merged all the latest changes from 2.4 to trunk
This commit is contained in:
@@ -44,34 +44,49 @@
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
void defaultDistribs( vector<Mat>& means, vector<Mat>& covs )
|
||||
static
|
||||
void defaultDistribs( Mat& means, vector<Mat>& covs, int type=CV_32FC1 )
|
||||
{
|
||||
float mp0[] = {0.0f, 0.0f}, cp0[] = {0.67f, 0.0f, 0.0f, 0.67f};
|
||||
float mp1[] = {5.0f, 0.0f}, cp1[] = {1.0f, 0.0f, 0.0f, 1.0f};
|
||||
float mp2[] = {1.0f, 5.0f}, cp2[] = {1.0f, 0.0f, 0.0f, 1.0f};
|
||||
means.create(3, 2, type);
|
||||
Mat m0( 1, 2, CV_32FC1, mp0 ), c0( 2, 2, CV_32FC1, cp0 );
|
||||
Mat m1( 1, 2, CV_32FC1, mp1 ), c1( 2, 2, CV_32FC1, cp1 );
|
||||
Mat m2( 1, 2, CV_32FC1, mp2 ), c2( 2, 2, CV_32FC1, cp2 );
|
||||
means.resize(3), covs.resize(3);
|
||||
m0.copyTo(means[0]), c0.copyTo(covs[0]);
|
||||
m1.copyTo(means[1]), c1.copyTo(covs[1]);
|
||||
m2.copyTo(means[2]), c2.copyTo(covs[2]);
|
||||
|
||||
Mat mr0 = means.row(0);
|
||||
m0.convertTo(mr0, type);
|
||||
c0.convertTo(covs[0], type);
|
||||
|
||||
Mat mr1 = means.row(1);
|
||||
m1.convertTo(mr1, type);
|
||||
c1.convertTo(covs[1], type);
|
||||
|
||||
Mat mr2 = means.row(2);
|
||||
m2.convertTo(mr2, type);
|
||||
c2.convertTo(covs[2], type);
|
||||
}
|
||||
|
||||
// generate points sets by normal distributions
|
||||
void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const vector<Mat>& means, const vector<Mat>& covs, int labelType )
|
||||
static
|
||||
void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat& _means, const vector<Mat>& covs, int dataType, int labelType )
|
||||
{
|
||||
vector<int>::const_iterator sit = sizes.begin();
|
||||
int total = 0;
|
||||
for( ; sit != sizes.end(); ++sit )
|
||||
total += *sit;
|
||||
assert( means.size() == sizes.size() && covs.size() == sizes.size() );
|
||||
assert( !data.empty() && data.rows == total );
|
||||
assert( data.type() == CV_32FC1 );
|
||||
CV_Assert( _means.rows == (int)sizes.size() && covs.size() == sizes.size() );
|
||||
CV_Assert( !data.empty() && data.rows == total );
|
||||
CV_Assert( data.type() == dataType );
|
||||
|
||||
labels.create( data.rows, 1, labelType );
|
||||
|
||||
randn( data, Scalar::all(0.0), Scalar::all(1.0) );
|
||||
randn( data, Scalar::all(-1.0), Scalar::all(1.0) );
|
||||
vector<Mat> means(sizes.size());
|
||||
for(int i = 0; i < _means.rows; i++)
|
||||
means[i] = _means.row(i);
|
||||
vector<Mat>::const_iterator mit = means.begin(), cit = covs.begin();
|
||||
int bi, ei = 0;
|
||||
sit = sizes.begin();
|
||||
@@ -83,7 +98,7 @@ void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const vecto
|
||||
assert( cit->rows == data.cols && cit->cols == data.cols );
|
||||
for( int i = bi; i < ei; i++, p++ )
|
||||
{
|
||||
Mat r(1, data.cols, CV_32FC1, data.ptr<float>(i));
|
||||
Mat r = data.row(i);
|
||||
r = r * (*cit) + *mit;
|
||||
if( labelType == CV_32FC1 )
|
||||
labels.at<float>(p, 0) = (float)l;
|
||||
@@ -95,6 +110,7 @@ void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const vecto
|
||||
}
|
||||
}
|
||||
|
||||
static
|
||||
int maxIdx( const vector<int>& count )
|
||||
{
|
||||
int idx = -1;
|
||||
@@ -112,74 +128,83 @@ int maxIdx( const vector<int>& count )
|
||||
return idx;
|
||||
}
|
||||
|
||||
