added improved ORB implementation, convex-convex polygon intersection, eigen2x2 low-level function ...
This commit is contained in:
@@ -161,11 +161,67 @@ calcHarris( const Mat& _cov, Mat& _dst, double k )
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void eigen2x2( const float* cov, float* dst, int n )
|
||||
{
|
||||
for( int j = 0; j < n; j++ )
|
||||
{
|
||||
double a = cov[j*3];
|
||||
double b = cov[j*3+1];
|
||||
double c = cov[j*3+2];
|
||||
|
||||
double u = (a + c)*0.5;
|
||||
double v = std::sqrt((a - c)*(a - c)*0.25 + b*b);
|
||||
double l1 = u + v;
|
||||
double l2 = u - v;
|
||||
|
||||
double x = b;
|
||||
double y = l1 - a;
|
||||
double e = fabs(x);
|
||||
|
||||
if( e + fabs(y) < 1e-4 )
|
||||
{
|
||||
y = b;
|
||||
x = l1 - c;
|
||||
e = fabs(x);
|
||||
if( e + fabs(y) < 1e-4 )
|
||||
{
|
||||
e = 1./(e + fabs(y) + FLT_EPSILON);
|
||||
x *= e, y *= e;
|
||||
}
|
||||
}
|
||||
|
||||
double d = 1./std::sqrt(x*x + y*y + DBL_EPSILON);
|
||||
dst[6*j] = (float)l1;
|
||||
dst[6*j + 2] = (float)(x*d);
|
||||
dst[6*j + 3] = (float)(y*d);
|
||||
|
||||
x = b;
|
||||
y = l2 - a;
|
||||
e = fabs(x);
|
||||
|
||||
if( e + fabs(y) < 1e-4 )
|
||||
{
|
||||
y = b;
|
||||
x = l2 - c;
|
||||
e = fabs(x);
|
||||
if( e + fabs(y) < 1e-4 )
|
||||
{
|
||||
e = 1./(e + fabs(y) + FLT_EPSILON);
|
||||
x *= e, y *= e;
|
||||
}
|
||||
}
|
||||
|
||||
d = 1./std::sqrt(x*x + y*y + DBL_EPSILON);
|
||||
dst[6*j + 1] = (float)l2;
|
||||
dst[6*j + 4] = (float)(x*d);
|
||||
dst[6*j + 5] = (float)(y*d);
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
calcEigenValsVecs( const Mat& _cov, Mat& _dst )
|
||||
{
|
||||
int i, j;
|
||||
Size size = _cov.size();
|
||||
if( _cov.isContinuous() && _dst.isContinuous() )
|
||||
{
|
||||
@@ -173,64 +229,12 @@ calcEigenValsVecs( const Mat& _cov, Mat& _dst )
|
||||
size.height = 1;
|
||||
}
|
||||
|
||||
for( i = 0; i < size.height; i++ )
|
||||
for( int i = 0; i < size.height; i++ )
|
||||
{
|
||||
const float* cov = (const float*)(_cov.data + _cov.step*i);
|
||||
float* dst = (float*)(_dst.data + _dst.step*i);
|
||||
|
||||
for( j = 0; j < size.width; j++ )
|
||||
{
|
||||
double a = cov[j*3];
|
||||
double b = cov[j*3+1];
|
||||
double c = cov[j*3+2];
|
||||
|
||||
double u = (a + c)*0.5;
|
||||
double v = std::sqrt((a - c)*(a - c)*0.25 + b*b);
|
||||
double l1 = u + v;
|
||||
double l2 = u - v;
|
||||
|
||||
double x = b;
|
||||
double y = l1 - a;
|
||||
double e = fabs(x);
|
||||
|
||||
if( e + fabs(y) < 1e-4 )
|
||||
{
|
||||
y = b;
|
||||
x = l1 - c;
|
||||
e = fabs(x);
|
||||
if( e + fabs(y) < 1e-4 )
|
||||
{
|
||||
e = 1./(e + fabs(y) + FLT_EPSILON);
|
||||
x *= e, y *= e;
|
||||
}
|
||||
}
|
||||
|
||||
double d = 1./std::sqrt(x*x + y*y + DBL_EPSILON);
|
||||
dst[6*j] = (float)l1;
|
||||
dst[6*j + 2] = (float)(x*d);
|
||||
dst[6*j + 3] = (float)(y*d);
|
||||
|
||||
x = b;
|
||||
y = l2 - a;
|
||||
e = fabs(x);
|
||||
|
||||
if( e + fabs(y) < 1e-4 )
|
||||
{
|
||||
y = b;
|
||||
x = l2 - c;
|
||||
e = fabs(x);
|
||||
if( e + fabs(y) < 1e-4 )
|
||||
{
|
