|
checkEqual(expected, response, 1e-3f);
|
||||||
// checkEqual(expected, result, 0.01);
|
}
|
||||||
//
|
|
||||||
// //loadImage(test_path + "rle.hdr", expected);
|
|
||||||
// //merge.process(images, result, times, response);
|
|
||||||
// //checkEqual(expected, result, 0.01);
|
|
||||||
//}
|
|
||||||
//
|
|
||||||
//TEST(Photo_Tonemap, regression)
|
|
||||||
//{
|
|
||||||
// initModule_photo();
|
|
||||||
// string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/tonemap/";
|
|
||||||
// Mat img;
|
|
||||||
// loadImage(test_path + "../rle.hdr", img);
|
|
||||||
//
|
|
||||||
// vector<String> algorithms;
|
|
||||||
// Algorithm::getList(algorithms);
|
|
||||||
// for(size_t i = 0; i < algorithms.size(); i++) {
|
|
||||||
// String str = algorithms[i];
|
|
||||||
// size_t dot = str.find('.');
|
|
||||||
// if(dot != String::npos && str.substr(0, dot).compare("Tonemap") == 0) {
|
|
||||||
// String algo_name = str.substr(dot + 1, str.size());
|
|
||||||
// Mat expected;
|
|
||||||
// loadImage(test_path + algo_name.toLowerCase() + ".png", expected);
|
|
||||||
// Ptr<Tonemap> mapper = Tonemap::create(algo_name);
|
|
||||||
// ASSERT_FALSE(mapper.empty()) << algo_name;
|
|
||||||
// Mat result;
|
|
||||||
// mapper->process(img, result);
|
|
||||||
// result.convertTo(result, CV_8UC3, 255);
|
|
||||||
// checkEqual(expected, result, 0);
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
////}
|
|
||||||
////
|
|
||||||
////TEST(Photo_AlignMTB, regression)
|
|
||||||
////{
|
|
||||||
//// const int TESTS_COUNT = 100;
|
|
||||||
//// string folder = string(cvtest::TS::ptr()->get_data_path()) + "shared/";
|
|
||||||
////
|
|
||||||
//// string file_name = folder + "lena.png";
|
|
||||||
//// Mat img = imread(file_name);
|
|
||||||
//// ASSERT_FALSE(img.empty()) << "Could not load input image " << file_name;
|
|
||||||
//// cvtColor(img, img, COLOR_RGB2GRAY);
|
|
||||||
////
|
|
||||||
//// int max_bits = 5;
|
|
||||||
//// int max_shift = 32;
|
|
||||||
//// srand(static_cast<unsigned>(time(0)));
|
|
||||||
//// int errors = 0;
|
|
||||||
////
|
|
||||||
//// AlignMTB align(max_bits);
|
|
||||||
////
|
|
||||||
//// for(int i = 0; i < TESTS_COUNT; i++) {
|
|
||||||
//// Point shift(rand() % max_shift, rand() % max_shift);
|
|
||||||
//// Mat res;
|
|
||||||
//// align.shiftMat(img, shift, res);
|
|
||||||
//// Point calc = align.getExpShift(img, res);
|
|
||||||
//// errors += (calc != -shift);
|
|
||||||
//// }
|
|
||||||
//// ASSERT_TRUE(errors < 5);
|
|
||||||
////}
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user