static
|
||||
bool getLabelsMap( const Mat& labels, const vector<int>& sizes, vector<int>& labelsMap )
|
||||
{
|
||||
int total = 0, setCount = (int)sizes.size();
|
||||
vector<int>::const_iterator sit = sizes.begin();
|
||||
for( ; sit != sizes.end(); ++sit )
|
||||
total += *sit;
|
||||
size_t total = 0, nclusters = sizes.size();
|
||||
for(size_t i = 0; i < sizes.size(); i++)
|
||||
total += sizes[i];
|
||||
|
||||
assert( !labels.empty() );
|
||||
assert( labels.rows == total && labels.cols == 1 );
|
||||
assert( labels.total() == total && (labels.cols == 1 || labels.rows == 1));
|
||||
assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 );
|
||||
|
||||
bool isFlt = labels.type() == CV_32FC1;
|
||||
labelsMap.resize(setCount);
|
||||
vector<int>::iterator lmit = labelsMap.begin();
|
||||
vector<bool> buzy(setCount, false);
|
||||
int bi, ei = 0;
|
||||
for( sit = sizes.begin(); sit != sizes.end(); ++sit, ++lmit )
|
||||
|
||||
labelsMap.resize(nclusters);
|
||||
|
||||
vector<bool> buzy(nclusters, false);
|
||||
int startIndex = 0;
|
||||
for( size_t clusterIndex = 0; clusterIndex < sizes.size(); clusterIndex++ )
|
||||
{
|
||||
vector<int> count( setCount, 0 );
|
||||
bi = ei;
|
||||
ei = bi + *sit;
|
||||
if( isFlt )
|
||||
vector<int> count( nclusters, 0 );
|
||||
for( int i = startIndex; i < startIndex + sizes[clusterIndex]; i++)
|
||||
{
|
||||
for( int i = bi; i < ei; i++ )
|
||||
count[(int)labels.at<float>(i, 0)]++;
|
||||
int lbl = isFlt ? (int)labels.at<float>(i) : labels.at<int>(i);
|
||||
CV_Assert(lbl < (int)nclusters);
|
||||
count[lbl]++;
|
||||
CV_Assert(count[lbl] < (int)total);
|
||||
}
|
||||
else
|
||||
{
|
||||
for( int i = bi; i < ei; i++ )
|
||||
count[labels.at<int>(i, 0)]++;
|
||||
}
|
||||
|
||||
*lmit = maxIdx( count );
|
||||
if( buzy[*lmit] )
|
||||
return false;
|
||||
buzy[*lmit] = true;
|
||||
startIndex += sizes[clusterIndex];
|
||||
|
||||
int cls = maxIdx( count );
|
||||
CV_Assert( !buzy[cls] );
|
||||
|
||||
labelsMap[clusterIndex] = cls;
|
||||
|
||||
buzy[cls] = true;
|
||||
}
|
||||
return true;
|
||||
for(size_t i = 0; i < buzy.size(); i++)
|
||||
if(!buzy[i])
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
float calcErr( const Mat& labels, const Mat& origLabels, const vector<int>& sizes, bool labelsEquivalent = true )
|
||||
static
|
||||
bool calcErr( const Mat& labels, const Mat& origLabels, const vector<int>& sizes, float& err, bool labelsEquivalent = true )
|
||||
{
|
||||
int err = 0;
|
||||
assert( !labels.empty() && !origLabels.empty() );
|
||||
assert( labels.cols == 1 && origLabels.cols == 1 );
|
||||
assert( labels.rows == origLabels.rows );
|
||||
assert( labels.type() == origLabels.type() );
|
||||
assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 );
|
||||
err = 0;
|
||||
CV_Assert( !labels.empty() && !origLabels.empty() );
|
||||
CV_Assert( labels.rows == 1 || labels.cols == 1 );
|
||||
CV_Assert( origLabels.rows == 1 || origLabels.cols == 1 );
|
||||
CV_Assert( labels.total() == origLabels.total() );
|
||||
CV_Assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 );
|
||||
CV_Assert( origLabels.type() == labels.type() );
|
||||
|
||||
vector<int> labelsMap;
|
||||
bool isFlt = labels.type() == CV_32FC1;
|
||||
if( !labelsEquivalent )