||||
e = 1./(e + fabs(y) + FLT_EPSILON);
|
||||
x *= e, y *= e;
|
||||
}
|
||||
}
|
||||
|
||||
d = 1./std::sqrt(x*x + y*y + DBL_EPSILON);
|
||||
dst[6*j + 1] = (float)l2;
|
||||
dst[6*j + 4] = (float)(x*d);
|
||||
dst[6*j + 5] = (float)(y*d);
|
||||
}
|
||||
eigen2x2(cov, dst, size.width);
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -328,4 +328,463 @@ cvPointPolygonTest( const CvArr* _contour, CvPoint2D32f pt, int measure_dist )
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
This code is described in "Computational Geometry in C" (Second Edition),
|
||||
Chapter 7. It is not written to be comprehensible without the
|
||||
explanation in that book.
|
||||
|
||||
Written by Joseph O'Rourke.
|
||||
Last modified: December 1997
|
||||
Questions to orourke@cs.smith.edu.
|
||||
--------------------------------------------------------------------
|
||||
This code is Copyright 1997 by Joseph O'Rourke. It may be freely
|
||||
redistributed in its entirety provided that this copyright notice is
|
||||
not removed.
|
||||
--------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
namespace cv
|
||||
{
|
||||
typedef enum { Pin, Qin, Unknown } tInFlag;
|
||||
|
||||
static int areaSign( Point2f a, Point2f b, Point2f c )
|
||||
{
|
||||
static const double eps = 1e-5;
|
||||
double area2 = (b.x - a.x) * (double)(c.y - a.y) - (c.x - a.x ) * (double)(b.y - a.y);
|
||||
return area2 > eps ? 1 : area2 < -eps ? -1 : 0;
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
// Returns true iff point c lies on the closed segement ab.
|
||||
// Assumes it is already known that abc are collinear.
|
||||
//---------------------------------------------------------------------
|
||||
static bool between( Point2f a, Point2f b, Point2f c )
|
||||
{
|
||||
Point2f ba, ca;
|
||||
|
||||
// If ab not vertical, check betweenness on x; else on y.
|
||||
if ( a.x != b.x )
|
||||
return ((a.x <= c.x) && (c.x <= b.x)) ||
|
||||
((a.x >= c.x) && (c.x >= b.x));
|
||||
else
|
||||
return ((a.y <= c.y) && (c.y <= b.y)) ||
|
||||
((a.y >= c.y) && (c.y >= b.y));
|
||||
}
|
||||
|
||||
static char parallelInt( Point2f a, Point2f b, Point2f c, Point2f d, Point2f& p, Point2f& q )
|
||||
{
|
||||
char code = 'e';
|
||||
if( areaSign(a, b, c) != 0 )
|
||||
code = '0';
|
||||
else if( between(a, b, c) && between(a, b, d))
|
||||
p = c, q = d;
|
||||
else if( between(c, d, a) && between(c, d, b))
|
||||
p = a, q = b;
|
||||
else if( between(a, b, c) && between(c, d, b))
|
||||
p = c, q = b;
|
||||
else if( between(a, b, c) && between(c, d, a))
|
||||
p = c, q = a;
|
||||
else if( between(a, b, d) && between(c, d, b))
|
||||
p = d, q = b;
|
||||
else if( between(a, b, d) && between(c, d, a))
|
||||
p = d, q = a;
|
||||
else
|
||||
code = '0';
|
||||
return code;
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
// segSegInt: Finds the point of intersection p between two closed
|
||||
// segments ab and cd. Returns p and a char with the following meaning:
|
||||
// 'e': The segments collinearly overlap, sharing a point.
