integrate pruning

This commit is contained in:
marina.kolpakova 2012-12-11 22:42:13 +04:00
parent a89299acb2
commit 2e4b8d07cc
3 changed files with 113 additions and 15 deletions

View File

@ -125,11 +125,24 @@ private:
class Octave : cv::Boost
{
public:
enum
{
// Direct backward pruning. (Cha Zhang and Paul Viola)
DBP = 1,
// Multiple instance pruning. (Cha Zhang and Paul Viola)
MIP = 2,
// Originally proposed by L. bourdev and J. brandt
HEURISTIC = 4
};
Octave(cv::Rect boundingBox, int npositives, int nnegatives, int logScale, int shrinkage);
virtual ~Octave();
virtual bool train(const Dataset& dataset, const FeaturePool& pool, int weaks, int treeDepth);
virtual void write( CvFileStorage* fs, string name) const;
virtual bool train(const Dataset& dataset, const FeaturePool& pool, int weaks, int treeDepth);
virtual void write( CvFileStorage* fs, string name) const;
virtual float predict( const Mat& _sample, Mat& _votes, bool raw_mode, bool return_sum ) const;
virtual void setRejectThresholds(cv::Mat& thresholds);
int logScale;
@ -139,6 +152,8 @@ protected:
void processPositives(const Dataset& dataset, const FeaturePool& pool);
void generateNegatives(const Dataset& dataset);
float predict( const Mat& _sample, const cv::Range range) const;
private:
cv::Rect boundingBox;
@ -151,6 +166,8 @@ private:
Mat responses;
CvBoostParams params;
Mat trainData;
};
}

