yet another attempt to refactor features2d; the first commit, features2d does not even compile
This commit is contained in:
@@ -55,7 +55,32 @@
|
||||
# endif
|
||||
#endif
|
||||
|
||||
using namespace cv;
|
||||
namespace cv
|
||||
{
|
||||
|
||||
class CV_EXPORTS_W SimpleBlobDetectorImpl : public SimpleBlobDetector
|
||||
{
|
||||
public:
|
||||
|
||||
explicit SimpleBlobDetectorImpl(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params());
|
||||
|
||||
virtual void read( const FileNode& fn );
|
||||
virtual void write( FileStorage& fs ) const;
|
||||
|
||||
protected:
|
||||
struct CV_EXPORTS Center
|
||||
{
|
||||
Point2d location;
|
||||
double radius;
|
||||
double confidence;
|
||||
};
|
||||
|
||||
virtual void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
|
||||
virtual void findBlobs(InputArray image, InputArray binaryImage, std::vector<Center> ¢ers) const;
|
||||
|
||||
Params params;
|
||||
AlgorithmInfo* info() const;
|
||||
};
|
||||
|
||||
/*
|
||||
* SimpleBlobDetector
|
||||
|
@@ -53,6 +53,79 @@
|
||||
namespace cv
|
||||
{
|
||||
|
||||
|
||||
class BRISK_Impl : public BRISK
|
||||
{
|
||||
public:
|
||||
explicit BRISK_Impl(int thresh=30, int octaves=3, float patternScale=1.0f);
|
||||
// custom setup
|
||||
explicit BRISK_Impl(const std::vector<float> &radiusList, const std::vector<int> &numberList,
|
||||
float dMax=5.85f, float dMin=8.2f, const std::vector<int> indexChange=std::vector<int>());
|
||||
|
||||
// call this to generate the kernel:
|
||||
// circle of radius r (pixels), with n points;
|
||||
// short pairings with dMax, long pairings with dMin
|
||||
void generateKernel(std::vector<float> &radiusList,
|
||||
std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f,
|
||||
std::vector<int> indexChange=std::vector<int>());
|
||||
|
||||
protected:
|
||||
|
||||
void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
|
||||
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
|
||||
|
||||
void computeKeypointsNoOrientation(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const;
|
||||
void computeDescriptorsAndOrOrientation(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints,
|
||||
OutputArray descriptors, bool doDescriptors, bool doOrientation,
|
||||
bool useProvidedKeypoints) const;
|
||||
|
||||
// Feature parameters
|
||||
CV_PROP_RW int threshold;
|
||||
CV_PROP_RW int octaves;
|
||||
|
||||
// some helper structures for the Brisk pattern representation
|
||||
struct BriskPatternPoint{
|
||||
float x; // x coordinate relative to center
|
||||
float y; // x coordinate relative to center
|
||||
float sigma; // Gaussian smoothing sigma
|
||||
};
|
||||
struct BriskShortPair{
|
||||
unsigned int i; // index of the first pattern point
|
||||
unsigned int j; // index of other pattern point
|
||||
};
|
||||
struct BriskLongPair{
|
||||
unsigned int i; // index of the first pattern point
|
||||
unsigned int j; // index of other pattern point
|
||||
int weighted_dx; // 1024.0/dx
|
||||
int weighted_dy; // 1024.0/dy
|
||||
};
|
||||
inline int smoothedIntensity(const cv::Mat& image,
|
||||
const cv::Mat& integral,const float key_x,
|
||||
const float key_y, const unsigned int scale,
|
||||
const unsigned int rot, const unsigned int point) const;
|
||||
// pattern properties
|
||||
BriskPatternPoint* patternPoints_; //[i][rotation][scale]
|
||||
unsigned int points_; // total number of collocation points
|
||||
float* scaleList_; // lists the scaling per scale index [scale]
|
||||
unsigned int* sizeList_; // lists the total pattern size per scale index [scale]
|
||||
static const unsigned int scales_; // scales discretization
|
||||
static const float scalerange_; // span of sizes 40->4 Octaves - else, this needs to be adjusted...
|
||||
static const unsigned int n_rot_; // discretization of the rotation look-up
|
||||
|
||||
// pairs
|
||||
int strings_; // number of uchars the descriptor consists of
|
||||
float dMax_; // short pair maximum distance
|
||||
float dMin_; // long pair maximum distance
|
||||
BriskShortPair* shortPairs_; // d<_dMax
|
||||
BriskLongPair* longPairs_; // d>_dMin
|
||||
unsigned int noShortPairs_; // number of shortParis
|
||||
unsigned int noLongPairs_; // number of longParis
|
||||
|
||||
// general
|
||||
static const float basicSize_;
|
||||
};
|
||||
|
||||
|
||||
// a layer in the Brisk detector pyramid
|
||||
class CV_EXPORTS BriskLayer
|
||||
{
|
||||
|
@@ -1,110 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include <limits>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
/****************************************************************************************\
|
||||
* DescriptorExtractor *
|
||||
\****************************************************************************************/
|
||||
/*
|
||||