|
||||
// 'v': An endpoint (vertex) of one segment is on the other segment,
|
||||
// but 'e' doesn't hold.
|
||||
// '1': The segments intersect properly (i.e., they share a point and
|
||||
// neither 'v' nor 'e' holds).
|
||||
// '0': The segments do not intersect (i.e., they share no points).
|
||||
// Note that two collinear segments that share just one point, an endpoint
|
||||
// of each, returns 'e' rather than 'v' as one might expect.
|
||||
//---------------------------------------------------------------------
|
||||
static char segSegInt( Point2f a, Point2f b, Point2f c, Point2f d, Point2f& p, Point2f& q )
|
||||
{
|
||||
double s, t; // The two parameters of the parametric eqns.
|
||||
double num, denom; // Numerator and denoninator of equations.
|
||||
char code = '?'; // Return char characterizing intersection.
|
||||
|
||||
denom = a.x * (double)( d.y - c.y ) +
|
||||
b.x * (double)( c.y - d.y ) +
|
||||
d.x * (double)( b.y - a.y ) +
|
||||
c.x * (double)( a.y - b.y );
|
||||
|
||||
// If denom is zero, then segments are parallel: handle separately.
|
||||
if (denom == 0.0)
|
||||
return parallelInt(a, b, c, d, p, q);
|
||||
|
||||
num = a.x * (double)( d.y - c.y ) +
|
||||
c.x * (double)( a.y - d.y ) +
|
||||
d.x * (double)( c.y - a.y );
|
||||
if ( (num == 0.0) || (num == denom) ) code = 'v';
|
||||
s = num / denom;
|
||||
|
||||
num = -( a.x * (double)( c.y - b.y ) +
|
||||
b.x * (double)( a.y - c.y ) +
|
||||
c.x * (double)( b.y - a.y ) );
|
||||
if ( (num == 0.0) || (num == denom) ) code = 'v';
|
||||
t = num / denom;
|
||||
|
||||
if ( (0.0 < s) && (s < 1.0) &&
|
||||
(0.0 < t) && (t < 1.0) )
|
||||
code = '1';
|
||||
else if ( (0.0 > s) || (s > 1.0) ||
|
||||
(0.0 > t) || (t > 1.0) )
|
||||
code = '0';
|
||||
|
||||
p.x = a.x + s * ( b.x - a.x );
|
||||
p.y = a.y + s * ( b.y - a.y );
|
||||
|
||||
return code;
|
||||
}
|
||||
|
||||
static tInFlag inOut( Point2f p, tInFlag inflag, int aHB, int bHA, Point2f*& result )
|
||||
{
|
||||
if( p != result[-1] )
|
||||
*result++ = p;
|
||||
// Update inflag.
|
||||
return aHB > 0 ? Pin : bHA > 0 ? Qin : inflag;
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
// Advances and prints out an inside vertex if appropriate.
|
||||
//---------------------------------------------------------------------
|
||||
static int advance( int a, int *aa, int n, bool inside, Point2f v, Point2f*& result )
|
||||
{
|
||||
if( inside && v != result[-1] )
|
||||
*result++ = v;
|
||||
(*aa)++;
|
||||
return (a+1) % n;
|
||||
}
|
||||
|
||||
static void addSharedSeg( Point2f p, Point2f q, Point2f*& result )
|
||||
{
|
||||
if( p != result[-1] )
|
||||
*result++ = p;
|
||||
if( q != result[-1] )
|
||||
*result++ = q;
|
||||
}
|
||||
|
||||
|
||||
static int intersectConvexConvex_( const Point2f* P, int n, const Point2f* Q, int m,
|
||||
Point2f* result, float* _area )
|
||||
{
|
||||
Point2f* result0 = result;
|
||||
// P has n vertices, Q has m vertices.
|
||||
int a=0, b=0; // indices on P and Q (resp.)
|
||||
Point2f Origin(0,0);
|
||||
tInFlag inflag=Unknown; // {Pin, Qin, Unknown}: which inside
|
||||
int aa=0, ba=0; // # advances on a & b indices (after 1st inter.)
|
||||
bool FirstPoint=true;// Is this the first point? (used to initialize).
|
||||
Point2f p0; // The first point.
