new implementation of gpu::PyrLKOpticalFlow::dense (1.5 - 2x faster)

This commit is contained in:
Vladislav Vinogradov
2012-06-15 11:02:33 +00:00
parent af6b2e4e96
commit 2e2bd55729
5 changed files with 245 additions and 236 deletions

View File

@@ -66,8 +66,8 @@ namespace cv { namespace gpu { namespace device
const float2* prevPts, float2* nextPts, uchar* status, float* err, bool GET_MIN_EIGENVALS, int ptcount,
int level, dim3 block, dim3 patch, cudaStream_t stream = 0);
void lkDense_gpu(DevMem2Db I, DevMem2Db J, DevMem2D_<short> dIdx, DevMem2D_<short> dIdy,
DevMem2Df u, DevMem2Df v, DevMem2Df* err, bool GET_MIN_EIGENVALS, cudaStream_t stream = 0);
void lkDense_gpu(DevMem2Db I, DevMem2Df J, DevMem2Df u, DevMem2Df v, DevMem2Df prevU, DevMem2Df prevV,
DevMem2Df err, int2 winSize, cudaStream_t stream = 0);
}
}}}
@@ -160,16 +160,11 @@ void cv::gpu::PyrLKOpticalFlow::sparse(const GpuMat& prevImg, const GpuMat& next
return;
}
derivLambda = std::min(std::max(derivLambda, 0.0), 1.0);
iters = std::min(std::max(iters, 0), 100);
const int cn = prevImg.channels();
dim3 block, patch;
calcPatchSize(winSize, cn, block, patch, isDeviceArch11_);
calcPatchSize(winSize, cn, block, patch, isDeviceArch11_);
CV_Assert(derivLambda >= 0);
CV_Assert(maxLevel >= 0 && winSize.width > 2 && winSize.height > 2);
CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type());
CV_Assert(patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6);
@@ -227,80 +222,53 @@ void cv::gpu::PyrLKOpticalFlow::dense(const GpuMat& prevImg, const GpuMat& nextI
{
using namespace cv::gpu::device::pyrlk;
derivLambda = std::min(std::max(derivLambda, 0.0), 1.0);
iters = std::min(std::max(iters, 0), 100);
CV_Assert(prevImg.type() == CV_8UC1);
CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type());
CV_Assert(derivLambda >= 0);
CV_Assert(maxLevel >= 0 && winSize.width > 2 && winSize.height > 2);
if (useInitialFlow)
{
CV_Assert(u.size() == prevImg.size() && u.type() == CV_32FC1);
CV_Assert(v.size() == prevImg.size() && v.type() == CV_32FC1);
}
else
{
u.create(prevImg.size(), CV_32FC1);
v.create(prevImg.size(), CV_32FC1);
u.setTo(Scalar::all(0));
v.setTo(Scalar::all(0));
}
CV_Assert(maxLevel >= 0);
CV_Assert(winSize.width > 2 && winSize.height > 2);
if (err)
err->create(prevImg.size(), CV_32FC1);
// build the image pyramids.
// we pad each level with +/-winSize.{width|height}
// pixels to simplify the further patch extraction.
buildImagePyramid(prevImg, prevPyr_, true);
buildImagePyramid(nextImg, nextPyr_, true);
buildImagePyramid(u, uPyr_, false);
buildImagePyramid(v, vPyr_, false);
buildImagePyramid(prevImg, prevPyr_, false);
// dI/dx ~ Ix, dI/dy ~ Iy
nextPyr_.resize(maxLevel + 1);
nextImg.convertTo(nextPyr_[0], CV_32F);
for (int level = 1; level <= maxLevel; ++level)
pyrDown(nextPyr_[level - 1], nextPyr_[level]);
ensureSizeIsEnough(prevImg.rows + winSize.height * 2, prevImg.cols + winSize.width * 2, CV_16SC1, dx_buf_);
ensureSizeIsEnough(prevImg.rows + winSize.height * 2, prevImg.cols + winSize.width * 2, CV_16SC1, dy_buf_);
uPyr_.resize(2);
vPyr_.resize(2);
loadConstants(1, minEigThreshold, make_int2(winSize.width, winSize.height), iters);
ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[0]);
ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[0]);
ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[1]);
ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[1]);
uPyr_[1].setTo(Scalar::all(0));
vPyr_[1].setTo(Scalar::all(0));
int2 winSize2i = make_int2(winSize.width, winSize.height);
loadConstants(1, minEigThreshold, winSize2i, iters);
DevMem2Df derr = err ? *err : DevMem2Df();
int idx = 0;
for (int level = maxLevel; level >= 0; level--)
{
Size imgSize = prevPyr_[level].size();
int idx2 = (idx + 1) & 1;
GpuMat dxWhole(imgSize.height + winSize.height * 2, imgSize.width + winSize.width * 2, dx_buf_.type(), dx_buf_.data, dx_buf_.step);
GpuMat dyWhole(imgSize.height + winSize.height * 2, imgSize.width + winSize.width * 2, dy_buf_.type(), dy_buf_.data, dy_buf_.step);
dxWhole.setTo(Scalar::all(0));
dyWhole.setTo(Scalar::all(0));
GpuMat dIdx = dxWhole(Rect(winSize.width, winSize.height, imgSize.width, imgSize.height));
GpuMat dIdy = dyWhole(Rect(winSize.width, winSize.height, imgSize.width, imgSize.height));
lkDense_gpu(prevPyr_[level], nextPyr_[level], uPyr_[idx], vPyr_[idx], uPyr_[idx2], vPyr_[idx2],
level == 0 ? derr : DevMem2Df(), winSize2i);
calcSharrDeriv(prevPyr_[level], dIdx, dIdy);
lkDense_gpu(prevPyr_[level], nextPyr_[level], dIdx, dIdy, uPyr_[level], vPyr_[level],
level == 0 && err ? &derr : 0, getMinEigenVals);
if (level == 0)
{
uPyr_[0].copyTo(u);
vPyr_[0].copyTo(v);
}
else
{
resize(uPyr_[level], uPyr_[level - 1], uPyr_[level - 1].size());
resize(vPyr_[level], vPyr_[level - 1], vPyr_[level - 1].size());
multiply(uPyr_[level - 1], Scalar::all(2), uPyr_[level - 1]);
multiply(vPyr_[level - 1], Scalar::all(2), vPyr_[level - 1]);
}
if (level > 0)
idx = idx2;
}
uPyr_[idx].copyTo(u);
vPyr_[idx].copyTo(v);
}
#endif /* !defined (HAVE_CUDA) */