* DescriptorExtractor
|
||||
*/
|
||||
DescriptorExtractor::~DescriptorExtractor()
|
||||
{}
|
||||
|
||||
void DescriptorExtractor::compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const
|
||||
{
|
||||
if( image.empty() || keypoints.empty() )
|
||||
{
|
||||
descriptors.release();
|
||||
return;
|
||||
}
|
||||
|
||||
KeyPointsFilter::runByImageBorder( keypoints, image.size(), 0 );
|
||||
KeyPointsFilter::runByKeypointSize( keypoints, std::numeric_limits<float>::epsilon() );
|
||||
|
||||
computeImpl( image, keypoints, descriptors );
|
||||
}
|
||||
|
||||
void DescriptorExtractor::compute( InputArrayOfArrays _imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection, OutputArrayOfArrays _descCollection ) const
|
||||
{
|
||||
std::vector<Mat> imageCollection, descCollection;
|
||||
_imageCollection.getMatVector(imageCollection);
|
||||
_descCollection.getMatVector(descCollection);
|
||||
CV_Assert( imageCollection.size() == pointCollection.size() );
|
||||
descCollection.resize( imageCollection.size() );
|
||||
for( size_t i = 0; i < imageCollection.size(); i++ )
|
||||
compute( imageCollection[i], pointCollection[i], descCollection[i] );
|
||||
}
|
||||
|
||||
/*void DescriptorExtractor::read( const FileNode& )
|
||||
{}
|
||||
|
||||
void DescriptorExtractor::write( FileStorage& ) const
|
||||
{}*/
|
||||
|
||||
bool DescriptorExtractor::empty() const
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
void DescriptorExtractor::removeBorderKeypoints( std::vector<KeyPoint>& keypoints,
|
||||
Size imageSize, int borderSize )
|
||||
{
|
||||
KeyPointsFilter::runByImageBorder( keypoints, imageSize, borderSize );
|
||||
}
|
||||
|
||||
Ptr<DescriptorExtractor> DescriptorExtractor::create(const String& descriptorExtractorType)
|
||||
{
|
||||
return Algorithm::create<DescriptorExtractor>("Feature2D." + descriptorExtractorType);
|
||||
}
|
||||
|
||||
|
||||
CV_WRAP void Feature2D::compute( InputArray image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const
|
||||
{
|
||||
DescriptorExtractor::compute(image, keypoints, descriptors);
|
||||
}
|
||||
|
||||
}
|
@@ -44,118 +44,65 @@
|
||||
namespace cv
|
||||
{
|
||||
|
||||
/*
|
||||
* FeatureDetector
|
||||
*/
|
||||
|
||||
FeatureDetector::~FeatureDetector()
|
||||
{}
|
||||
|
||||
void FeatureDetector::detect( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask ) const
|
||||
class GFTTDetector_Impl : public GFTTDetector
|
||||
{
|
||||
keypoints.clear();
|
||||
|
||||
if( image.empty() )
|
||||
return;
|
||||
|
||||
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()) );
|
||||
|
||||
detectImpl( image, keypoints, mask );
|
||||
}
|
||||
|
||||
void FeatureDetector::detect(InputArrayOfArrays _imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection,
|
||||
InputArrayOfArrays _masks ) const
|
||||
{
|
||||
if (_imageCollection.isUMatVector())
|
||||
public:
|
||||
GFTTDetector_Impl( int _nfeatures, double _qualityLevel,
|
||||
double _minDistance, int _blockSize,
|
||||
bool _useHarrisDetector, double _k )
|
||||
: nfeatures(_nfeatures), qualityLevel(_qualityLevel), minDistance(_minDistance),
|
||||
blockSize(_blockSize), useHarrisDetector(_useHarrisDetector), k(_k)
|
||||
{
|
||||
std::vector<UMat> uimageCollection, umasks;
|
||||
_imageCollection.getUMatVector(uimageCollection);
|
||||
_masks.getUMatVector(umasks);
|
||||
|
||||
pointCollection.resize( uimageCollection.size() );
|
||||
for( size_t i = 0; i < uimageCollection.size(); i++ )
|
||||
detect( uimageCollection[i], pointCollection[i], umasks.empty() ? noArray() : umasks[i] );
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<Mat> imageCollection, masks;
|
||||
_imageCollection.getMatVector(imageCollection);
|
||||
_masks.getMatVector(masks);
|
||||
|
||||
pointCollection.resize( imageCollection.size() );
|
||||
for( size_t i = 0; i < imageCollection.size(); i++ )
|
||||
detect( imageCollection[i], pointCollection[i], masks.empty() ? noArray() : masks[i] );
|
||||
}
|
||||
|
||||
/*void FeatureDetector::read( const FileNode& )
|
||||
{}
|
||||
|
||||
void FeatureDetector::write( FileStorage& ) const
|
||||
{}*/
|
||||
|
||||
bool FeatureDetector::empty() const
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
void FeatureDetector::removeInvalidPoints( const Mat& mask, std::vector<KeyPoint>& keypoints )
|
||||
{
|
||||
KeyPointsFilter::runByPixelsMask( keypoints, mask );
|
||||
}
|
||||
|
||||
Ptr<FeatureDetector> FeatureDetector::create( const String& detectorType )
|
||||
{
|
||||
if( detectorType.compare( "HARRIS" ) == 0 )
|
||||
void detect( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask )
|
||||
{
|
||||
Ptr<FeatureDetector> fd = FeatureDetector::create("GFTT");
|
||||
fd->set("useHarrisDetector", true);
|
||||
return fd;
|
||||
}
|
||||