|
||||
{
|
||||
getLabelsMap( labels, sizes, labelsMap );
|
||||
if( !getLabelsMap( labels, sizes, labelsMap ) )
|
||||
return false;
|
||||
|
||||
for( int i = 0; i < labels.rows; i++ )
|
||||
if( isFlt )
|
||||
err += labels.at<float>(i, 0) != labelsMap[(int)origLabels.at<float>(i, 0)];
|
||||
err += labels.at<float>(i) != labelsMap[(int)origLabels.at<float>(i)] ? 1.f : 0.f;
|
||||
else
|
||||
err += labels.at<int>(i, 0) != labelsMap[origLabels.at<int>(i, 0)];
|
||||
err += labels.at<int>(i) != labelsMap[origLabels.at<int>(i)] ? 1.f : 0.f;
|
||||
}
|
||||
else
|
||||
{
|
||||
for( int i = 0; i < labels.rows; i++ )
|
||||
if( isFlt )
|
||||
err += labels.at<float>(i, 0) != origLabels.at<float>(i, 0);
|
||||
err += labels.at<float>(i) != origLabels.at<float>(i) ? 1.f : 0.f;
|
||||
else
|
||||
err += labels.at<int>(i, 0) != origLabels.at<int>(i, 0);
|
||||
err += labels.at<int>(i) != origLabels.at<int>(i) ? 1.f : 0.f;
|
||||
}
|
||||
return (float)err / (float)labels.rows;
|
||||
err /= (float)labels.rows;
|
||||
return true;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------
|
||||
@@ -198,17 +223,22 @@ void CV_KMeansTest::run( int /*start_from*/ )
|
||||
|
||||
Mat data( pointsCount, 2, CV_32FC1 ), labels;
|
||||
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
|
||||
vector<Mat> means, covs;
|
||||
Mat means;
|
||||
vector<Mat> covs;
|
||||
defaultDistribs( means, covs );
|
||||
generateData( data, labels, sizes, means, covs, CV_32SC1 );
|
||||
generateData( data, labels, sizes, means, covs, CV_32FC1, CV_32SC1 );
|
||||
|
||||
int code = cvtest::TS::OK;
|
||||
float err;
|
||||
Mat bestLabels;
|
||||
// 1. flag==KMEANS_PP_CENTERS
|
||||
kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_PP_CENTERS, noArray() );
|
||||
err = calcErr( bestLabels, labels, sizes, false );
|
||||
if( err > 0.01f )
|
||||
if( !calcErr( bestLabels, labels, sizes, err , false ) )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Bad output labels if flag==KMEANS_PP_CENTERS.\n" );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
}
|
||||
else if( err > 0.01f )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) if flag==KMEANS_PP_CENTERS.\n", err );
|
||||
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
@@ -216,10 +246,14 @@ void CV_KMeansTest::run( int /*start_from*/ )
|
||||
|
||||
// 2. flag==KMEANS_RANDOM_CENTERS
|
||||
kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_RANDOM_CENTERS, noArray() );
|
||||
err = calcErr( bestLabels, labels, sizes, false );
|
||||
if( err > 0.01f )
|
||||
if( !calcErr( bestLabels, labels, sizes, err, false ) )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) if flag==KMEANS_PP_CENTERS.\n", err );
|
||||
ts->printf( cvtest::TS::LOG, "Bad output labels if flag==KMEANS_RANDOM_CENTERS.\n" );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
}
|
||||
else if( err > 0.01f )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) if flag==KMEANS_RANDOM_CENTERS.\n", err );
|
||||
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
}
|
||||
|
||||
@@ -229,10 +263,14 @@ void CV_KMeansTest::run( int /*start_from*/ )
|
||||
for( int i = 0; i < 0.5f * pointsCount; i++ )
|
||||
bestLabels.at<int>( rng.next() % pointsCount, 0 ) = rng.next() % 3;
|
||||