|
||||
*result++ = Point2f(FLT_MAX, FLT_MAX);
|
||||
|
||||
do
|
||||
{
|
||||
// Computations of key variables.
|
||||
int a1 = (a + n - 1) % n; // a-1, b-1 (resp.)
|
||||
int b1 = (b + m - 1) % m;
|
||||
|
||||
Point2f A = P[a] - P[a1], B = Q[b] - Q[b1]; // directed edges on P and Q (resp.)
|
||||
|
||||
int cross = areaSign( Origin, A, B ); // sign of z-component of A x B
|
||||
int aHB = areaSign( Q[b1], Q[b], P[a] ); // a in H(b).
|
||||
int bHA = areaSign( P[a1], P[a], Q[b] ); // b in H(A);
|
||||
|
||||
// If A & B intersect, update inflag.
|
||||
Point2f p, q;
|
||||
int code = segSegInt( P[a1], P[a], Q[b1], Q[b], p, q );
|
||||
if( code == '1' || code == 'v' )
|
||||
{
|
||||
if( inflag == Unknown && FirstPoint )
|
||||
{
|
||||
aa = ba = 0;
|
||||
FirstPoint = false;
|
||||
p0 = p;
|
||||
*result++ = p;
|
||||
}
|
||||
inflag = inOut( p, inflag, aHB, bHA, result );
|
||||
}
|
||||
|
||||
//-----Advance rules-----
|
||||
|
||||
// Special case: A & B overlap and oppositely oriented.
|
||||
if( code == 'e' && A.ddot(B) < 0 )
|
||||
{
|
||||
addSharedSeg( p, q, result );
|
||||
return (int)(result - result0);
|
||||
}
|
||||
|
||||
// Special case: A & B parallel and separated.
|
||||
if( cross == 0 && aHB < 0 && bHA < 0 )
|
||||
return (int)(result - result0);
|
||||
|
||||
// Special case: A & B collinear.
|
||||
else if ( cross == 0 && aHB == 0 && bHA == 0 ) {
|
||||
// Advance but do not output point.
|
||||
if ( inflag == Pin )
|
||||
b = advance( b, &ba, m, inflag == Qin, Q[b], result );
|
||||
else
|
||||
a = advance( a, &aa, n, inflag == Pin, P[a], result );
|
||||
}
|
||||
|
||||
// Generic cases.
|
||||
else if( cross >= 0 )
|
||||
{
|
||||
if( bHA > 0)
|
||||
a = advance( a, &aa, n, inflag == Pin, P[a], result );
|
||||
else
|
||||
b = advance( b, &ba, m, inflag == Qin, Q[b], result );
|
||||
}
|
||||
else
|
||||
{
|
||||
if( aHB > 0)
|
||||
b = advance( b, &ba, m, inflag == Qin, Q[b], result );
|
||||
else
|
||||
a = advance( a, &aa, n, inflag == Pin, P[a], result );
|
||||
}
|
||||
// Quit when both adv. indices have cycled, or one has cycled twice.
|
||||
}
|
||||
while ( ((aa < n) || (ba < m)) && (aa < 2*n) && (ba < 2*m) );
|
||||
|
||||
// Deal with special cases: not implemented.
|
||||
if( inflag == Unknown )
|
||||
{
|
||||
// The boundaries of P and Q do not cross.
|
||||
// ...