std::vector<Point2f> corners;
|
||||
|
||||
return Algorithm::create<FeatureDetector>("Feature2D." + detectorType);
|
||||
}
|
||||
if (_image.isUMat())
|
||||
{
|
||||
UMat ugrayImage;
|
||||
if( _image.type() != CV_8U )
|
||||
cvtColor( _image, ugrayImage, COLOR_BGR2GRAY );
|
||||
else
|
||||
ugrayImage = _image.getUMat();
|
||||
|
||||
|
||||
GFTTDetector::GFTTDetector( int _nfeatures, double _qualityLevel,
|
||||
double _minDistance, int _blockSize,
|
||||
bool _useHarrisDetector, double _k )
|
||||
: nfeatures(_nfeatures), qualityLevel(_qualityLevel), minDistance(_minDistance),
|
||||
blockSize(_blockSize), useHarrisDetector(_useHarrisDetector), k(_k)
|
||||
{
|
||||
}
|
||||
|
||||
void GFTTDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask) const
|
||||
{
|
||||
std::vector<Point2f> corners;
|
||||
|
||||
if (_image.isUMat())
|
||||
{
|
||||
UMat ugrayImage;
|
||||
if( _image.type() != CV_8U )
|
||||
cvtColor( _image, ugrayImage, COLOR_BGR2GRAY );
|
||||
goodFeaturesToTrack( ugrayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
|
||||
blockSize, useHarrisDetector, k );
|
||||
}
|
||||
else
|
||||
ugrayImage = _image.getUMat();
|
||||
{
|
||||
Mat image = _image.getMat(), grayImage = image;
|
||||
if( image.type() != CV_8U )
|
||||
cvtColor( image, grayImage, COLOR_BGR2GRAY );
|
||||
|
||||
goodFeaturesToTrack( ugrayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
|
||||
blockSize, useHarrisDetector, k );
|
||||
}
|
||||
else
|
||||
{
|
||||
Mat image = _image.getMat(), grayImage = image;
|
||||
if( image.type() != CV_8U )
|
||||
cvtColor( image, grayImage, COLOR_BGR2GRAY );
|
||||
goodFeaturesToTrack( grayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
|
||||
blockSize, useHarrisDetector, k );
|
||||
}
|
||||
|
||||
keypoints.resize(corners.size());
|
||||
std::vector<Point2f>::const_iterator corner_it = corners.begin();
|
||||
std::vector<KeyPoint>::iterator keypoint_it = keypoints.begin();
|
||||
for( ; corner_it != corners.end(); ++corner_it, ++keypoint_it )
|
||||
*keypoint_it = KeyPoint( *corner_it, (float)blockSize );
|
||||
|
||||
goodFeaturesToTrack( grayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
|
||||
blockSize, useHarrisDetector, k );
|
||||
}
|
||||
|
||||
keypoints.resize(corners.size());
|
||||
std::vector<Point2f>::const_iterator corner_it = corners.begin();
|
||||
std::vector<KeyPoint>::iterator keypoint_it = keypoints.begin();
|
||||
for( ; corner_it != corners.end(); ++corner_it, ++keypoint_it )
|
||||
*keypoint_it = KeyPoint( *corner_it, (float)blockSize );
|
||||
int nfeatures;
|
||||
double qualityLevel;
|
||||
double minDistance;
|
||||
int blockSize;
|
||||
bool useHarrisDetector;
|
||||
double k;
|
||||
};
|
||||
|
||||
|
||||
Ptr<GFTTDetector> GFTTDetector::create( int _nfeatures, double _qualityLevel,
|
||||
double _minDistance, int _blockSize,
|
||||
bool _useHarrisDetector, double _k )
|
||||
{
|
||||
return makePtr<GFTTDetector_Impl>(_nfeatures, _qualityLevel,
|
||||
_minDistance, _blockSize, _useHarrisDetector, _k);
|
||||
}
|
||||
|
||||
}
|
||||
|
@@ -359,30 +359,39 @@ void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool
|
||||
{
|
||||
FAST(_img, keypoints, threshold, nonmax_suppression, FastFeatureDetector::TYPE_9_16);
|
||||
}
|
||||
/*
|
||||
* FastFeatureDetector
|
||||
*/
|
||||
FastFeatureDetector::FastFeatureDetector( int _threshold, bool _nonmaxSuppression )
|
||||
: threshold(_threshold), nonmaxSuppression(_nonmaxSuppression), type(FastFeatureDetector::TYPE_9_16)
|
||||
{}
|
||||
|
||||
FastFeatureDetector::FastFeatureDetector( int _threshold, bool _nonmaxSuppression, int _type )
|
||||
: threshold(_threshold), nonmaxSuppression(_nonmaxSuppression), type((short)_type)
|
||||
{}
|
||||
|
||||
void FastFeatureDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) const
|
||||
class FastFeatureDetector_Impl : public FastFeatureDetector
|
||||
{
|
||||
Mat mask = _mask.getMat(), grayImage;
|
||||
UMat ugrayImage;
|
||||
_InputArray gray = _image;
|
||||
if( _image.type() != CV_8U )
|
||||
public:
|
||||
FastFeatureDetector_Impl( int _threshold, bool _nonmaxSuppression, int _type )
|
||||
: threshold(_threshold), nonmaxSuppression(_nonmaxSuppression), type((short)_type)
|
||||
{}
|
||||
|
||||
void detect( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask )
|
||||
{
|
||||
_OutputArray ogray = _image.isUMat() ? _OutputArray(ugrayImage) : _OutputArray(grayImage);
|
||||
cvtColor( _image, ogray, COLOR_BGR2GRAY );
|
||||
gray = ogray;
|
||||
Mat mask = _mask.getMat(), grayImage;
|
||||
UMat ugrayImage;
|
||||
_InputArray gray = _image;
|
||||
if( _image.type() != CV_8U )
|
||||
{
|
||||
_OutputArray ogray = _image.isUMat() ? _OutputArray(ugrayImage) : _OutputArray(grayImage);
|
||||
cvtColor( _image, ogray, COLOR_BGR2GRAY );
|
||||