View File

@ -80,21 +80,72 @@ sft::Octave::Octave(cv::Rect bb, int np, int nn, int ls, int shr)
sft::Octave::~Octave(){}
bool sft::Octave::train( const cv::Mat& trainData, const cv::Mat& _responses, const cv::Mat& varIdx,
bool sft::Octave::train( const cv::Mat& _trainData, const cv::Mat& _responses, const cv::Mat& varIdx,
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask)
{
std::cout << "WARNING: sampleIdx " << sampleIdx << std::endl;
std::cout << "WARNING: trainData " << trainData << std::endl;
std::cout << "WARNING: trainData " << _trainData << std::endl;
std::cout << "WARNING: _responses " << _responses << std::endl;
std::cout << "WARNING: varIdx" << varIdx << std::endl;
std::cout << "WARNING: varType" << varType << std::endl;
bool update = false;
return cv::Boost::train(trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, params,
return cv::Boost::train(_trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, params,
update);
}
void sft::Octave::setRejectThresholds(cv::Mat& thresholds)
{
dprintf("set thresholds according to DBP strategy\n");
// labels desided by classifier
cv::Mat desisions(responses.cols, responses.rows, responses.type());
float* dptr = desisions.ptr<float>(0);
// mask of samples satisfying the condition
cv::Mat ppmask(responses.cols, responses.rows, CV_8UC1);
uchar* mptr = ppmask.ptr<uchar>(0);
int nsamples = npositives + nnegatives;
cv::Mat stab;
for (int si = 0; si < nsamples; ++si)
{
float decision = dptr[si] = predict(trainData.col(si), stab, false, false);
mptr[si] = cv::saturate_cast<uchar>((uint)(responses.ptr<float>(si)[0] == 1.f && decision == 1.f));
}
std::cout << "WARNING: responses " << responses << std::endl;
std::cout << "WARNING: desisions " << desisions << std::endl;
std::cout << "WARNING: ppmask " << ppmask << std::endl;
int weaks = weak->total;
thresholds.create(1, weaks, CV_64FC1);
double* thptr = thresholds.ptr<double>(0);
cv::Mat traces(weaks, nsamples, CV_64FC1, cv::Scalar::all(FLT_MAX));
for (int w = 0; w < weaks; ++w)
{
double* rptr = traces.ptr<double>(w);
for (int si = 0; si < nsamples; ++si)
{
cv::Range curr(0, w + 1);
if (mptr[si])
{
float trace = predict(trainData.col(si), curr);
rptr[si] = trace;
}
}
double mintrace = 0.;
cv::minMaxLoc(traces.row(w), &mintrace);
thptr[w] = mintrace;
std::cout << "mintrace " << mintrace << std::endl << traces.colRange(0, npositives) << std::endl;
}
}
namespace {
using namespace sft;
class Preprocessor
@ -194,10 +245,10 @@ void sft::Octave::processPositives(const Dataset& dataset, const FeaturePool& po
void sft::Octave::generateNegatives(const Dataset& dataset)
{
// ToDo: set seed, use offsets
sft::Random::engine eng;
sft::Random::engine idxEng;
sft::Random::engine eng(65633343L);
sft::Random::engine idxEng(764224349868L);
int w = boundingBox.width;
// int w = boundingBox.width;
int h = boundingBox.height;
Preprocessor prepocessor(shrinkage);
@ -278,7 +329,7 @@ bool sft::Octave::train(const Dataset& dataset, const FeaturePool& pool, int wea
uptr[x] = CV_VAR_ORDERED;
uptr[nfeatures] = CV_VAR_CATEGORICAL;
cv::Mat trainData(nfeatures, nsamples, CV_32FC1);
trainData.create(nfeatures, nsamples, CV_32FC1);
for (int fi = 0; fi < nfeatures; ++fi)
{
float* dptr = trainData.ptr<float>(fi);
@ -292,11 +343,36 @@ bool sft::Octave::train(const Dataset& dataset, const FeaturePool& pool, int wea
bool ok = train(trainData, responses, varIdx, sampleIdx, varType, missingMask);
if (!ok)
std::cout << "ERROR:tree couldnot be trained" << std::endl;
std::cout << "ERROR: tree can not be trained " << std::endl;
#if defined SELF_TEST
cv::Mat a(1, nfeatures, CV_32FC1);
cv::Mat votes(1, cvSliceLength( CV_WHOLE_SEQ, weak ), CV_32FC1, cv::Scalar::all(0));
std::cout << a.cols << " " << a.rows << " !!!!!!!!!!! " << data->var_all << std::endl;
for (int si = 0; si < nsamples; ++si)
{
// trainData.col(si).copyTo(a.reshape(0,trainData.rows));
float desision = predict(trainData.col(si), votes, false, true);
std::cout << "desision " << desision << " class " << responses.at<float>(si, 0) << votes <<std::endl;
}
#endif
return ok;
}
float sft::Octave::predict( const Mat& _sample, Mat& _votes, bool raw_mode, bool return_sum ) const
{
CvMat sample = _sample, votes = _votes;
return CvBoost::predict(&sample, 0, (_votes.empty())? 0 : &votes, CV_WHOLE_SEQ, raw_mode, return_sum);
}
float sft::Octave::predict( const Mat& _sample, const cv::Range range) const
{
CvMat sample = _sample;
return CvBoost::predict(&sample, 0, 0, range, false, true);
}
void sft::Octave::write( CvFileStorage* fs, string name) const
{
CvBoost::write(fs, name.c_str());
@ -327,8 +403,8 @@ void sft::FeaturePool::fill(int desired)
pool.reserve(nfeatures);
sft::Random::engine eng(seed);
sft::Random::engine eng_ch(seed);
sft::Random::engine eng(8854342234L);
sft::Random::engine eng_ch(314152314L);
sft::Random::uniform chRand(0, N_CHANNELS - 1);

View File

@ -130,10 +130,15 @@ int main(int argc, char** argv)
if (boost.train(dataset, pool, cfg.weaks, cfg.treeDepth))
{
std::cout << "Octave " << *it << " was successfully trained..." << std::endl;
CvFileStorage* fout = cvOpenFileStorage(cfg.resPath(it).c_str(), 0, CV_STORAGE_WRITE);
boost.write(fout, cfg.cascadeName);
CvFileStorage* fout = cvOpenFileStorage(cfg.resPath(it).c_str(), 0, CV_STORAGE_WRITE);
boost.write(fout, cfg.cascadeName);
// strong.push_back(octave);
cvReleaseFileStorage( &fout);
cvReleaseFileStorage( &fout);
cv::Mat thresholds;
boost.setRejectThresholds(thresholds);
std::cout << "thresholds " << thresholds << std::endl;
}
}