kmeans( data, 3, bestLabels, TermCriteria( TermCriteria::COUNT, iters, 0.0), 0, KMEANS_USE_INITIAL_LABELS, noArray() );
|
||||
err = calcErr( bestLabels, labels, sizes, false );
|
||||
if( err > 0.01f )
|
||||
if( !calcErr( bestLabels, labels, sizes, err, false ) )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) if flag==KMEANS_PP_CENTERS.\n", err );
|
||||
ts->printf( cvtest::TS::LOG, "Bad output labels if flag==KMEANS_USE_INITIAL_LABELS.\n" );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
}
|
||||
else if( err > 0.01f )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) if flag==KMEANS_USE_INITIAL_LABELS.\n", err );
|
||||
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
}
|
||||
|
||||
@@ -255,20 +293,26 @@ void CV_KNearestTest::run( int /*start_from*/ )
|
||||
// train data
|
||||
Mat trainData( pointsCount, 2, CV_32FC1 ), trainLabels;
|
||||
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
|
||||
vector<Mat> means, covs;
|
||||
Mat means;
|
||||
vector<Mat> covs;
|
||||
defaultDistribs( means, covs );
|
||||
generateData( trainData, trainLabels, sizes, means, covs, CV_32FC1 );
|
||||
generateData( trainData, trainLabels, sizes, means, covs, CV_32FC1, CV_32FC1 );
|
||||
|
||||
// test data
|
||||
Mat testData( pointsCount, 2, CV_32FC1 ), testLabels, bestLabels;
|
||||
generateData( testData, testLabels, sizes, means, covs, CV_32FC1 );
|
||||
generateData( testData, testLabels, sizes, means, covs, CV_32FC1, CV_32FC1 );
|
||||
|
||||
int code = cvtest::TS::OK;
|
||||
KNearest knearest;
|
||||
knearest.train( trainData, trainLabels );
|
||||
knearest.find_nearest( testData, 4, &bestLabels );
|
||||
float err = calcErr( bestLabels, testLabels, sizes, true );
|
||||
if( err > 0.01f )
|
||||
float err;
|
||||
if( !calcErr( bestLabels, testLabels, sizes, err, true ) )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Bad output labels.\n" );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
}
|
||||
else if( err > 0.01f )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) on test data.\n", err );
|
||||
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
@@ -276,95 +320,216 @@ void CV_KNearestTest::run( int /*start_from*/ )
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
|
||||
class EM_Params
|
||||
{
|
||||
public:
|
||||
EM_Params(int nclusters=10, int covMatType=EM::COV_MAT_DIAGONAL, int startStep=EM::START_AUTO_STEP,
|
||||
const cv::TermCriteria& termCrit=cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 100, FLT_EPSILON),
|
||||
const cv::Mat* probs=0, const cv::Mat* weights=0,
|
||||
const cv::Mat* means=0, const std::vector<cv::Mat>* covs=0)
|
||||
: nclusters(nclusters), covMatType(covMatType), startStep(startStep),
|
||||
probs(probs), weights(weights), means(means), covs(covs), termCrit(termCrit)
|
||||
{}
|
||||
|
||||
int nclusters;
|
||||
int covMatType;
|
||||
int startStep;
|
||||
|
||||
// all 4 following matrices should have type CV_32FC1
|
||||
const cv::Mat* probs;
|
||||
const cv::Mat* weights;
|
||||
const cv::Mat* means;
|
||||
const std::vector<cv::Mat>* covs;
|
||||
|
||||
cv::TermCriteria termCrit;
|
||||
};
|
||||
|
||||
//--------------------------------------------------------------------------------------------
|
||||