gray = ogray;
|
||||
}
|
||||
FAST( gray, keypoints, threshold, nonmaxSuppression, type );
|
||||
KeyPointsFilter::runByPixelsMask( keypoints, mask );
|
||||
}
|
||||
FAST( gray, keypoints, threshold, nonmaxSuppression, type );
|
||||
KeyPointsFilter::runByPixelsMask( keypoints, mask );
|
||||
|
||||
int threshold;
|
||||
bool nonmaxSuppression;
|
||||
int type;
|
||||
};
|
||||
|
||||
Ptr<FastFeatureDetector> FastFeatureDetector::create( int threshold, bool nonmaxSuppression, int type )
|
||||
{
|
||||
return makePtr<FastFeatureDetector_Impl>(threshold, nonmaxSuppression, type);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
@@ -42,6 +42,8 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
#if 0
|
||||
|
||||
using namespace cv;
|
||||
|
||||
Ptr<Feature2D> Feature2D::create( const String& feature2DType )
|
||||
@@ -193,3 +195,5 @@ bool cv::initModule_features2d(void)
|
||||
|
||||
return all;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@@ -52,153 +52,93 @@ http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla12eccv.pd
|
||||
|
||||
namespace cv
|
||||
{
|
||||
KAZE::KAZE()
|
||||
: extended(false)
|
||||
, upright(false)
|
||||
, threshold(0.001f)
|
||||
, octaves(4)
|
||||
, sublevels(4)
|
||||
, diffusivity(DIFF_PM_G2)
|
||||
{
|
||||
}
|
||||
|
||||
KAZE::KAZE(bool _extended, bool _upright, float _threshold, int _octaves,
|
||||
int _sublevels, int _diffusivity)
|
||||
class KAZE_Impl : public KAZE
|
||||
{
|
||||
public:
|
||||
KAZE_Impl(bool _extended, bool _upright, float _threshold, int _octaves,
|
||||
int _sublevels, int _diffusivity)
|
||||
: extended(_extended)
|
||||
, upright(_upright)
|
||||
, threshold(_threshold)
|
||||
, octaves(_octaves)
|
||||
, sublevels(_sublevels)
|
||||
, diffusivity(_diffusivity)
|
||||
{
|
||||
|
||||
}
|
||||
KAZE::~KAZE()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
// returns the descriptor size in bytes
|
||||
int KAZE::descriptorSize() const
|
||||
{
|
||||
return extended ? 128 : 64;
|
||||
}
|
||||
|
||||
// returns the descriptor type
|
||||
int KAZE::descriptorType() const
|
||||
{
|
||||
return CV_32F;
|
||||
}
|
||||
|
||||
// returns the default norm type
|
||||
int KAZE::defaultNorm() const
|
||||
{
|
||||
return NORM_L2;
|
||||
}
|
||||
|
||||
void KAZE::operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const
|
||||
{
|
||||
detectImpl(image, keypoints, mask);
|
||||
}
|
||||
|
||||
void KAZE::operator()(InputArray image, InputArray mask,
|
||||
std::vector<KeyPoint>& keypoints,
|
||||
OutputArray descriptors,
|
||||
bool useProvidedKeypoints) const
|
||||
{
|
||||
cv::Mat img = image.getMat();
|
||||
if (img.type() != CV_8UC1)
|
||||
cvtColor(image, img, COLOR_BGR2GRAY);
|
||||
|
||||
Mat img1_32;
|
||||
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
|
||||
|
||||
cv::Mat& desc = descriptors.getMatRef();
|
||||
|
||||
KAZEOptions options;
|
||||
options.img_width = img.cols;
|
||||
options.img_height = img.rows;
|
||||
options.extended = extended;
|
||||
options.upright = upright;
|
||||
options.dthreshold = threshold;
|
||||
options.omax = octaves;
|
||||
options.nsublevels = sublevels;
|
||||
options.diffusivity = diffusivity;
|
||||
|
||||
KAZEFeatures impl(options);
|
||||
impl.Create_Nonlinear_Scale_Space(img1_32);
|
||||
|
||||
if (!useProvidedKeypoints)
|
||||
{
|
||||
impl.Feature_Detection(keypoints);
|
||||
}
|
||||
|
||||
if (!mask.empty())
|
||||
virtual ~KAZE_Impl() {}
|
||||
|
||||
// returns the descriptor size in bytes
|
||||
int descriptorSize() const
|
||||
{
|
||||
cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
|
||||
return extended ? 128 : 64;
|
||||
}
|
||||
|
||||
impl.Feature_Description(keypoints, desc);
|
||||
|
||||
CV_Assert((!desc.rows || desc.cols == descriptorSize()));
|
||||
CV_Assert((!desc.rows || (desc.type() == descriptorType())));
|
||||
}
|
||||
|
||||
void KAZE::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
|
||||
{
|
||||
Mat img = image.getMat();
|
||||
if (img.type() != CV_8UC1)
|
||||
cvtColor(image, img, COLOR_BGR2GRAY);
|
||||
|
||||
Mat img1_32;
|
||||
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
|
||||
|
||||
KAZEOptions options;
|
||||
options.img_width = img.cols;
|
||||
options.img_height = img.rows;
|
||||
options.extended = extended;
|
||||
options.upright = upright;
|
||||
options.dthreshold = threshold;
|
||||
options.omax = octaves;
|
||||
options.nsublevels = sublevels;
|
||||
options.diffusivity = diffusivity;
|
||||
|
||||
KAZEFeatures impl(options);
|
||||
impl.Create_Nonlinear_Scale_Space(img1_32);
|
||||
impl.Feature_Detection(keypoints);
|
||||
|
||||
if (!mask.empty())
|
||||
// returns the descriptor type
|
||||
int descriptorType() const
|
||||
{
|
||||
cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
|
||||