|
||||
}
|
||||
|
||||
int i, nr = (int)(result - result0);
|
||||
double area = 0;
|
||||
Point2f prev = result0[nr-1];
|
||||
for( i = 1; i < nr; i++ )
|
||||
{
|
||||
result0[i-1] = result0[i];
|
||||
area += (double)prev.x*result0[i].y - (double)prev.y*result0[i].x;
|
||||
prev = result0[i];
|
||||
}
|
||||
|
||||
*_area = (float)(area*0.5);
|
||||
|
||||
if( result0[nr-2] == result0[0] && nr > 1 )
|
||||
nr--;
|
||||
return nr-1;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
float cv::intersectConvexConvex( InputArray _p1, InputArray _p2, OutputArray _p12, bool handleNested )
|
||||
{
|
||||
Mat p1 = _p1.getMat(), p2 = _p2.getMat();
|
||||
CV_Assert( p1.depth() == CV_32S || p1.depth() == CV_32F );
|
||||
CV_Assert( p2.depth() == CV_32S || p2.depth() == CV_32F );
|
||||
|
||||
int n = p1.checkVector(2, p1.depth(), true);
|
||||
int m = p2.checkVector(2, p2.depth(), true);
|
||||
|
||||
CV_Assert( n >= 0 && m >= 0 );
|
||||
|
||||
if( n < 2 || m < 2 )
|
||||
{
|
||||
_p12.release();
|
||||
return 0.f;
|
||||
}
|
||||
|
||||
AutoBuffer<Point2f> _result(n*2 + m*2 + 1);
|
||||
Point2f *fp1 = _result, *fp2 = fp1 + n;
|
||||
Point2f* result = fp2 + m;
|
||||
int orientation = 0;
|
||||
|
||||
for( int k = 1; k <= 2; k++ )
|
||||
{
|
||||
Mat& p = k == 1 ? p1 : p2;
|
||||
int len = k == 1 ? n : m;
|
||||
Point2f* dst = k == 1 ? fp1 : fp2;
|
||||
|
||||
Mat temp(p.size(), CV_MAKETYPE(CV_32F, p.channels()), dst);
|
||||
p.convertTo(temp, CV_32F);
|
||||
CV_Assert( temp.ptr<Point2f>() == dst );
|
||||
Point2f diff0 = dst[0] - dst[len-1];
|
||||
for( int i = 1; i < len; i++ )
|
||||
{
|
||||
double s = diff0.cross(dst[i] - dst[i-1]);
|
||||
if( s != 0 )
|
||||
{
|
||||
if( s < 0 )
|
||||
{
|
||||
orientation++;
|
||||
flip( temp, temp, temp.rows > 1 ? 0 : 1 );
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float area = 0.f;
|
||||
int nr = intersectConvexConvex_(fp1, n, fp2, m, result, &area);
|
||||
if( nr == 0 )
|
||||
{
|
||||
if( !handleNested )
|
||||
{
|
||||
_p12.release();
|
||||
return 0.f;
|
||||
}
|
||||
|
||||
if( pointPolygonTest(_InputArray(fp1, n), fp2[0], false) >= 0 )
|
||||
{
|
||||
result = fp2;
|
||||
nr = m;
|
||||
}
|
||||
else if( pointPolygonTest(_InputArray(fp2, n), fp1[0], false) >= 0 )
|
||||
{
|
||||
result = fp1;
|
||||
nr = n;
|
||||
}
|
||||
else
|
||||
{
|
||||
_p12.release();
|
||||
return 0.f;
|
||||
}
|
||||
area = contourArea(_InputArray(result, nr), false);
|
||||
}
|
||||
|
||||
if( _p12.needed() )
|
||||
{
|
||||
Mat temp(nr, 1, CV_32FC2, result);
|
||||
// if both input contours were reflected,
|
||||
// let's orient the result as the input vectors
|
||||
if( orientation == 2 )
|
||||
flip(temp, temp, 0);
|
||||
|
||||
temp.copyTo(_p12);
|
||||
}
|
||||
return (float)fabs(area);
|
||||
}
|
||||
|
||||
/*
|
||||
static void testConvConv()
|
||||
{
|
||||
static const int P1[] =
|
||||
{
|
||||
0, 0,
|
||||
100, 0,
|
||||
100, 100,
|
||||
0, 100,
|
||||
};
|
||||
|
||||
static const int Q1[] =
|
||||
{
|
||||
100, 80,
|
||||
50, 80,
|
||||
50, 50,
|
||||
100, 50
|
||||