class CV_EMTest : public cvtest::BaseTest {
|
||||
class CV_EMTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_EMTest() {}
|
||||
protected:
|
||||
virtual void run( int start_from );
|
||||
int runCase( int caseIndex, const EM_Params& params,
|
||||
const cv::Mat& trainData, const cv::Mat& trainLabels,
|
||||
const cv::Mat& testData, const cv::Mat& testLabels,
|
||||
const vector<int>& sizes);
|
||||
};
|
||||
|
||||
void CV_EMTest::run( int /*start_from*/ )
|
||||
int CV_EMTest::runCase( int caseIndex, const EM_Params& params,
|
||||
const cv::Mat& trainData, const cv::Mat& trainLabels,
|
||||
const cv::Mat& testData, const cv::Mat& testLabels,
|
||||
const vector<int>& sizes )
|
||||
{
|
||||
int sizesArr[] = { 5000, 7000, 8000 };
|
||||
int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2];
|
||||
|
||||
// train data
|
||||
Mat trainData( pointsCount, 2, CV_32FC1 ), trainLabels;
|
||||
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
|
||||
vector<Mat> means, covs;
|
||||
defaultDistribs( means, covs );
|
||||
generateData( trainData, trainLabels, sizes, means, covs, CV_32SC1 );
|
||||
|
||||
// test data
|
||||
Mat testData( pointsCount, 2, CV_32FC1 ), testLabels, bestLabels;
|
||||
generateData( testData, testLabels, sizes, means, covs, CV_32SC1 );
|
||||
|
||||
int code = cvtest::TS::OK;
|
||||
|
||||
cv::Mat labels;
|
||||
float err;
|
||||
ExpectationMaximization em;
|
||||
CvEMParams params;
|
||||
params.nclusters = 3;
|
||||
em.train( trainData, Mat(), params, &bestLabels );
|
||||
|
||||
cv::EM em(params.nclusters, params.covMatType, params.termCrit);
|
||||
if( params.startStep == EM::START_AUTO_STEP )
|
||||
em.train( trainData, labels );
|
||||
else if( params.startStep == EM::START_E_STEP )
|
||||
em.trainE( trainData, *params.means, *params.covs, *params.weights, labels );
|
||||
else if( params.startStep == EM::START_M_STEP )
|
||||
em.trainM( trainData, *params.probs, labels );
|
||||
|
||||
// check train error
|
||||
err = calcErr( bestLabels, trainLabels, sizes, false );
|
||||
if( err > 0.002f )
|
||||
if( !calcErr( labels, trainLabels, sizes, err , false ) )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) on train data.\n", err );
|
||||
ts->printf( cvtest::TS::LOG, "Case index %i : Bad output labels.\n", caseIndex );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
}
|
||||
else if( err > 0.008f )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Case index %i : Bad accuracy (%f) on train data.\n", caseIndex, err );
|
||||
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
}
|
||||
|
||||
// check test error
|
||||
bestLabels.create( testData.rows, 1, CV_32SC1 );
|
||||
labels.create( testData.rows, 1, CV_32SC1 );
|
||||
for( int i = 0; i < testData.rows; i++ )
|
||||
{
|
||||
Mat sample( 1, testData.cols, CV_32FC1, testData.ptr<float>(i));
|
||||
bestLabels.at<int>(i,0) = (int)em.predict( sample, 0 );
|
||||
Mat sample = testData.row(i);
|
||||
double likelihood = 0;
|
||||
Mat probs;
|
||||
labels.at<int>(i,0) = (int)em.predict( sample, probs, &likelihood );
|
||||
}
|
||||
err = calcErr( bestLabels, testLabels, sizes, false );
|
||||
if( err > 0.005f )
|
||||
if( !calcErr( labels, testLabels, sizes, err, false ) )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Bad accuracy (%f) on test data.\n", err );