return CV_32F;
|
||||
}
|
||||
}
|
||||
|
||||
void KAZE::computeImpl(InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
|
||||
{
|
||||
cv::Mat img = image.getMat();
|
||||
if (img.type() != CV_8UC1)
|
||||
cvtColor(image, img, COLOR_BGR2GRAY);
|
||||
// returns the default norm type
|
||||
int defaultNorm() const
|
||||
{
|
||||
return NORM_L2;
|
||||
}
|
||||
|
||||
Mat img1_32;
|
||||
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
|
||||
void detectAndCompute(InputArray image, InputArray mask,
|
||||
std::vector<KeyPoint>& keypoints,
|
||||
OutputArray descriptors,
|
||||
bool useProvidedKeypoints)
|
||||
{
|
||||
cv::Mat img = image.getMat();
|
||||
if (img.type() != CV_8UC1)
|
||||
cvtColor(image, img, COLOR_BGR2GRAY);
|
||||
|
||||
cv::Mat& desc = descriptors.getMatRef();
|
||||
Mat img1_32;
|
||||
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
|
||||
|
||||
KAZEOptions options;
|
||||
options.img_width = img.cols;
|
||||
options.img_height = img.rows;
|
||||
options.extended = extended;
|
||||
options.upright = upright;
|
||||
options.dthreshold = threshold;
|
||||
options.omax = octaves;
|
||||
options.nsublevels = sublevels;
|
||||
options.diffusivity = diffusivity;
|
||||
KAZEOptions options;
|
||||
options.img_width = img.cols;
|
||||
options.img_height = img.rows;
|
||||
options.extended = extended;
|
||||
options.upright = upright;
|
||||
options.dthreshold = threshold;
|
||||
options.omax = octaves;
|
||||
options.nsublevels = sublevels;
|
||||
options.diffusivity = diffusivity;
|
||||
|
||||
KAZEFeatures impl(options);
|
||||
impl.Create_Nonlinear_Scale_Space(img1_32);
|
||||
|
||||
if (!useProvidedKeypoints)
|
||||
{
|
||||
impl.Feature_Detection(keypoints);
|
||||
}
|
||||
|
||||
if (!mask.empty())
|
||||
{
|
||||
cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
|
||||
}
|
||||
|
||||
if( descriptors.needed() )
|
||||
{
|
||||
Mat& desc = descriptors.getMatRef();
|
||||
impl.Feature_Description(keypoints, desc);
|
||||
|
||||
CV_Assert((!desc.rows || desc.cols == descriptorSize()));
|
||||
CV_Assert((!desc.rows || (desc.type() == descriptorType())));
|
||||
}
|
||||
}
|
||||
|
||||
bool extended;
|
||||
bool upright;
|
||||
float threshold;
|
||||
int octaves;
|
||||
int sublevels;
|
||||
int diffusivity;
|
||||
};
|
||||
|
||||
KAZEFeatures impl(options);
|
||||
impl.Create_Nonlinear_Scale_Space(img1_32);
|
||||
impl.Feature_Description(keypoints, desc);
|
||||
|
||||
CV_Assert((!desc.rows || desc.cols == descriptorSize()));
|
||||
CV_Assert((!desc.rows || (desc.type() == descriptorType())));
|
||||
}
|
||||
}
|
||||
|
@@ -8,23 +8,8 @@
|
||||
#ifndef __OPENCV_FEATURES_2D_AKAZE_CONFIG_H__
|
||||
#define __OPENCV_FEATURES_2D_AKAZE_CONFIG_H__
|
||||
|
||||
/* ************************************************************************* */
|
||||
// OpenCV
|
||||
#include "../precomp.hpp"
|
||||
#include <opencv2/features2d.hpp>
|
||||
|
||||
/* ************************************************************************* */
|
||||
/// Lookup table for 2d gaussian (sigma = 2.5) where (0,0) is top left and (6,6) is bottom right
|
||||
const float gauss25[7][7] = {
|
||||
{ 0.02546481f, 0.02350698f, 0.01849125f, 0.01239505f, 0.00708017f, 0.00344629f, 0.00142946f },
|
||||
{ 0.02350698f, 0.02169968f, 0.01706957f, 0.01144208f, 0.00653582f, 0.00318132f, 0.00131956f },
|
||||
{ 0.01849125f, 0.01706957f, 0.01342740f, 0.00900066f, 0.00514126f, 0.00250252f, 0.00103800f },
|
||||
{ 0.01239505f, 0.01144208f, 0.00900066f, 0.00603332f, 0.00344629f, 0.00167749f, 0.00069579f },
|
||||
{ 0.00708017f, 0.00653582f, 0.00514126f, 0.00344629f, 0.00196855f, 0.00095820f, 0.00039744f },
|
||||
{ 0.00344629f, 0.00318132f, 0.00250252f, 0.00167749f, 0.00095820f, 0.00046640f, 0.00019346f },
|
||||
{ 0.00142946f, 0.00131956f, 0.00103800f, 0.00069579f, 0.00039744f, 0.00019346f, 0.00008024f }
|
||||
};
|
||||
|
||||
namespace cv
|
||||
{
|
||||
/* ************************************************************************* */
|
||||
/// AKAZE configuration options structure
|
||||
struct AKAZEOptions {
|
||||
@@ -75,4 +60,6 @@ struct AKAZEOptions {
|
||||
int kcontrast_nbins; ///< Number of bins for the contrast factor histogram
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@@ -6,6 +6,7 @@
|
||||
* @author Pablo F. Alcantarilla, Jesus Nuevo
|
||||
*/
|
||||
|
||||
#include "../precomp.hpp"
|
||||
#include "AKAZEFeatures.h"
|
||||
#include "fed.h"
|
||||
#include "nldiffusion_functions.h"
|
||||
@@ -14,9 +15,9 @@
|
||||
#include <iostream>
|
||||
|
||||
// Namespaces
|
||||
namespace cv
|
||||
{
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::details::kaze;
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
@@ -29,7 +30,7 @@ AKAZEFeatures::AKAZEFeatures(const AKAZEOptions& options) : options_(options) {