};
|
||||
|
||||
static const int P2[] =
|
||||
{
|
||||
0, 0,
|
||||
200, 0,
|
||||
200, 100,
|
||||
100, 200,
|
||||
0, 100
|
||||
};
|
||||
|
||||
static const int Q2[] =
|
||||
{
|
||||
100, 100,
|
||||
300, 100,
|
||||
300, 200,
|
||||
100, 200
|
||||
};
|
||||
|
||||
static const int P3[] =
|
||||
{
|
||||
0, 0,
|
||||
100, 0,
|
||||
100, 100,
|
||||
0, 100
|
||||
};
|
||||
|
||||
static const int Q3[] =
|
||||
{
|
||||
50, 50,
|
||||
150, 50,
|
||||
150, 150,
|
||||
50, 150
|
||||
};
|
||||
|
||||
static const int P4[] =
|
||||
{
|
||||
0, 160,
|
||||
50, 80,
|
||||
130, 0,
|
||||
190, 20,
|
||||
240, 100,
|
||||
240, 260,
|
||||
190, 290,
|
||||
130, 320,
|
||||
70, 320,
|
||||
30, 290
|
||||
};
|
||||
|
||||
static const int Q4[] =
|
||||
{
|
||||
160, -30,
|
||||
280, 160,
|
||||
160, 320,
|
||||
0, 220,
|
||||
30, 100
|
||||
};
|
||||
|
||||
static const void* PQs[] =
|
||||
{
|
||||
P1, Q1, P2, Q2, P3, Q3, P4, Q4
|
||||
};
|
||||
|
||||
static const int lens[] =
|
||||
{
|
||||
CV_DIM(P1), CV_DIM(Q1),
|
||||
CV_DIM(P2), CV_DIM(Q2),
|
||||
CV_DIM(P3), CV_DIM(Q3),
|
||||
CV_DIM(P4), CV_DIM(Q4)
|
||||
};
|
||||
|
||||
Mat img(800, 800, CV_8UC3);
|
||||
|
||||
for( int i = 0; i < CV_DIM(PQs)/2; i++ )
|
||||
{
|
||||
Mat Pm = Mat(lens[i*2]/2, 1, CV_32SC2, (void*)PQs[i*2]) + Scalar(100, 100);
|
||||
Mat Qm = Mat(lens[i*2+1]/2, 1, CV_32SC2, (void*)PQs[i*2+1]) + Scalar(100, 100);
|
||||
Point* P = Pm.ptr<Point>();
|
||||
Point* Q = Qm.ptr<Point>();
|
||||
|
||||
flip(Pm, Pm, 0);
|
||||
flip(Qm, Qm, 0);
|
||||
|
||||
Mat Rm;
|
||||
intersectConvexConvex(Pm, Qm, Rm);
|
||||
std::cout << Rm << std::endl << std::endl;
|
||||
|
||||
img = Scalar::all(0);
|
||||
|
||||
polylines(img, Pm, true, Scalar(0,255,0), 1, CV_AA, 0);
|
||||
polylines(img, Qm, true, Scalar(0,0,255), 1, CV_AA, 0);
|
||||
Mat temp;
|
||||
Rm.convertTo(temp, CV_32S, 256);
|
||||
polylines(img, temp, true, Scalar(128, 255, 255), 3, CV_AA, 8);
|
||||
|
||||
namedWindow("test", 1);
|
||||
imshow("test", img);
|
||||
waitKey();
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
/* End of file. */
|
||||
|
@@ -206,6 +206,22 @@ void cv::copyMakeBorder( InputArray _src, OutputArray _dst, int top, int bottom,
|
||||
_dst.create( src.rows + top + bottom, src.cols + left + right, src.type() );
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
if( src.isSubmatrix() && (borderType & BORDER_ISOLATED) == 0 )
|
||||
{
|
||||
Size wholeSize;
|
||||
Point ofs;
|
||||
src.locateROI(wholeSize, ofs);
|
||||
int dtop = std::min(ofs.y, top);
|
||||
int dbottom = std::min(wholeSize.height - src.rows - ofs.y, bottom);
|
||||
int dleft = std::min(ofs.x, left);
|
||||
int dright = std::min(wholeSize.width - src.cols - ofs.x, right);
|
||||
src.adjustROI(dtop, dbottom, dleft, dright);
|
||||
top -= dtop;
|
||||
left -= dleft;
|
||||
}
|
||||
|
||||
borderType &= ~BORDER_ISOLATED;
|
||||
|
||||
if( borderType != BORDER_CONSTANT )
|
||||
copyMakeBorder_8u( src.data, src.step, src.size(),
|
||||
dst.data, dst.step, dst.size(),
|
||||
|
Reference in New Issue
Block a user