|
||||
ts->printf( cvtest::TS::LOG, "Case index %i : Bad output labels.\n", caseIndex );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
}
|
||||
else if( err > 0.008f )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Case index %i : Bad accuracy (%f) on test data.\n", caseIndex, err );
|
||||
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
}
|
||||
|
||||
return code;
|
||||
}
|
||||
|
||||
void CV_EMTest::run( int /*start_from*/ )
|
||||
{
|
||||
int sizesArr[] = { 500, 700, 800 };
|
||||
int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2];
|
||||
|
||||
// Points distribution
|
||||
Mat means;
|
||||
vector<Mat> covs;
|
||||
defaultDistribs( means, covs, CV_64FC1 );
|
||||
|
||||
// train data
|
||||
Mat trainData( pointsCount, 2, CV_64FC1 ), trainLabels;
|
||||
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
|
||||
generateData( trainData, trainLabels, sizes, means, covs, CV_64FC1, CV_32SC1 );
|
||||
|
||||
// test data
|
||||
Mat testData( pointsCount, 2, CV_64FC1 ), testLabels;
|
||||
generateData( testData, testLabels, sizes, means, covs, CV_64FC1, CV_32SC1 );
|
||||
|
||||
EM_Params params;
|
||||
params.nclusters = 3;
|
||||
Mat probs(trainData.rows, params.nclusters, CV_64FC1, cv::Scalar(1));
|
||||
params.probs = &probs;
|
||||
Mat weights(1, params.nclusters, CV_64FC1, cv::Scalar(1));
|
||||
params.weights = &weights;
|
||||
params.means = &means;
|
||||
params.covs = &covs;
|
||||
|
||||
int code = cvtest::TS::OK;
|
||||
int caseIndex = 0;
|
||||
{
|
||||
params.startStep = cv::EM::START_AUTO_STEP;
|
||||
params.covMatType = cv::EM::COV_MAT_GENERIC;
|
||||
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
|
||||
code = currCode == cvtest::TS::OK ? code : currCode;
|
||||
}
|
||||
{
|
||||
params.startStep = cv::EM::START_AUTO_STEP;
|
||||
params.covMatType = cv::EM::COV_MAT_DIAGONAL;
|
||||
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
|
||||
code = currCode == cvtest::TS::OK ? code : currCode;
|
||||
}
|
||||
{
|
||||
params.startStep = cv::EM::START_AUTO_STEP;
|
||||
params.covMatType = cv::EM::COV_MAT_SPHERICAL;
|
||||
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
|
||||
code = currCode == cvtest::TS::OK ? code : currCode;
|
||||
}
|
||||
{
|
||||
params.startStep = cv::EM::START_M_STEP;
|
||||
params.covMatType = cv::EM::COV_MAT_GENERIC;
|
||||
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
|
||||
code = currCode == cvtest::TS::OK ? code : currCode;
|
||||
}
|
||||
{
|
||||
params.startStep = cv::EM::START_M_STEP;
|
||||
params.covMatType = cv::EM::COV_MAT_DIAGONAL;
|
||||
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
|
||||
code = currCode == cvtest::TS::OK ? code : currCode;
|
||||
}
|
||||
{
|
||||
params.startStep = cv::EM::START_M_STEP;
|
||||
params.covMatType = cv::EM::COV_MAT_SPHERICAL;
|
||||
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
|
||||
code = currCode == cvtest::TS::OK ? code : currCode;
|
||||
}
|
||||
{
|
||||
params.startStep = cv::EM::START_E_STEP;
|
||||
params.covMatType = cv::EM::COV_MAT_GENERIC;
|
||||
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
|
||||
code = currCode == cvtest::TS::OK ? code : currCode;
|
||||
}
|
||||
{
|
||||