|
||||
ncycles_ = 0;
|
||||
reordering_ = true;
|
||||
|
||||
if (options_.descriptor_size > 0 && options_.descriptor >= cv::DESCRIPTOR_MLDB_UPRIGHT) {
|
||||
if (options_.descriptor_size > 0 && options_.descriptor >= AKAZE::DESCRIPTOR_MLDB_UPRIGHT) {
|
||||
generateDescriptorSubsample(descriptorSamples_, descriptorBits_, options_.descriptor_size,
|
||||
options_.descriptor_pattern_size, options_.descriptor_channels);
|
||||
}
|
||||
@@ -264,10 +265,10 @@ void AKAZEFeatures::Find_Scale_Space_Extrema(std::vector<cv::KeyPoint>& kpts)
|
||||
vector<cv::KeyPoint> kpts_aux;
|
||||
|
||||
// Set maximum size
|
||||
if (options_.descriptor == cv::DESCRIPTOR_MLDB_UPRIGHT || options_.descriptor == cv::DESCRIPTOR_MLDB) {
|
||||
if (options_.descriptor == AKAZE::DESCRIPTOR_MLDB_UPRIGHT || options_.descriptor == AKAZE::DESCRIPTOR_MLDB) {
|
||||
smax = 10.0f*sqrtf(2.0f);
|
||||
}
|
||||
else if (options_.descriptor == cv::DESCRIPTOR_KAZE_UPRIGHT || options_.descriptor == cv::DESCRIPTOR_KAZE) {
|
||||
else if (options_.descriptor == AKAZE::DESCRIPTOR_KAZE_UPRIGHT || options_.descriptor == AKAZE::DESCRIPTOR_KAZE) {
|
||||
smax = 12.0f*sqrtf(2.0f);
|
||||
}
|
||||
|
||||
@@ -712,7 +713,7 @@ void AKAZEFeatures::Compute_Descriptors(std::vector<cv::KeyPoint>& kpts, cv::Mat
|
||||
}
|
||||
|
||||
// Allocate memory for the matrix with the descriptors
|
||||
if (options_.descriptor < cv::DESCRIPTOR_MLDB_UPRIGHT) {
|
||||
if (options_.descriptor < AKAZE::DESCRIPTOR_MLDB_UPRIGHT) {
|
||||
desc = cv::Mat::zeros((int)kpts.size(), 64, CV_32FC1);
|
||||
}
|
||||
else {
|
||||
@@ -729,17 +730,17 @@ void AKAZEFeatures::Compute_Descriptors(std::vector<cv::KeyPoint>& kpts, cv::Mat
|
||||
|
||||
switch (options_.descriptor)
|
||||
{
|
||||
case cv::DESCRIPTOR_KAZE_UPRIGHT: // Upright descriptors, not invariant to rotation
|
||||
case AKAZE::DESCRIPTOR_KAZE_UPRIGHT: // Upright descriptors, not invariant to rotation
|
||||
{
|
||||
cv::parallel_for_(cv::Range(0, (int)kpts.size()), MSURF_Upright_Descriptor_64_Invoker(kpts, desc, evolution_));
|
||||
}
|
||||
break;
|
||||
case cv::DESCRIPTOR_KAZE:
|
||||
case AKAZE::DESCRIPTOR_KAZE:
|
||||
{
|
||||
cv::parallel_for_(cv::Range(0, (int)kpts.size()), MSURF_Descriptor_64_Invoker(kpts, desc, evolution_));
|
||||
}
|
||||
break;
|
||||
case cv::DESCRIPTOR_MLDB_UPRIGHT: // Upright descriptors, not invariant to rotation
|
||||
case AKAZE::DESCRIPTOR_MLDB_UPRIGHT: // Upright descriptors, not invariant to rotation
|
||||
{
|
||||
if (options_.descriptor_size == 0)
|
||||
cv::parallel_for_(cv::Range(0, (int)kpts.size()), Upright_MLDB_Full_Descriptor_Invoker(kpts, desc, evolution_, options_));
|
||||
@@ -747,7 +748,7 @@ void AKAZEFeatures::Compute_Descriptors(std::vector<cv::KeyPoint>& kpts, cv::Mat
|
||||
cv::parallel_for_(cv::Range(0, (int)kpts.size()), Upright_MLDB_Descriptor_Subset_Invoker(kpts, desc, evolution_, options_, descriptorSamples_, descriptorBits_));
|
||||
}
|
||||
break;
|
||||
case cv::DESCRIPTOR_MLDB:
|
||||
case AKAZE::DESCRIPTOR_MLDB:
|
||||
{
|
||||
if (options_.descriptor_size == 0)
|
||||
cv::parallel_for_(cv::Range(0, (int)kpts.size()), MLDB_Full_Descriptor_Invoker(kpts, desc, evolution_, options_));
|
||||
@@ -765,7 +766,20 @@ void AKAZEFeatures::Compute_Descriptors(std::vector<cv::KeyPoint>& kpts, cv::Mat
|
||||
* @note The orientation is computed using a similar approach as described in the
|
||||
* original SURF method. See Bay et al., Speeded Up Robust Features, ECCV 2006
|
||||
*/
|
||||
void AKAZEFeatures::Compute_Main_Orientation(cv::KeyPoint& kpt, const std::vector<TEvolution>& evolution_) {
|
||||
void AKAZEFeatures::Compute_Main_Orientation(cv::KeyPoint& kpt, const std::vector<TEvolution>& evolution_)
|
||||
{
|
||||
/* ************************************************************************* */
|
||||
/// Lookup table for 2d gaussian (sigma = 2.5) where (0,0) is top left and (6,6) is bottom right
|
||||
static const float gauss25[7][7] =
|
||||
{
|
||||
{ 0.02546481f, 0.02350698f, 0.01849125f, 0.01239505f, 0.00708017f, 0.00344629f, 0.00142946f },
|
||||
{ 0.02350698f, 0.02169968f, 0.01706957f, 0.01144208f, 0.00653582f, 0.00318132f, 0.00131956f },
|
||||
{ 0.01849125f, 0.01706957f, 0.01342740f, 0.00900066f, 0.00514126f, 0.00250252f, 0.00103800f },
|
||||
{ 0.01239505f, 0.01144208f, 0.00900066f, 0.00603332f, 0.00344629f, 0.00167749f, 0.00069579f },
|
||||
{ 0.00708017f, 0.00653582f, 0.00514126f, 0.00344629f, 0.00196855f, 0.00095820f, 0.00039744f },
|
||||
{ 0.00344629f, 0.00318132f, 0.00250252f, 0.00167749f, 0.00095820f, 0.00046640f, 0.00019346f },
|
||||
{ 0.00142946f, 0.00131956f, 0.00103800f, 0.00069579f, 0.00039744f, 0.00019346f, 0.00008024f }
|
||||
};
|
||||
|
||||
int ix = 0, iy = 0, idx = 0, s = 0, level = 0;
|
||||
float xf = 0.0, yf = 0.0, gweight = 0.0, ratio = 0.0;
|
||||
@@ -1702,3 +1716,6 @@ void generateDescriptorSubsample(cv::Mat& sampleList, cv::Mat& comparisons, int
|
||||
sampleList = samples.rowRange(0, count).clone();
|
||||
comparisons = comps.rowRange(0, nbits).clone();
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
@@ -12,12 +12,14 @@
|
||||
#include "../precomp.hpp"
|
||||
#include <opencv2/features2d.hpp>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
//*************************************************************************************
|
||||
|
||||
struct KAZEOptions {
|
||||
|
||||
KAZEOptions()
|
||||
: diffusivity(cv::DIFF_PM_G2)
|
||||
: diffusivity(KAZE::DIFF_PM_G2)
|
||||
|
||||
, soffset(1.60f)
|
||||
, omax(4)
|
||||
@@ -49,4 +51,6 @@ struct KAZEOptions {
|
||||
bool extended;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@@ -17,43 +17,48 @@
|
||||
#include "fed.h"
|
||||
#include "TEvolution.h"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
/* ************************************************************************* */
|
||||
// KAZE Class Declaration
|
||||
class KAZEFeatures {
|
||||
|
||||
private:
|
||||
|
||||
/// Parameters of the Nonlinear diffusion class
|
||||
KAZEOptions options_; ///< Configuration options for KAZE
|
||||
std::vector<TEvolution> evolution_; ///< Vector of nonlinear diffusion evolution
|
||||
/// Parameters of the Nonlinear diffusion class
|
||||
KAZEOptions options_; ///< Configuration options for KAZE
|
||||
std::vector<TEvolution> evolution_; ///< Vector of nonlinear diffusion evolution
|
||||
|
||||
/// Vector of keypoint vectors for finding extrema in multiple threads
|
||||
/// Vector of keypoint vectors for finding extrema in multiple threads
|
||||
std::vector<std::vector<cv::KeyPoint> > kpts_par_;
|
||||
|
||||
/// FED parameters
|
||||
int ncycles_; ///< Number of cycles
|
||||
bool reordering_; ///< Flag for reordering time steps
|
||||
std::vector<std::vector<float > > tsteps_; ///< Vector of FED dynamic time steps
|
||||
std::vector<int> nsteps_; ///< Vector of number of steps per cycle
|
||||
/// FED parameters
|
||||
int ncycles_; ///< Number of cycles
|
||||
bool reordering_; ///< Flag for reordering time steps
|
||||
std::vector<std::vector<float > > tsteps_; ///< Vector of FED dynamic time steps
|
||||
std::vector<int> nsteps_; ///< Vector of number of steps per cycle
|
||||
|
||||
public:
|
||||
|
||||
/// Constructor
|
||||
/// Constructor
|
||||
KAZEFeatures(KAZEOptions& options);
|
||||
|
||||
/// Public methods for KAZE interface
|
||||
/// Public methods for KAZE interface
|
||||
void Allocate_Memory_Evolution(void);
|
||||
int Create_Nonlinear_Scale_Space(const cv::Mat& img);
|
||||
void Feature_Detection(std::vector<cv::KeyPoint>& kpts);
|
||||
void Feature_Description(std::vector<cv::KeyPoint>& kpts, cv::Mat& desc);
|
||||
static void Compute_Main_Orientation(cv::KeyPoint& kpt, const std::vector<TEvolution>& evolution_, const KAZEOptions& options);
|
||||
|
||||
/// Feature Detection Methods
|
||||
/// Feature Detection Methods
|
||||
void Compute_KContrast(const cv::Mat& img, const float& kper);
|
||||
void Compute_Multiscale_Derivatives(void);
|
||||
void Compute_Detector_Response(void);
|
||||
void Determinant_Hessian(std::vector<cv::KeyPoint>& kpts);
|
||||
void Determinant_Hessian(std::vector<cv::KeyPoint>& kpts);
|
||||
void Do_Subpixel_Refinement(std::vector<cv::KeyPoint>& kpts);
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@@ -645,38 +645,70 @@ static inline float getScale(int level, int firstLevel, double scaleFactor)
|
||||
return (float)std::pow(scaleFactor, (double)(level - firstLevel));
|
||||
}
|
||||
|
||||
/** Constructor
|
||||
* @param detector_params parameters to use
|
||||
*/
|
||||
ORB::ORB(int _nfeatures, float _scaleFactor, int _nlevels, int _edgeThreshold,
|
||||
int _firstLevel, int _WTA_K, int _scoreType, int _patchSize, int _fastThreshold) :
|
||||
nfeatures(_nfeatures), scaleFactor(_scaleFactor), nlevels(_nlevels),
|
||||
edgeThreshold(_edgeThreshold), firstLevel(_firstLevel), WTA_K(_WTA_K),
|
||||
scoreType(_scoreType), patchSize(_patchSize), fastThreshold(_fastThreshold)
|
||||
{}
|
||||
|
||||
class ORB_Impl : public ORB
|
||||
{
|
||||
public:
|
||||
explicit ORB_Impl(int _nfeatures, float _scaleFactor, int _nlevels, int _edgeThreshold,
|
||||
int _firstLevel, int _WTA_K, int _scoreType, int _patchSize, int _fastThreshold) :
|
||||
nfeatures(_nfeatures), scaleFactor(_scaleFactor), nlevels(_nlevels),
|
||||
edgeThreshold(_edgeThreshold), firstLevel(_firstLevel), WTA_K(_WTA_K),
|
||||
scoreType(_scoreType), patchSize(_patchSize), fastThreshold(_fastThreshold)
|
||||
{}
|
||||
|
||||
int ORB::descriptorSize() const
|
||||
// returns the descriptor size in bytes
|
||||
int descriptorSize() const;
|
||||
// returns the descriptor type