params.startStep = cv::EM::START_E_STEP;
|
||||
params.covMatType = cv::EM::COV_MAT_DIAGONAL;
|
||||
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
|
||||
code = currCode == cvtest::TS::OK ? code : currCode;
|
||||
}
|
||||
{
|
||||
params.startStep = cv::EM::START_E_STEP;
|
||||
params.covMatType = cv::EM::COV_MAT_SPHERICAL;
|
||||
int currCode = runCase(caseIndex++, params, trainData, trainLabels, testData, testLabels, sizes);
|
||||
code = currCode == cvtest::TS::OK ? code : currCode;
|
||||
}
|
||||
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
|
||||
class CV_EMTest_Smoke : public cvtest::BaseTest {
|
||||
class CV_EMTest_SaveLoad : public cvtest::BaseTest {
|
||||
public:
|
||||
CV_EMTest_Smoke() {}
|
||||
CV_EMTest_SaveLoad() {}
|
||||
protected:
|
||||
virtual void run( int /*start_from*/ )
|
||||
{
|
||||
int code = cvtest::TS::OK;
|
||||
CvEM em;
|
||||
const int nclusters = 2;
|
||||
cv::EM em(nclusters);
|
||||
|
||||
Mat samples = Mat(3,2,CV_32F);
|
||||
samples.at<float>(0,0) = 1;
|
||||
samples.at<float>(1,0) = 2;
|
||||
samples.at<float>(2,0) = 3;
|
||||
|
||||
CvEMParams params;
|
||||
params.nclusters = 2;
|
||||
Mat samples = Mat(3,1,CV_64FC1);
|
||||
samples.at<double>(0,0) = 1;
|
||||
samples.at<double>(1,0) = 2;
|
||||
samples.at<double>(2,0) = 3;
|
||||
|
||||
Mat labels;
|
||||
|
||||
em.train(samples, Mat(), params, &labels);
|
||||
em.train(samples, labels);
|
||||
|
||||
Mat firstResult(samples.rows, 1, CV_32FC1);
|
||||
Mat firstResult(samples.rows, 1, CV_32SC1);
|
||||
for( int i = 0; i < samples.rows; i++)
|
||||
firstResult.at<float>(i) = em.predict( samples.row(i) );
|
||||
firstResult.at<int>(i) = em.predict(samples.row(i));
|
||||
|
||||
// Write out
|
||||
string filename = tempfile() + ".xml";
|
||||
{
|
||||
FileStorage fs = FileStorage(filename, FileStorage::WRITE);
|
||||
|
||||
try
|
||||
{
|
||||
em.write(fs.fs, "EM");
|
||||
fs << "em" << "{";
|
||||
em.write(fs);
|
||||
fs << "}";
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
@@ -378,11 +543,11 @@ protected:
|
||||
// Read in
|
||||
{
|
||||
FileStorage fs = FileStorage(filename, FileStorage::READ);
|
||||
FileNode fileNode = fs["EM"];
|
||||
|
||||
CV_Assert(fs.isOpened());
|
||||
FileNode fn = fs["em"];
|
||||
try
|
||||
{
|
||||
em.read(const_cast<CvFileStorage*>(fileNode.fs), const_cast<CvFileNode*>(fileNode.node));
|
||||
em.read(fn);
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
@@ -395,7 +560,7 @@ protected:
|
||||
|
||||
int errCaseCount = 0;
|
||||
for( int i = 0; i < samples.rows; i++)
|
||||
errCaseCount = std::abs(em.predict(samples.row(i)) - firstResult.at<float>(i)) < FLT_EPSILON ? 0 : 1;
|
||||
errCaseCount = std::abs(em.predict(samples.row(i)) - firstResult.at<int>(i)) < FLT_EPSILON ? 0 : 1;
|
||||
|
||||
if( errCaseCount > 0 )
|
||||
{
|
||||
@@ -410,4 +575,4 @@ protected:
|
||||
TEST(ML_KMeans, accuracy) { CV_KMeansTest test; test.safe_run(); }
|
||||
TEST(ML_KNearest, accuracy) { CV_KNearestTest test; test.safe_run(); }
|
||||
TEST(ML_EM, accuracy) { CV_EMTest test; test.safe_run(); }
|
||||
TEST(ML_EM, smoke) { CV_EMTest_Smoke test; test.safe_run(); }
|
||||
TEST(ML_EM, save_load) { CV_EMTest_SaveLoad test; test.safe_run(); }
|
||||
|
Reference in New Issue
Block a user