|
||||
int descriptorType() const;
|
||||
// returns the default norm type
|
||||
int defaultNorm() const;
|
||||
|
||||
// Compute the ORB_Impl features and descriptors on an image
|
||||
void operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const;
|
||||
|
||||
// Compute the ORB_Impl features and descriptors on an image
|
||||
void operator()( InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints,
|
||||
OutputArray descriptors, bool useProvidedKeypoints=false ) const;
|
||||
|
||||
AlgorithmInfo* info() const;
|
||||
|
||||
protected:
|
||||
|
||||
void computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) const;
|
||||
void detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) const;
|
||||
|
||||
int nfeatures;
|
||||
double scaleFactor;
|
||||
int nlevels;
|
||||
int edgeThreshold;
|
||||
int firstLevel;
|
||||
int WTA_K;
|
||||
int scoreType;
|
||||
int patchSize;
|
||||
int fastThreshold;
|
||||
};
|
||||
|
||||
int ORB_Impl::descriptorSize() const
|
||||
{
|
||||
return kBytes;
|
||||
}
|
||||
|
||||
int ORB::descriptorType() const
|
||||
int ORB_Impl::descriptorType() const
|
||||
{
|
||||
return CV_8U;
|
||||
}
|
||||
|
||||
int ORB::defaultNorm() const
|
||||
int ORB_Impl::defaultNorm() const
|
||||
{
|
||||
return NORM_HAMMING;
|
||||
}
|
||||
|
||||
/** Compute the ORB features and descriptors on an image
|
||||
/** Compute the ORB_Impl features and descriptors on an image
|
||||
* @param img the image to compute the features and descriptors on
|
||||
* @param mask the mask to apply
|
||||
* @param keypoints the resulting keypoints
|
||||
*/
|
||||
void ORB::operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const
|
||||
void ORB_Impl::operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const
|
||||
{
|
||||
(*this)(image, mask, keypoints, noArray(), false);
|
||||
}
|
||||
@@ -716,7 +748,7 @@ static void uploadORBKeypoints(const std::vector<KeyPoint>& src,
|
||||
}
|
||||
|
||||
|
||||
/** Compute the ORB keypoints on an image
|
||||
/** Compute the ORB_Impl keypoints on an image
|
||||
* @param image_pyramid the image pyramid to compute the features and descriptors on
|
||||
* @param mask_pyramid the masks to apply at every level
|
||||
* @param keypoints the resulting keypoints, clustered per level
|
||||
@@ -788,7 +820,7 @@ static void computeKeyPoints(const Mat& imagePyramid,
|
||||
KeyPointsFilter::runByImageBorder(keypoints, img.size(), edgeThreshold);
|
||||
|
||||
// Keep more points than necessary as FAST does not give amazing corners
|
||||
KeyPointsFilter::retainBest(keypoints, scoreType == ORB::HARRIS_SCORE ? 2 * featuresNum : featuresNum);
|
||||
KeyPointsFilter::retainBest(keypoints, scoreType == ORB_Impl::HARRIS_SCORE ? 2 * featuresNum : featuresNum);
|
||||
|
||||
nkeypoints = (int)keypoints.size();
|
||||
counters[level] = nkeypoints;
|
||||
@@ -814,7 +846,7 @@ static void computeKeyPoints(const Mat& imagePyramid,
|
||||
UMat ukeypoints, uresponses(1, nkeypoints, CV_32F);
|
||||
|
||||
// Select best features using the Harris cornerness (better scoring than FAST)
|
||||
if( scoreType == ORB::HARRIS_SCORE )
|
||||
if( scoreType == ORB_Impl::HARRIS_SCORE )
|
||||
{
|
||||
if( useOCL )
|
||||
{
|
||||
@@ -888,7 +920,7 @@ static void computeKeyPoints(const Mat& imagePyramid,
|
||||
}
|
||||
|
||||
|
||||
/** Compute the ORB features and descriptors on an image
|
||||
/** Compute the ORB_Impl features and descriptors on an image
|
||||
* @param img the image to compute the features and descriptors on
|
||||
* @param mask the mask to apply
|
||||
* @param keypoints the resulting keypoints
|
||||
@@ -896,7 +928,7 @@ static void computeKeyPoints(const Mat& imagePyramid,
|
||||
* @param do_keypoints if true, the keypoints are computed, otherwise used as an input
|
||||
* @param do_descriptors if true, also computes the descriptors
|
||||
*/
|
||||
void ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints,
|
||||
void ORB_Impl::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints,
|
||||
OutputArray _descriptors, bool useProvidedKeypoints ) const
|
||||
{
|
||||
CV_Assert(patchSize >= 2);
|
||||
@@ -1127,12 +1159,12 @@ void ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>
|
||||
}
|
||||
}
|
||||
|
||||
void ORB::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
|
||||
void ORB_Impl::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
|
||||
{
|
||||
(*this)(image.getMat(), mask.getMat(), keypoints, noArray(), false);
|
||||
}
|
||||
|
||||
void ORB::computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
|
||||
void ORB_Impl::computeImpl( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
|
||||
{
|
||||
(*this)(image, Mat(), keypoints, descriptors, true);
|
||||
}
|
||||
|
Reference in New Issue
Block a user